Soil supplementation with silicon nanoparticles to alleviate toxicity signs of salinity in strawberry
محورهای موضوعی : Plant PhysiologyAlireza IranBakhsh 1 , Reza Soleymanzadeh 2 , Ghader Habibi 3 , Zahra Oraghi Ardebili 4
1 - Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Biology, Payame Noor University (PNU), 19395-3697 Tehran, Iran
4 - Department of biology, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
کلید واژه: Salicylic acid, Salt stress, Nanoparticle, silicon, Secondary metabolites,
چکیده مقاله :
The current study investigated the efficiency of soil supplementation with Silicon Oxide (SiO2) nanoparticle product (nSi; 20-30 nm; 0, 0.75, and 1.5 gKg-1) or Potassium silicate (BSi; K2SiO3 as a bulk counterpart) to improve strawberry protection against salinity (NaCl of 2.5 gkg-1). The BSi or nSi utilization not only increased fresh root mass (mean= 23 %) but also mitigated the inhibitory effects of salinity. The salinity, BSi, or nSi treatments made changes in secondary metabolites confirmed by the differential HPLC chromatogram. The soil supplementation with BSi or nSi induced activity of phenylalanine ammonia-lyase. Likewise, the BSi or nSi treatments enhanced concentrations of phenylpropanoid derivatives, including salicylic acid, ascorbic acid, quercetin, apigenin, caffeic acid, catechin, and chlorogenic acid.The individual salinity treatment caused a severe H2O2 accumulation by two folds. However, the BSi or nSi supplementation alleviated the salinity-associated risk of H2O2 accumulation. Salt stress caused a drastic increase in lipid peroxidation levels. However, BSi or nSi applications partially relieved the salinity toxicity on membrane integrity. With a similar trend, the BSi or nSi utilization improved the nutritional status of K+, Na+, and Ca+2 in both leaves and roots. Exposure to BSi, nSi, and/or salinity also enhanced proline concentrations. The BSi or nSi treatments mitigated the salinity-mediated down-regulations in photosynthesis performance. Our findings showed that silicon supplements increased salicylic acid (a signaling compound), ascorbate, and quercetin (two vital antioxidants) as fundamental mechanisms.
Asgari, F., A. Majd, P. Jonoubi, F. Najafi. 2018. Effects of silicon nanoparticles on molecular, chemical, structural, and ultrastructural characteristics of oat (Avena sativa L.), Plant Physiol. Biochem, 127: 152-160.
Asgari-Targhi, G., A. Iranbakhsh, Z. O. Ardebili, 2018. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum, Plant Physiol. Biochem, 127: 393-402.
Babajani, A., A. Iranbakhsh, Z. O. Ardebili, B. Eslami. 2019. Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ. Sci. Poll. Res, 26: 24430–24444.
Bates, L., R. Waldren, I. Teare. 1973. Rapid determination of free proline for water-stress studies, Plant and Soil, 39: 205-207.
Currie, H.A., and C. C. Perry. 2007. Silica in plants: biological, biochemical and chemical studies, Annal. Bot, 100(7): 1383-1389.
Debnath, N., S. Das, D. Seth, R. Chandra, S. C. Bhattacharya, A. Goswami. 2011. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.), J. Pest. Sci, 84(1): 99-105.
Epstein, E. 1999. Silicon, Ann. Rev. Plant Biol, 50(1): 641-664.
Etesami, H., and B.R. Jeong. 2018. Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants, Ecotoxicol. Environ. Saf, 147: 881-896.
Gupta, B., and B. Huang 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, 2014
Hamayun, M., E. Y. Sohn, S. A. Khan, Z. K. Shinwari, A. L. Khan, I. J. Lee. 2010. Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.), Pak. J. Bot, 42: 1713–1722.
Iranbakhsh, A., N. O. Ardebili, Z.O., Ardebili, M. Shafaati, M., Ghoranneviss. 2018. Non-thermal plasma-induced expression of heat shock factor A4A and improved wheat (Triticum aestivum L.) growth and resistance against salt stress, Plasma Chem. Plasma Process, 38(1): 29-44.
Kalteh, M. Alipour, ZT. Ashraf, S. Aliabadi, MM. Nosratabadi, AF. 2014. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Chem Health Risks, 4:49–55.
