Expression Profile of Five Stress-Related Genes of Khorasan Native Chickens under Acute Heat Stress
محورهای موضوعی : Camelر. توحیدی 1 , م.ر. نصیری 2 , ع. جوادمنش 3 , آ. جوانمرد 4
1 - گروه علوم دامی - مجتمع آموزش عالی تربت جام - خراسان رضوی
2 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 - Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
کلید واژه: Gene expression, heat stress, heat shock protein, Khorasan native chicken,
چکیده مقاله :
High temperature is one of the main environmental factors causing economic losses to the poultry industry, as it reduces growth and production performance of chickens. The heat shock proteins (HSPs) play a key role in cellular defense mechanisms during exposure in a hot environment. The aim of this study was to evaluate the expression level of the candidate genes in the liver of Khorasan native chickens under acute heat stress. Sixteen 42 days old chickens were divided into two groups; the control (25 ˚C and 50% humidity) and heat-treated (42 ˚C and 50% humidity), and then the liver was sampled. The level of gene expression of HSPB1, HSPB9, SERPINH1, HSPA2 and HSP110 were evaluated using the reverse transcription- quantitative polymerase chain reaction (RT-qPCR) method. The results of the analysis of variance revealed that the expression of HSPA2 and HSP110 was significantly increased. In the biological processes of gene ontology, three processes had FDR < 0.01. HSPA2 and HSPB1 involved in the processes that stimulated cells against increasing temperature. The results indicated that Khorasan native chickens have suitable resistance to acute heat stress. Furthermore, HSPA2 has the ability to express under high ambient temperature in order to protect the structure of cellular proteins.
دمای بالا یکی از فاکتورهای اصلی محیطی مؤثر بر کاهش سود اقتصادی واحدهای پرورش طیور است زیرا، رشد و تولید پرنده را مختل میکند. پروتئینهای شوک گرمایی (HSPs) نقش کلیدی در مکانیسم دفاعی سلولی علیه گرمای محیطی دارند. هدف از انجام مطالعه حاضر، بررسی میزان بیان ژنهای کاندیدا در کبد مرغان بومی خراسان تحت تنش گرمایی حاد بود. برای این منظور 16 جوجه 42 روزه به دو گروه تقسیم شدند؛ شاهد (دمای محیطی °C25 و رطوبت 50 درصد) و تحت تنش گرمایی (دمای محیطی °C42 و رطوبت 50 درصد)، و سپس از کبد آنها نمونهبرداری شد. سطح بیان ژنهای HSPB1، HSPB9، SERPINH1، HSPA2 و HSP110 با روش RT-qPCR اندازهگیری شد. نتایج تجزیه واریانس نشان داد که بیان ژنهای HSPA2 و HSP110 به طور معنیداری افزایش داشت. سه فرایند از فرایندهای بیولوژیکی هستیشناسی ژنی دارای FDR کمتر از 0.01 بودند. ژنهای HSPA2 و HSPB1 در این فرایندها شرکت داشتند که باعث تحریک سلولها در برابر افزایش دما میشدند. این نتایج نشان میدهند که مرغان بومی خراسان مقاومت مطلوبی در برابر تنش گرمایی حاد دارند. همچنین، ژن HSPA2توانایی بیان زیاد در دمای محیطی بالا برای حفظ ساختار پروتئینهای سلولی را دارد.
Abhinand C.S., Raju R., Soumya S.J., Arya P.S. and Sudhakaran P.R. (2016). VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell. Commun. Signal. 10, 347-354.
Ali N. and Banu N. (1991). Heat shock proteins: Molecular chaperones. Biochem. Educ. 19, 166-172.
Cahaner A., Pinchasov Y., Nir I. and Nitsan Z. (1995). Effects of dietary protein under high ambient temperature on body weight, breast meat yield, and abdominal fat deposition of broiler stocks differing in growth rate and fatness. Poult. Sci. 74, 968-975.
Cedraz H., Gromboni J.G.G., Garcia A.A.P.J., Farias Filho R.V., Souza T.M., Ribeiro de Oliveira E., Bonfim de Oliveira E., Souza do Nascimento C., Meneghetti M. and Wenceslau A.A. (2017). Heat stress induces expression of HSP genes in genetically divergent chickens. PLoS One. 12, e0186083.
