Natural Bioactive Products from an Ornamental- Medicinal Flower (Catharanthus roseus (L.) G. Don) forms Promising Therapeutics: A Critical Review of Natural Product-Based Drug Development
محورهای موضوعی : مجله گیاهان زینتیSomashekara Rajashekara 1 , Utpal Baro 2
1 - Centre for Applied Genetics, Department of Studies in Zoology, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru 560 056, India
2 - Centre for Applied Genetics, Department of Studies in Zoology, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru 560 056, India
کلید واژه: Anticancer Activity, antioxidant activity, Antimicrobial Activity, antidiabetic activity, Antileukemia activity, Chemotherapeutic drugs,
چکیده مقاله :
Catharanthus roseus (L.) G. Don (Apocynaceae) commonly called as “flower of immortality”, “the flower of death”, “violet of the sorcerers” and “an emblem of friendship”. It is a well-known weed to employed for treating various disorders. The study aims at far-reaching review on phytochemistry, pharmacological activities, ethnopharmacology, characterization, chemical composition, and biological applications of C. roseus plants which aids to provide scientific evidence for the ethnobotanical claims and to identify gaps required to be conducted as a future research requirement. Most of the traditional and systematic uses obtained from the extraction of C. roseus plants were validated by the scientific studies such as antimicrobial activity, anticancer activity, antidiabetic activity, antileukemia activity, antioxidant activity, chemotherapeutic drugs and therapy, wound healing, production of nanoparticles and nanoproducts, etc. Isolated compounds, mainly terpenoid indole alkaloids (TIA) such as ajmalicine, anhydrovinblastine, catharanthine, serpentine, vindoline, vinblastine, vincristine, and vindolinine were confirmed and showed potent activity. This review article explores the phytochemistry, ethnopharmacological, pharmacological and biological activities of C. roseus plants which gives the evidence of a potent and commercial drug which up on further research leads to the most viable drug for variety of treatments.
پریوش (خانواده خرزهره) معمولا تحت عنوان "گل نامیرا"، "گل مرگ"، "بنفشه جادوگر" و "سمبل دوستی" نامیده می شود. این گیاه یک علف هرز شناخته شده در درمان عوارض گوناگون است. از اهداف این مطالعه، دستیابی به کاربردهای فایتوشیمی، فعالیت های دارویی، اتنوفارماکولوژی، تشخیص، ترکیبات شیمیایی و زیستی گیاه پریوش است که باعث افزایش مدارک علمی در مورد خواص اتنوبوتانیکی این گیاه شده و به تشخیص خلاءهای موجود کمک کرده و نیازهای تحقیقاتی آینده را مشخص می کند. بیشتر استفاده های سنتی و سیستمیک که از عصاره این گیاه می شود، با مطالعات علمی ضد میکروبی، ضد سرطان، ضد قند خون، ضد سرطان خون، آنتی اکسیدانی، شیمی درمانی، التیام زخم، تولید نانوذرات، محصولات نانو و غیره به تایید رسیده است. محصولات جداسازی و خالص مثل آلکالوئیدهای ایندول ترپنوئیدی (TIA) شامل: آجمالایسین، آنهیدرووینبلاستین، کاتارانتین، سرپنتین، ویندولین، وینبلاستین، وینکریستین و ویندولینین قبلا تهیه، تایید و فعالیت آن ها به اثبات رسده است. این مقاله مروری به بررسی فعالیت های فایتوشیمیایی،اتنوفارکوماکولوژیکی، فارماکولوژیکی و زیستی گیاه پریوش می پردازند که مدرک معتبری در رابطه با داروهای تجاری باشد که با تحقیقات بیشتر بتوان داروهای مناسبتری برای انواع درمان ها تولید کرد.
Abouzeida, S., Hijazina, T., Lewerenza, L., Hänschc, R. and Selmar, D. 2019. The genuine localization of indole alkaloids in Vinca minor and Catharanthus roseus. Phytochemistry, 168: 112110. https://doi.org/10.1016/j.phytochem.2019.112110
Ahmad, S., Tauseef, I., Haleem, K.S., Khan, K., Shahzad, M., Ali, M. and Sultan, F. 2020. Synthesis of silver nanoparticles using leaves of Catharanthus roseus and their antimicrobial activity. Applied Nanoscience, 10: 4459–4464. https://doi.org/10.1007/s13204-019-01221
Alam, M.M., Naeem, M., Khan, M.A.M. and Uddin, M. 2017. Vincristine and vinblastine anticancer Catharanthus alkaloids: Pharmacological applications and strategies for yield improvement. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp. 277-307. https://doi.org/10.1007/978-3-319-51620-2_11
Arumugham, T., Alagumuthu, M., Amimodu, R.G., Munusamy, S. and Iyer, S.K. 2020. A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications. Sustainable Materials and Technologies, 23: e00138.
