In vitro Ruminal Acid Load and Methane Emission Responses to Supplemented Lactating Dairy Cow Diets with Inorganic Compounds Varying in Buffering Capacities
محورهای موضوعی : Camelم. جعفرپور بروجنی 1 , م. دانش مسگران 2 , ع.ر. وکیلی 3 , ع.ع. ناصریان 4
1 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 - PDepartment of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
کلید واژه: methane, dairy cows, rumen, acidogenic value, buffering capacity,
چکیده مقاله :
Using 24 hours in vitro cultures of rumen microorganisms, this study investigates the effect of buffering capacity of 2 inorganic compounds (M1=119.43 and M2=116.50 meq/L) on the in vitro rumen acidogenic value (AV), medium pH, dry matter disappearance (INVDMD) and methane emission of lactating dairy cow diets containing various forage to concentrate ratios as 40:60 (FC40:60) and 30:70 (FC30:70) in a completely randomized design. Inorganic compounds were included in the experimental diets at the rate of 0.0, 10 or 20 g/kg DM. Diet with higher amount of concentrate caused a decline in medium pH, an increase in both AV and IVDMD. The acidogenic value of FC40:60 containing M2 at 20, M1 at 10 and 20 g/kg DM and FC 30:70 plus M1 and M2 at 20 g/kg DM was the lowest. The lowest level of CH4 emission (mL/0.20 g DM) was observed in FC30:70 plus M1 at the rate of 10 g/kg DM, while the highest level belongs to FC40:60 plus M1 at 10 g/kg DM and FC30:70 containing M1 at 20 and M2 at 10 g/kg DM. It has been concluded that the higher buffering capacity of a lactating diet might reduce the rumen acid load and increased IVDMD, while a diet with higher amount of concentrate causes to decline rumen methane emission.
Bodas R., Frutos P., Giraldez F.J.G.H. and Lopez S. (2009). Effect of sodium bicarbonate supplementation on feed intake, digestibility, digesta kinetics, nitrogen balance and ruminal fermentation in young fattening lambs. Spanish J. Agric. Res. 7(2), 330-341.
Counotte G.H.M., van't Klooster A.T., van der Kuilen J. and Prins R.A. (1979). An analysis of the buffer system in the rumen of dairy cattle. J. Anim. Sci. 49, 1536-1544.
Coppock C.E., Schelling G.T., Byers F.M., West J.M. and Labore J.M. (1986). A naturally occurring mineral as a buffer in the diet of lactating dairy cows. J. Dairy Sci. 69, 111-118.
Czerkawski J.W. (1986). An Introduction to Rumen Studies. Pergamon Press, New York.
Danesh Mesgaran S., Heravi Moussavi A., Jahani-Azizabadi H., Vakili A.R., Tabatabaiee F. and Danesh Mesgaran M. (2009). The effect of grain sources on in vitro rumen acid load of close-up dray cow diets. Pp. 146-147 in Proc. 11th Int. Symp. Rumin. Physiol.Wageningen, Netherlands.
Erdman R.A. (1988). Dietary buffering requirements of the lactating dairy cow: a review. J. Dairy Sci. 71, 3246-3252.
Evans J.L. and Ali R. (1967). Calcium utilization and feed efficiency in the growing rat as affected by dietary calcium, buffering capacity, lactose and EDTA. J. Nutr. 92, 417-425.
Franzolin R. and Dehority B.A. (1996). Effect of prolonged concentrate feeding on ruminal protozoa concentration. J. Anim. Sci. 74, 2803-2809.
Gottschalk G. (1986). Bacterial Metabolism. Springer-Verlag, New York.
Jahani Azizabadi H., Danesh Mesgaran M., Vakili A., Rezayazdi K. and Hashemi M. (2011). Effect of various medicinal plant essential oils obtained from semi-arid climate on rumen fermentation characteristics of a high forage diet using in vitro batch culture. African J. Microbiol. Res. 5, 4812-4819.