Cheng C.Y., Tu W.L., Chen C.J., Chan H.L., Chen C.F., Chen H.H., Tang P.C., Lee Y.P., Chen S.E. and Huang S.Y. (2018). Functional genomics study of acute heat stress response in the small yellow follicles of layer-type chickens. Sci. Rep. 8, 1320.
Ciraci C., Tuggle C.K., Wannemuehler M.J., Nettleton D. and Lamont S.J. (2010). Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin. BMC Genom. 11, 545-552.
Coble D.J., Fleming D., Persia M.E., Ashwell C.M., Rothschild M.F., Schmidt C.J. and Lamont S.J. (2014). RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature. BMC Genom. 15, 1084-1091.
De Nadal E., Ammerer G. and Posas F. (2011). Controlling gene expression in response to stress. Nat. Rev. Genet. 12, 833-845.
Eissa N., Wang H.P., Yao H., Shen Z.G., Shaheen A.A. and Abou-ElGheit E.N. (2017). Expression of Hsp70, Igf1, and three oxidative stress biomarkers in response to handling and salt treatment at different water temperatures in yellow perch, Perca flavescens. Front. Physiol. 8, 683-698.
Felver–Gant J.N., Mack L.A., Dennis R.L., Eicher S.D. and Cheng H.W. (2012). Genetic variations alter physiological responses following heat stress in 2 strains of laying hens. Poult. Sci. 91, 1542-1551.
Figueiredo D., Gertler A., Cabello G., Decuypere E., Buyse J. and Dridi S. (2007). Leptin downregulates heat shock protein-70 (HSP-70) gene expression in chicken liver and hypothalamus. Cell Tissue Res. 329, 91-101.
Fouad A.M., Chen W., Ruan D., Wang S., Xia W.G. and Zheng C.T. (2016). Impact of heat stress on meat, egg quality, immunity and fertility in poultry and nutritional factors that overcome these effects: A review. Int. J. Poult. Sci. 15, 81-95.
Franceschini A., Szklarczyk D., Frankild S., Kuhn M., Simonovic M., Roth A., Lin J., Minguez P., Bork P., von Mering C. and Jensen L.J. (2013). STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, 808-815.
Ganter M.T., Ware L.B., Howard M., Roux J., Gartland B., Matthay M.A., Fleshner M. and Pittet J. (2006). Extracellular heat shock protein 72 is a marker of the stress protein response in acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 291, 354-361.
Golan S., Entin-Meer M., Semo Y., Maysel-Auslender S., Mezad-Koursh D., Keren G., Loewenstein A. and Barak A. (2014). Gene profiling of human VEGF signaling pathways in human endothelial and retinal pigment epithelial cells after anti VEGF treatment. BMC Res. Notes. 7, 617-626.
Hashizawa Y., Kubota M., Kadowaki M. and Fujimura S. (2013). Effect of dietary vitamin E on broiler meat qualities, color, water-holding capacity and shear force value, under heat stress conditions. J. Anim. Sci. 84, 732-736.
Hwang Y.S., Ko M.H., Kim Y.M., Park Y.H., Ono T. and Han J.Y. (2016). The avian-specific small heat shock protein HSP25 is a constitutive protector against environmental stresses during blastoderm dormancy. Sci. Rep. 6, 36704-36715.
Jastrebski S.F., Lamont S.J. and Schmidt C.J. (2017). Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis. PLoS One. 12, e0181900.
Kregel K.C. (2002). Heat shock proteins: Modifying factors in physiological stress responses and acquired thermos tolerance. J. Appl. Physiol. 92, 2177-2186.
Lan X., Hsieh J.C.F., Schmidt C.J., Zhu Q. and Lamont S.J. (2016). Liver transcriptome response to hyperthermic stress in three distinct chicken lines. BMC Genom. 17, 955-962.
Li C., Wang X., Wang G., Li N. and Wu C. (2011). Expression analysis of global gene response to chronic heat exposure in broiler chickens (Gallus gallus) reveals new reactive genes, Poult. Sci. 90, 1028-1036.