Aruna, M.S., Surya, Prabha, M., Priya, N.S. and Nadendla, R. 2015. Catharanthus roseus: Ornamental plant is now medicinal boutique. Journal of Drug Delivery and Therapeutics, 5 (3): 1-4.
Aslam, J., Khan, S.H., Siddiqui, Z.H., Fatima, Z., Maqsood, M., Bhat, M.A., Nasim, S.A., Ilah, A., Ahmad, I.Z., Khan, S.A., Mujib, A. and Sharma, M.P. 2010. Catharanthus roseus (L.) G. Don. an important drug: It’s applications and production. Pharmacie Globale International Journal of Comprehensive Pharmacy, 1 (4): 1-16.
Aziz, S., Saha, K., Sultana, N., Nur, P.N., Ahsan, M.A., Ahmed, S. and Hossain, M.K. 2016. Comparative studies of elemental composition in leaves and flowers of Catharanthus roseus growing in Bangladesh. Asian Pacific Journal of Tropical Biomedicine, 6 (1): 50–54.
Barkat, M.A.A., Abul, H. and Rahman, M.A. 2017. Agricultural, pharmaceutical, and therapeutic interior of Catharanthus roseus (L.) G. Don. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp. 71-100. https://doi.org/10.1007/978-3-319-51620-2_5
Barrales-Cureño, H.J. 2015. Pharmacological applications and in vitro biotechnological production of anticancer alkaloids of Catharanthus roseus. Biotecnología Aplicada, 32 (1): 1101-1110.
Barrales-Cureno, H.J., Andrade-Hoyos, P., Luna-Cruz, A., Reyes-Reyes, C., Chavez-Salinas, S. and Lopez-Valdez, L.G. 2017. In vitro biotechnological production and pharmacological studies of antileukemic alkaloids of Catharanthus roseus. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp. 17-34. https://doi.org/10.1007/978-3-319-51620-2_2
Baskar, G., Sakthivel, D. and George, G.B. 2016. Synthesis, characterization and anticancer activity of copper nanobiocomposite synthesized by leaf extract of Catharanthus roseus. International Journal of Modern Science and Technology, 1(3): 92-96.
Bernonville, T.D.D., Carqueijeiro, I., Lanoue, A., Lafontaine, F., Bel, P.S., Liesecke, F., Musset, K., Oudin, A., Glevarec, G., Pichon, O., Besseau, S., Clastre, M., St-Pierre, B., Flors, V., Maury, S., Huguet, E., OConnor, S.E. and Courdavault, V. 2017. Folivory elicits a strong defense reaction in Catharanthus roseus: Metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Science Reports, 7: 40453. https://doi.org/10.1038/srep40453
Blom, T.J., Sierra, M., Vliet, T.B., Dijk, M.E.I.F., Koning, P., Iren, F., Verpoorte, R. and Libbenga, K.R. 1991. Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine. Planta, 183 (2): 170-177. https://doi.org/10.1007/BF00197785
Bruna, G., Dijoux, M., Davidb, B. and Mariotte, A. 1999. A new avonol glycoside from Catharanthus roseus. Phytochemistry, 50: 167-169.
Canche, B.B.C., Meijerb, A.H., Collu, G., Verpoorteb, R. and Vargas, V.M.L. 2005. Characterization of a polyclonal antiserum against the monoterpene monooxygenase, geraniol 10-hydroxylase from Catharanthus roseus. Journal of Plant Physiology, 162: 393-402.
Chen, Q., Zhang, W., Zhang, Y., Chen, J. and Chen, Z. 2013. Identification and quantification of active alkaloids in Catharanthus roseus by liquid chromatography–ion trap mass spectrometry. Food Chemistry, 139: 845–852.
Chua, K.Y.L., Stinear, T.P. and Howden, B.P. 2013. Functional genomics of Staphylococcus aureus. Briefings in Functional Genomics, 12 (4): 305-315.
Cloutier, M., Jolicoeur, M. and Perrier, M. 2007. Dynamic sensitivity analysis of Catharanthus roseus hairy roots metabolism. IFAC Proceedings, 40 (4): 301-306.
Contin, A., ColIu, G., van der Heijden, R. and Verpoorte, R. 1999. The effects of phenobarbital and ketoconazole on the alkaloid biosynthesis in Catharanthus roseus cell suspension cultures. Plant Physiology and Biochemistry, 37 (2): 139-144.