Kim, Y.H., Khan, A.L., Waqas, M., Shim, J.K., Kim, D.H., Lee, K.Y., Lee, I.J. 2014. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress, J. Plant Growth. Regul, 33: 137–149.
Lekklar, C., Chadchawan, S., Boon-Long, P., Pfeiffer, W., Chaidee, A. 2018. Salt stress in rice: multivariate analysis separates four components of beneficial silicon action, Protoplasma, 1-17.
Ma, J.F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M., Yano, M. 2007. An efflux transporter of silicon in rice, Nature, 448(7150): 209.
Marmiroli, M., Pigoni, V., Savo-Sardaro, M.L., Marmiroli, N. 2014. The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.), Environ. Exp. Bot, 99: 9-17.
Moghanloo, M., Iranbakhsh, A., Ebadi, M. and Ardebili, Z.O. 2019a. Differential physiology and expression of phenylalanine ammonia-lyase (PAL) and universal stress protein (USP) in the endangered species Astragalus fridae following seed priming with cold plasma and manipulation of culture medium with silica nanoparticles. 3Biotech, 9(7): 288.
Moghanloo, M., Iranbakhsh, A., Ebadi, M., Satari, T.N. and Ardebili, Z.O. 2019b. Seed priming with cold plasma and supplementation of culture medium with silicon nanoparticle modified growth, physiology, and anatomy in Astragalus fridae as an endangered species. Acta Physiol. Plant, 41(4): 54.
Nazerieh, H., Ardebili, Z.O., Iranbakhsh, A. 2018. Potential benefits and toxicity of nano selenium and nitric oxide in peppermint. Acta Agric. Slovenica, 111(2): 357-368.
Pei, Z., D. Ming, D. Liu, G. Wan, X. Geng, H. Gong, W. Zhou. 2010. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings, J. Plant Growth. Regul, 29: 106–115.
Rastogi, A., D. K. Tripathi, S. Yadav, D. K. Chauhan, M. Živčák, M. Ghorbanpour, N. I. El-Sheery and M. Brestic. 2019. Application of silicon nanoparticles in agriculture. 3 Biotech, 9, (3) 1-11.
Rui, Y., X. Gui, X. Li, S. Liu, Y. Han. 2014. Uptake, transport, distribution, and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton, J. Nanobiotechnol, 12(1): 50.
Schaller, J., C. Brackhage, M. O. Gessner, E. Bäuker, E. GertDudel. 2012. Silicon supply modifies C: N: P stoichiometry and growth of Phragmit esaustralis, Plant. Biol, 14(2): 392-396.
Sheteiwy, M.S.J. An, M. Yin, X. Jia, Y. Guan, F. He, J. Hu. 2018. Cold plasma treatment and exogenous salicylic acid priming enhance salinity tolerance of Oryza sativa seedlings, Protoplasma, 1-21.
Siddiqui, MH., MH. Al-Whaibi, M. Faisal, AA. Al Sahli. 2014. Nano-silicon dioxide mitigates the adverse effects of salt stress on (Cucurbita pepo L). Environ Toxicol and Chem, 33:2429–2437.
Sivanesan, I., and S. W. Park. 2014. The role of silicon in plant tissue culture, Front. Plant. Sci, 5: 571.
Velikova, V., I. Yordanov, A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines, Plant. Sci, 151: 59-66.
Wang, S.,P. Liu, D. Chen, L. Yin, H. Li, X. Deng. 2015. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber, Front. Plant. Sci, 6: 759.
Wang, Z.X., L. Chen, J. Ai, H. Y. Qin, Y. X. Liu, P.L. Xu, Z. Q. Jiao, Y. Zhao, Q. T. Zhang. 2012. Photosynthesis and activity of photosystem II in response to drought stress in Amur Grape (Vitis amurensis Rupr.), Photosynthetica, 50(2): 189-196.
Yang, Y., and Y. Guo. 2018. Elucidating the molecular mechanisms mediating plant salt stress responses, New Phytologist, 217(2): 523-539.
Zucker, M. 1965. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue, Plant. Physiol, 40: 778-779.