Li M., Wu J. and Chen Z. (2015). Effects of heat stress on the daily behavior of wenchang chickens. Brazilian J. Poult. Sci. 17, 559-566.
Liu Y. and Chang A. (2008). Heat shock response relieves ER stress. EMBO J. 27, 1049-1059.
Livak K.J. and Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25, 402-408.
Lopez-Maury L., Marguerat S. and Bahler J. (2008). Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat. Rev. Genet. 9, 583-593.
Luo Q.B., Song X.Y., Ji C.L., Zhang X.Q. and Zhang D.X. (2014). Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling. Gene. 546, 200-205.
Mujahid A., Pumford N.R., Bottje W., Nakagawa K., Miyazawa T., Akiba Y. and Toyomizu M. (2007). Mitochondrial oxidative damage in chicken skeletal muscle induced by acute heat stress. J. Poult. Sci. 44, 439-445.
Nardone A., Ronchi B., Lacetera N., Ranieri M. and Bernabucci U. (2010). Effect of climate changes on animal production and sustainability of livestock system. Livest. Sci. 130, 57-69.
Pfaffl M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45-53.
Rimoldi S., Lasagna E., Sarti F.M., Marelli S.P., Cozzi M.C., Bernardini G. and Terova G. (2015). Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heat stress conditions Meta Gene. 6, 17-25.
SAS Institute. (2003). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Singh A.K., Upadhyay R.C., Malakar D., Kumar S. and Singh S.V. (2014). Effect of thermal stress on HSP70 expression in dermal fibroblast of Zebu (Tharparkar) and crossbred (Karan-Fries) cattle. J. Therm. Biol. 43, 46-53.
Slawinska A., Hsieh J.C., Schmidt C.J. and Lamont S.J. (2016). Heat stress and lipopolysaccharide stimulation of chicken macrophage-like cell line activates expression of distinct sets of genes. PLoS One. 11, e0164575.
Soleimani A.F., Zulkifli I., Omar A.R. and Raha A.R. (2011). Physiological responses of 3 chicken breeds to acute heat stress. Poult. Sci. 90, 1435-1440.
Sonna L.A., Fujita J., Gaffin S.L. and Lilly C.M. (2002). Invited review: Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol. 92, 1725-1742.
Staib J.L., Quindry J.C., French J.P., Criswell D.S. and Powers S.K. (2007). Increased temperature, not cardiac load, activates heat shock transcription factor 1 and heat shock protein 72 expression in the heart. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, 432-439.
Sun L., Lamont S.J., Cooksey A.M., Mccarthy F., Tudor C.O., Vijay-Shanker K., DeRita R.M., Rothschild M., Ashwell C., Persia M.E. and Schmidt C.J. (2015). Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress Chaperon. 20, 1-12.
Tang S., Zhou S., Yin B., Xu J., Di L., Zhang J. and Bao E. (2018). Heat stress-induced renal damage in poultry and the protective effects of HSP60 and HSP47. Cell Stress Chaperon. 23, 1033-1040.
Wang S.H., Cheng C.Y., Tang P.C., Chen C.F., Chen H.H., Lee Y.P. and Huang S.Y. (2015). Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens. PLoS One. 10, e0125816.
Whitley D., Goldberg S.P. and Jordan W.D. (1999). Heat shock proteins: are view of the molecular chaperones. J. Vasc. Surg. 29, 748-751.
Wu G., Hu X., Ding J. and Yang J. (2019). Abnormal expression of HSP70 may contribute to PCOS pathology. J. Ovarian Res. 12, 74.
Xie J., Tang L., Lu L., Zhang L., Xi L., Liu H.C., Odle J. and Luo X. (2014). Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PLoS One. 9, e102204.
Xu Y.J., Hu M.L., Zhou L.H., Wang Q., Zhang X.Q. and Luo Q.B. (2019). Effect of HSPB9 on Apoptosis of DF-1 Cells. Biomed. Environ. Sci. 32, 107-120.
Xu Y., Lai X., Li Z., Zhang X. and Luo Q. (2018). Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult. Sci. 97, 4073-4082.