Contin, A., van der Heijden, R., Hoopen, H.J.G. and Verpoorte, R. 1998a. The inoculum size triggers tryptamine or secologanin biosynthesis in a Catharanthus roseus cell culture. Plant Science, 139: 205–211.
Contin, A., van der Heijden, R., Lefeber, A.W.M. and Verpoorte, R. 1998b. The iridoid glycoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Letters, 434: 413–416.
Costa, M.R.M., Hilliou, F., Duarte, P., Pereira, L.G., Almeida, I., Leech, M., Memelink, J., Barcelo, A.R. and Sottomayor, M. 2008. Molecular cloning and characterization of a vacuolar class iii peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiology, 146: 403–417.
Curenoa, H.J.B., Montoyab, J.M., Perezc, J.E., Ruizd, J.A.C., Constantinoe, G.G.L., Martinezf, F.Z., Magallong, J.A.S., Reyesh, C. and Laureano, J.L. 2021. Metabolomics and fluxomics studies in the medicinal plant Catharanthus roseus. Medicinal and Aromatic Plants: Expanding their Horizons through Omics, Elsevier. http://dx.doi.org/10.1016/B978-0-12-819590-1.00003-3
Das, A., Sarkar, S., Bhattacharyya, S. and Gantait, S. 2020. Biotechnological advancements in Catharanthus roseus (L.) G. Don. Applied Microbiology and Biotechnology, 104: 4811: 4835. https://doi.org/10.1007/s00253-020-10592-1
Das, S. and Sharangi, A.B. 2017. Madagascar periwinkle (Catharanthus roseus L.): Diverse medicinal and therapeutic benefits to human kind. Journal of Pharmacognosy and Phytochemistry, 6 (5): 1695-1701.
Elkahouia, S., Hernandezb, J.A., Abdellyc, C., Ghrira, R. and Limam, F. 2005. Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Science, 168: 607–613.
El-Sayeda, M. and Verpoorte, R. 2005. Methyljasmonate accelerates catabolism of monoterpenoid indole alkaloids in Catharanthus roseus during leaf processing. Fitoterapia, 76: 83 – 90.
Esyanti, R.R. and Muspiah, A. 2006. Production pattern of ajmalicine in Catharanthus roseus (L.) G. Don. cell aggregates culture in the airlift bioreactor. Hayati Journal of Biosciences, 13 (4): 161-165.
Fujiokaa, S., Noguchi, T., Watanabe, T., Takatsutoc, S. and Yoshida, S. 2000. Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus. Phytochemistry, 53: 549-553.
Gajalakshmi, S., Vijayalakshmi, S. and Rajeswari, D.V. 2013. Pharmacological activities of Catharanthus roseus: A perspective review. International Journal of Pharma and BioSciences, 4 (2): 431-439.
Goboza, M., Meyer, M., Aboua, Y.G. and Oguntibeju, O.O. 2020. In vitro antidiabetic and antioxidant effects of different extracts of Catharanthus roseus and its indole alkaloid, vindoline. Molecules, 25 (5546): 1-22. https://doi.org/10.3390/molecules25235546
Goodbody, A.E., Lambe, C.A. and Rosevear, A. 1987. Serpentine release by suspension cultures of Catharanthus roseus. Biotechnology Letters, 9 (9): 629-632.
Govindasamy, C. and Srinivasan, R. 2012. In vitro antibacterial activity and phytochemical analysis of Catharanthus roseus (Linn.) G. Don. Asian Pacific Journal of Tropical Biomedicine, 2 (1): S155-S158. https://doi.org/10.1016/S2221-1691
Gupta, M., Toma, R.S., Kaushik, S., Mishra, R.K. and Sharma, D. 2018. Effective antimicrobial activity green ZnO particles of Catharanthus roseus. Frontiers in Microbiology, 9: 2030. https://doi.org/10.3389/fmicb.2018.02030
Hanafy, M.S., Matter, M.A., Asker, M.S. and Rady, M.R. 2016. Production of indole alkaloids in hairy root cultures of Catharanthus roseus L. and their antimicrobial activity. South African Journal of Botany, 105: 9–18.
Hernandez, G.G. and Vargas, V.M.L. 1997. Effect of acetylsalicylic acid on secondary metabolism of Catharanthus roseus tumor suspension cultures. Plant Cell Reports, 16 (5): 287-290.