Kalscheur K.F., Teter B.B., Piperova L.S. and Erdman R.A. (1997). Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. J. Dairy Sci. 80, 2104-2114.
Koul V., Kumar U., Sareen V.K. and Singh S. (1998). Effect of sodium bicarbonate supplementation on ruminal microbial populations and metabolism in buffalo calves. Indian J. Anim. Sci. 68, 629-631.
Krause K.M., Combs D.K. and Beauchemin K.A. (2002b). Effects of particle size and grain fermentability in mid lactation cows. II. Ruminal pH and chewing activity. J. Dairy Sci. 85, 1947-1957.
Le Ruyet P. and Tucker B. (1992). Ruminal buffers: temporal effects on buffering capacity and pH of ruminal fluid from cows fed a high concentrate diet. J. Dairy Sci. 75, 1069-1077.
Menke K.H. and Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7-55.
Mould F.L. and Qrskov E.R. (1983). Manipulation of rumen fluid pH and its influence on cellulolysis in sacco dry matter degradation and rumen microflora of sheep offered either hay or concentrate. Anim. Feed Sci. Technol. 10, 1-14.
Plaizier J.C., Krause D.O., Gozho G.N. and McBride B.W. (2008). Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet. J. 176, 21-31.
Rustomo B., Cant J.P., Fan M.Z., Duffield T.F., Odongo N.E. and McBride B.W. (2006). Acidogenic value of feeds. I. The relationship between the acidogenic value of feeds and in vitro ruminal pH changes. Canadian J. Anim. Sci. 86, 109-117.
Santra A., Chaturvedi O.H., Tripathi M.K., Kumar R. and Karim S.A. (2003). Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. Small Rumin. Res. 47, 203-212.
SAS Institute. (2002). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Sauvant D. and Giger-Reverdin S. (2007). Empirical modeling meta-analysis of digestive interactions and CH4 production in ruminants. Pp. 561-563 in Energy and Protein Metabolism and Nutrition. I. Ortigues-Marty, N. Miraux and W. Brand-Williams, Eds. Wageningen Academic, Wageningen, Netherlands.
Tajik J. and Nazifi S. (2011). Diagnosis of subacute ruminal acidosis: a review. Asian J. Anim. Sci. 5, 80-90.
Tilley J.M.A. and Terry R.A. (1963). A two-stage technique for the in vitro digestion of forage crops. J. British Grassland. Soc. 18, 104-111.
Tripathi M.K., Santra A., Chaturvedi O.H. and Karim S.A. (2004). Effect of sodium bicarbonate supplementation on ruminal fluid pH, feed intake, nutrient utilization and growth of lambs fed high concentrate diets. Anim. Feed Sci. Technol. 111, 27-39.
Van Soest P.J., Robertson J.B. and Lewis B.A. (1991). Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Wadhwa D., Beck N.F.G., Borgida L.P., Dhanoa M.S. and Dewhurst R.J. (2001). Development of a simple in vitro assay for estimating net rumen acid load from diet ingredients. J. Dairy Sci. 84, 1109-1117.
West J.W., Coppock C.E., Millam K.Z., Nave D.H. and Labore J.M. (1987). Potassium carbonate as a potassium source and dietary buffer for lactating Holstein cows during hot weather. J. Dairy Sci. 70, 309-320.
Wolin M.J. (1975). Interactions between the bacterial species of the rumen. Pp. 134-148 in Digestion and Metabolism in the Ruminant. I.W. McDonald and A.C.I. Warner, Eds.University of New England Publishing Unit., Armidale, Australia.
Zebeli Q., Dijkstra J., Tafaj M., Steigass H., Ametaj B.N. and Drochner W. (2008). Modeling the adequacy of dietary fiber in dairy cows based on the response of ruminal pH and milk fat production to composition of the diet. J. Dairy Sci. 91, 2046-2066.