Idrees, M., Hassan, I.U., Naeem, M., Ali, A., Aftab, T. and Khan, M.M.A. 2017. The Accumulation and degradation of alkaloids in Catharanthus roseus supported by various external agents under different environmental conditions. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp. 321-329. https://doi.org/10.1007/978-3-319-51620-2_13
Iwase, A., Aoyagi, H., Takagi, M.O. and Tanaka, H. 2005. Development of a novel system for producing ajmalicine and serpentine using direct culture of leaves in Catharanthus roseus intact plant. Journal of Bioscience and Bioengineering, 99 (3): 208–215.
Jaleel, C.A., Gopi, R., Gomathinayagam, M. and Panneerselvam, R. 2009. Traditional and non- traditional plant growth regulators alters phytochemical constituents in Catharanthus roseus. Process Biochemistry, 44 (2): 205–209.
Jaleel, C.A., Gopi, R., Lakshmanan, G.M. and Panneerselvam, R. 2006a. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Science, 171: 271-276.
Jaleel, C.A., Gopi, R., Manivannan, P., Kishorekumar, A., Sankar, B. and Panneerselvam, R. 2006b. Paclobutrazol influences on vegetative growth and floral characteristics of Catharanthus roseus (L.) G. Don. Indian Journal of Applied Pure Biology, 21: 369–372.
Jaleel, C.A., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R. and Panneerselvam, R. 2007a. Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South African Journal of Botany, 73: 190–195.
Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R. and Panneerselvam, R. 2007b. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids and Surfaces B: Biointerfaces, 60: 201–206. https://doi.org/10.1016/j.colsurfb.2007.06.010
Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R. and Panneerselvam, R. 2007c. Water deficit stress mitigation by calcium chloride in Catharanthus roseus: Effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids and Surfaces B: Biointerfaces, 60: 110–116.
Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A. and Panneerselvam, R. 2007d. Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. Comptes Rendus Biologies, 330 (9): 674–683.
Jeong, W.T. and Lim, H.B. 2018. A UPLC-ESI-Q-TOF method for rapid and reliable identification and quantification of major indole alkaloids in Catharanthus roseus. Journal of Chromatography B, 1080: 27–36.
Kaminagaa, Y., Nagatsua, A., Akiyamab, T., Sugimotob, N., Yamazakib, T., Maitanib, T. and Mizukami, H. 2003. Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Letters, 555 (2): 311-316.
Karimi, M. and Raofie, F. 2019. Micronization of vincristine extracted from Catharanthus roseus by expansion of supercritical fluid solution. The Journal of Supercritical Fluids, 146: 172–179.
Kaur, J., Singh, A., Pathak, T. and Kumar, K. 2017. Role of PGRs in anticancer alkaloids (vincristine and vinblastine) production. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp. 309-319. https://doi.org/10.1007/978-3-319-51620-2_12
Khalil, A. 2012. Antimicrobial activity of ethanol leaf extracts of Catharanthus roseus from Saudi Arabia. 2nd International Conference on Environment Science and Biotechnology. (IPCBEE) IACSIT Press, Singapore, 48: 6-11. https://doi.org/10.7763/IPCBEE. 2012.V48.2
Kidd, T., Easson, M.L., Qu, Y., Jones, G. and Luca, V.D. 2019. Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant. Phytochemistry, 159: 119–126.
Koel, M., Kuhtinskaja, M. and Vaher, M. 2020. Extraction of bioactive compounds from Catharanthus roseus and Vinca minor. Separation and Purification Technology, 252: 117438. https://doi.org/10.1016/j.seppur.2020.117438
Krithika, R., Srivastava, P.L., Rani, B., Kolet, S.P., Chopade, M., Soniya, M. and Thulasiram, H.V. 2014. Characterization of 10-hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis. Science Reports, 5: 8258. https://doi.org/10.1038/srep08258.
Kumar, S., Singh, A., Kumar, B., Singh, B., Bahadur, L. and Lal, M. 2018. Simultaneous quantitative determination of bioactive terpene indole alkaloids in ethanolic extracts of Catharanthus roseus (L.) G. Don by ultra high performance liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 151: 32-41. https://doi.org/10.1016/j.jpba.2017.12.040
Lahare, R.P., Yadav, H.S., Dashahre, A.K. and Bisen, Y.K. 2020. An updated review on phytochemical and pharmacological properties of Catharanthus rosea. Saudi Journal of Medical and Pharmaceutical Sciences, 6 (12): 759-766. http://dx.doi.org/10.36348/sjmps.2020.v06i12.007
Lawal, O.A., Ogunwande, I.A., Ibirogba, A.E., Layode, O.M. and Opoku, A.R. 2014. Chemical constituents of essential oils from Catharanthus roseus (L.) G. Don grown in Nigeria. Journal of Essential Oil-bearing Plants, 18 (1): 57-63. http://dx.doi.org/10.1080/X.2014.998720
Limam, F., Chahed, K., Ouelhazi, N., Ghrir, R. and Ouelhazi, L. 1997. Phytohormone regulation of isoperoxidases in Catharanthus roseus suspension cultures. Phytochemistry, 49 (5): 1219-1225. https://doi.org/10.1016/S0031-9422
Lin, Z., Qing-Hui, G., Yuan-Gang, Z.U., Lei, Y., Yu-Liang, M.A. and Yang, L. 2014. Simultaneous quantitative determination of five alkaloids in Catharanthus roseus by HPLC-ESI-MS/MS. Chinese Journal of Natural Medicines, 12 (10): 786-793.
Lopez, C., Claudea, B., Morina, P., Max, J.P., Pena, R. and Ribet, J.P. 2011. Synthesis and study of a molecularly imprinted polymer for the specific extraction of indole alkaloids from Catharanthus roseus extracts. Analytica Chimica Acta, 683: 198–205.
Magnotta, M., Murata, J., Chen, J. and Luca, V.D. 2007. Expression of deacetylvindoline-4-O- acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry, 68: 1922–1931.
Malik, S., Andrade, S.A.L., Sawaya, A.C.H.F, Bottcher, A. and Mazzafera, P. 2013. Root-zone temperature alters alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum. Industrial Crops and Products, 49: 318–325.
Maqsood, M. and Mujib, A. 2017. Yeast extract elicitation increases vinblastine and vincristine yield in protoplast derived tissues and plantlets in Catharanthus roseus. Revista Brasileira de Farmacognosia, 27 (5): 549-556. http://dx.doi.org /10.1016/ j.bjp. 2017. 05.008
Mekky, H., Sabahi, J.A. and Abdul-Kreem, M.F.M.A. 2018. Potentiating biosynthesis of the anticancer alkaloids vincristine and vinblastine in callus cultures of Catharanthus roseus. South African Journal of Botany, 114: 29–31.
Misraa, N. and Gupta, A.K. 2006. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology, 163: 11-18.
Moon, S.H., Pandurangan, M., Kim, D.H., Venkatesh, J., Patel, R.V. and Mistry, B.M. 2018. A rich source of potential bioactive compounds with anticancer activities by Catharanthus roseus cambium meristematic stem cell cultures. Journal of Ethnopharmacology, 217: 107-117. https://doi.org/10.1016/j.jep.2018.02.021
Moon, H.S., Venkatesh, J., Yu, J.W. and Park, S.W. 2015. Differential induction of meristematic stem cells of Catharanthus roseus and their characterization. Comptes Rendus Biologies, 338 (11): 745-756. http://dx.doi.org/10.1016/j.crvi.2015.05.005 1631-0691
Murata, J., Roepke, J., Gordon, H. and Lucaa, V.D. 2008. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. The Plant Cell, 20 (3): 524-542. https://doi.org/10.1105/tpc.107.056630
Musetti, R. and Favalib, M.A. 2003. Cytochemical localization of calcium and X-ray microanalysis of Catharanthus roseus L. infected with phytoplasmas. Micron, 34 (8): 387–393.
Mustafa, N.R. and Verpoorte, R. 2006. Phenolic compounds in Catharanthus roseus. Phytochemistry Reviews, 6 (2): 243-258. https://doi.org/10.1007/s11101-006-9039-8
Naeem, M., Aftab, T., Ansari, A.A., Idrees, M., Ali, A., Khan, M.M.A., Uddin, M. and Varshney, L. 2015. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L. Journal of Radiation Research and Applied Sciences, 8 (4): 606-616. http://dx.doi.org/10.1016/j.jrras.2015.07.005
Naeem, M., Aftab, T., Idrees, M., Alam, M.M., Khan, M.M.A. and Uddin, M. 2017. Plant efficacy and alkaloids production in sadabahar (Catharanthus roseus L.): Role of potent PGRS and mineral nutrients. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp: 35-57. https://doi.org/10.1007/978-3-319-51620-2_3
Nayak, B.S. and Pereira, L.M.P. 2006. Catharanthus roseus flower extract has wound-healing activity in sprague dawley rats. BMC Complementary and Alternative Medicine, 6: 41. http://www.biomedcentral.com/1472-6882/6/41.
Nejat, N., Valdiani, A., Cahill, D., Tan, Y-H., Maziah, M. and Abiri, R. 2015. Ornamental exterior versus therapeutic interior of madagascar periwinkle (Catharanthus roseus): The two faces of a versatile herb. Scientific World Journal, Article ID: 982412. https://doi.org/10.1155/2015/982412
Pan, Q., Saiman, M.Z., Mustafa, N.R., Verpoorteb, R. and Tang, K. 2016. A simple and rapid HPLC- DAD method for simultaneously monitoring the accumulation of alkaloids and precursors in different parts and different developmental stages of Catharanthus roseus plants. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 101: 10-16. https://doi.org/10.1016/j.jchromb.2016.01.034
Pandey, S.N., Pratap, V., Pratap, S. and Kumar, N. 2020. Phytochemicals and pharmacological studies of Catharanthus roseus Linn- A Comprehensive review. World Journal of Pharmaceutical Research, 9 (7): 1407-1415.
Parthasarathy, R., Shanmuganathan, R. and Pugazhendhi, A. 2019. Vinblastine production by the endophytic fungus Curvularia verruculosa and their in vitro cytotoxicity. Analytical Biochemistry, 593: 113530. https://doi.org/10.1016/j.ab.2019.113530
Patil, P.J. and Ghosh, J.S. 2010. Antimicrobial activity of Catharanthus roseus – A detailed study. British Journal of Pharmacology and Toxicology, 1(1): 40-44.
Pereira, D.M., Faria, J., Gaspar, L., Ferreres, F., Valentao, P., Sottomayor, M. and Andrade, P.B. 2010. Exploiting Catharanthus roseus roots: Source of antioxidants. Food Chemistry, 121: 56-61.
Pereira, D.M., Ferreres, F., Oliveira, J., Valentão, P., Andrade, P.B. and Sottomayor, M. 2009. Targeted metabolite analysis of Catharanthus roseus and its biological potential. Food and Chemical Toxicology, 47: 1349–1354.
Pham, H.N.T., Sakoff, J.A., Vuong, Q.V., Bowyer, M.C. and Scarlett, C.J. 2018. Screening phytochemical content, antioxidant, antimicrobial and cytotoxic activities of Catharanthus roseus (L.) G. Don stem extract and its fractions. Biocatalysis and Agricultural Biotechnology, 16: 405-411. https://doi.org/10.1016/j.bcab.2018.09.005
Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K. and Thangamani, S. 2012. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific Journal of Tropical Biomedicine, 2 (7): 574-580.
Prabhu, D.S. and Rajeswari, S.V.D. 2017. Catharanthus roseus: The cancer-fighting medicine. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp: 121-151. https://doi.org/10.1007/978-3-319-51620-2_7
Raia, A., Smitab, S.S., Singha, A.K., Shankerb, K. and Nagegowda, D.A. 2013. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis. Molecular Plant, 6 (5): 1531–1549.
Rajashekara, S., Reena, D., Mainavi, M.V., Sandhya, L. S. and Baro, U. 2021. Catharanthus roseus: Probable source of medicinal applications. LAP LAMBERT Academic Publishing, Republic of Moldova, Europe.
Rajashekara, S., Shrivastava, A., Sumhitha, S. and Kumari, S. 2020. Biomedical applications of biogenic zinc oxide nanoparticles manufactured from the leaf extracts of Calotropis gigantea (L.) Dryand. BioNanoScience, 10 (3): 654–671. https://doi.org/10.1007/s12668-020-00746-w
Rajesh, A., Poonam, M., Ajay, K.M. and Mathur, A. 1963. Anticancer alkaloids of Catharanthus roseus: Transition from traditional to modern medicine. In: Herbal medicine: A cancer chemopreventive and therapeutic perspective. Arora, R. (Ed), Jaypee Brothers Medical Publishers, New Delhi, 292–310. https://doi.org/ 10.5005/jp/books/11166_21
Rodrigueza, S., Compagnonb, V., Crouchc, N.P., Pierred, B. and Luca, V.D. 2003. Jasmonate- induced epoxidation of tabersonine by a cytochrome P-450 in hairy root cultures of Catharanthus roseus. Phytochemistry, 64: 401–409.
Schulte, E.A., van der Heijden, R. and Verpoorte, R. 1999. Purification and characterization of phosphomevalonate kinase from Catharanthus roseus. Phytochemistry, 52: 975-983.
Senbagalakshmi, P., Rao, M.V. and Kumar, S.A. 2017. In vitro studies, biosynthesis of secondary metabolites and pharmacological utility of Catharanthus roseus (L.) G. Don. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp. 153-199. https://doi.org/10.1007/978-3-319-51620-2_8
Shimoda, K., Kubota, N., Sano, T., Hirakawa, H. and Hirata, T. 2004. A novel hydroxylase from Catharanthus roseus participating in the hydroxylation of 2-hydroxybenzoic acid. Journal of Bioscience and Bioengineering, 98 (2): 67-70.
Shimoda, K., Yamane, S.Y., Hirakawa, H., Ohta, S. and Hirata, T. 2002. Biotransformation of phenolic compounds by the cultured cells of Catharanthus roseus. Journal of Molecular Catalysis B: Enzymatic, 16: 275–281.
Singh, A., Pandey, B., Kumari, S. and Agrawal, M. 2015. Nitrogen availability modulates CO2- induced responses of Catharanthus roseus: Biomass allocation, carbohydrates and aflkaloids profile. Journal of Applied Research on Medicinal and Aromatic Plants, 2 (4): 160-167.
Singh, S.N., Vats, P., Suri, S., Shyam, R., Kumria, M.M.L., Ranganathan, S. and Sridharan, K. 2001. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 76: 269–277.
Smriti Sanwal, G.G. 1999. Purification and characterization of a cellulase from Catharanthus roseus stems. Phytochemistry, 52: 7-13.
Spence, M.P.T., Lazear, M., Guggenberg, R.V., Ding, H. and Jianyong, L. 2014. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases. Phytochemistry, 106: 37–43.
Sriram, G., Fulton, D.B. and Shanks, J.V. 2007. Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by 13C labeling and comprehensive bondomer balancing. Phytochemistry, 68: 2243–225.
Subhashini, V. and Swamy, A.V.V.S. 2017. Potential of Catharanthus roseus (L.) in phytoremediation of heavy metals. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp: 349-364. https://doi.org/10.1007/978-3-319-51620-2_15
Suttipanta, N., Pattanaik, S., Gunjan, S., Xie, C.H., Littleton, J. and Yuan, L. 2007. Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochimica et Biophysica Acta, 1769: 139–148.
Syeda, A.M. and Riazunnisa, K. 2020. Data on GC-MS analysis, in vitro anti-oxidant and anti- microbial activity of the Catharanthus roseus and Moringa oleifera leaf extracts. Data in Brief, 29: 105258.
Taher, Z.M., Agouilla, F., Lim, J.R, Marof, A.Q, Daniel, D.J., Nurjayadi, M., Razif, E.N.M., Sara, E., Gomaa, E.l. and Enshasy, H.A. 2019. Anticancer molecules from Catharanthus roseus. Indonesian Journal of Pharmacy, 30 (3): 147–156.
Takemoto, M., Achwa, K., Toynov, N., Chen, T. and Kutney, J.P. 1995. Synthesis of optically active a-phenylpyridylmethanols by immobilized cell cultures of Catharanthus roseus. Phytochemistry, 42 (2): 423-426.
Tang, K. and Pan, Q. 2017. Strategies for enhancing alkaloids yield in Catharanthus roseus via metabolic engineering approaches. In: Naeem, M., Aftab, T. and Khan, M, (eds) Catharanthus roseus. Springer, pp: 1-16. https://doi.org/10.1007/978-3-319-51620-2_1
Thakore, D., Srivastavaa, K.A. and Sinha, K.A. 2015. Model based fed batch cultivation and elicitation for the overproduction of ajmalicine from hairy roots of Catharanthus roseus. Biochemical Engineering Journal, 97: 73–80.
Thakore, D., Srivastava, A.K. and Sinha, A.K. 2016. Mass production of ajmalicine by bioreactor cultivation of hairy roots of Catharanthus roseus. Biochemical Engineering Journal, 119: 84-91.
Tonk, D., Mujib, A., Ali, M. and Zafar, N. 2017. Elicitors enhance alkaloid yield in Catharanthus roseus. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp: 101-119. https://doi.org/10.1007/978-3-319-51620-2_6
Ukoha, A., Okereke, S.C., Arunsi, U.O., Ngwogu, A.C., Jack, A.B., Chukwudoruo, S.C., Nnonyelum, C.E. and Bello, H.A. 2017. Sub-lethal assessment of aqueous dried leaf extract of Catharanthus roseus (Linn.) G. Don in male albino rats. MOJ Toxicology, 3 (5): 00068.
Vaazquez-Flota, F.A., St-Pierre, B. and Luca, V.D. 2000. Light activation of vindoline biosynthesis does not require cytomorphogenesis in Catharanthus roseus seedlings. Phytochemistry, 55: 531-536.
van der Heijden, R., Jacobs, D.I., Snoeijer, W., Hallard, D. and Verpoorte, R. 2004. The Catharanthus alkaloids: Pharmacognosy and biotechnology. Current Medicinal Chemistry, 11: 607-628. https://doi.org/10.2174/0929867043455846
Vázquez-Flota, F., Carrillo-Pech, M., Minero-García, Y. and Miranda-Ham, M.D.L. 2004. Alkaloid metabolism in wounded Catharanthus roseus seedlings. Plant Physiology and Biochemistry, 42: 623–628.
Verma, P., Khan, S.A., Parasharami, V. and Mathu, A.K. 2017. Biotechnological interventions to modulate terpenoid indole alkaloid pathway in Catharanthus roseus using in vitro tools and approaches. In: Naeem, M., Aftab, T. and Khan, M. (eds) Catharanthus roseus. Springer, pp: 247-275. https://doi.org/10.1007/978-3-319-51620-2_10
Verma, P., Mathur, A.K., Srivastava, A. and Mathur, A. 2011. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: A literature update. Protoplasma, 249: 255–268. https://doi.org/10.1007/s00709-011-0291-4
Wang, Z., Yang, Z., Zhang, L., Wang, X., Peng, C., Meng, D. and Yan, D. 2016. Toxic effects of vinca alkaloids from Catharanthus roseus (L.) G. Don on tetrahymena thermophila BF5 growth by microcalorimetry. Thermochimica Acta, 651: 53-57.
Wanga, X.D., Li, Yang, C., Jiang, M.M., Li, D., Wene, P., Songa, X., Chena, J.D., Guoa, L.X., Hua, X.P., Lif, G.Q., Zhanga, J., Wang, C.H. and He, Z.D. 2016. Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus. Phytomedicine, 23: 641–653.
Xu, M. and Dong, J. 2005. O2− from elicitor-induced oxidative burst is necessary for triggering phenylalanine ammonia-lyase activation and catharanthine synthesis in Catharanthus roseus cell cultures. Enzyme and Microbial Technology, 36 (2-3): 280–284.
Yamane, S.Y., Shimoda, K., Watanabe, K. and Hirata, T. 2002. Purification and characterization of gentisic acid glucosyltransferase from the cultured cells of Catharanthus roseus. Journal of Molecular Catalysis B: Enzymatic, 17: 59–63.
Yao, X.G., Chen, F., Li, P. and Quan, L. 2013. Natural product vindoline stimulates insulin secretion and efficiently ameliorates glucose homeostasis in diabetic murine models. Journal of Ethnopharmacology, 150 (1): 285-297.https://doi.org/ 10.1016 /j.jep. 2013.08.043
Ye, M., Dai, J., Guo, H., Cui, Y. and Guo, D. 2002. Glucosylation of cinobufagin by cultured suspension cells of Catharanthus roseus. Tetrahedron Letters, 43: 8535–8538.
Ye, M., Dai, J., Guo, H., Cui, Y. and Guo, D. 2003. Biotransformation of cinobufagin by cell suspension cultures of Catharanthus roseus and Platycodon grandiflorum. Journal of Molecular Catalysis B: Enzymatic, 22: 89–95.
Yu, F. and Luca, V.De. 2013. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proceedings of the National Academy of Sciences, 110 (39): 15830–15835. https://doi.org/10.1073/pnas.1307504110
Yu, F., Thamm, A.M.K., Reed, D., Ruano, N.V., Quesada, A.L.,Gloria, E.L., Covello, P. and Luca, V.D. 2013. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis. Phytochemistry, 91: 122–127.
Zárates, R., Bonavia, M., Geerlings, A., van der Heijden, R. and Verpoorte, R. 2001. Expression of strictosidine -D-glucosidase cDNA from Catharanthus roseus, involved in the monoterpene indole alkaloid pathway, in a transgenic suspension culture of Nicotiana tabacum. Plant Physiology and Biochemistry, 39: 763−769.
Zhao, J. and Verpoorte, R. 2006. Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: From biochemical processing to metabolic engineering. Phytochemical Reviews, 6 (2): 435-457. https://doi.org/10.1007/s11101-006-9050-0
Zhao, J., Zhu, W.H. and Hu, Q. 2001a. Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme and Microbial Technology, 28: 673–681.
Zhao, J., Zhu, W.H. and Hu, Q. 2001b. Selection of fungal elicitors to increase indole alkaloid accumulation in Catharanthus roseus suspension cell culture. Enzyme and Microbial Technology, 28: 666–672.