High Levels of Monensin to Mid Lactating Dairy Cows: Nutrient Digestibility, Ruminal Fermentation and Microbial Protein Synthesis
محورهای موضوعی : Camelجی.ر. گاندرا 1 , جی.ای. فریتاس جونیور 2 , م. ماتورانا فیلهو 3 , ر.و. بارلتا 4 , ل.ن. رنو 5 , سی.اس. تاکیا 6 , ف.پ. رنو 7
1 - Department of Animal Science, School of Agrarian Science, Federal University of Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
2 - Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, Brazil
3 - Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, Brazil
4 - Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, Brazil
5 - Department of Animal Science, Federal University of Viçosa, Viçosa, Brazil
6 - Department of Animal Science, School of Agrarian Science, Federal University of Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
7 - Department of Animal Science, School of Agrarian Science, Federal University of Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
کلید واژه: Antimicrobial, additive, indigestible acid detergent fiber, ionophore, purine de-rivatives,
چکیده مقاله :
The aim of this study was to evaluate the nutrient digestibility, ruminal fermentation and microbial protein synthesis of mid-lactating cows fed high dietary levels of monensin. Twelve Holstein cows were distributed into four 3 × 3 latin squares and assigned to the following treatments: control (CON), monensin 24 (M24, addition of 24 mg monensin/kg diet DM) and monensin 48 (M48, addition of 48 mg monensin/kg diet DM). Dietary levels of monensin linearly decreased dry matter intake without altering the nutrient total apparent digestibility. Monensin linearly increased ruminal fluid pH and acetate concentration. Monensin quadratically affected ruminal total short chain fatty acids, propionate concentration, acetate and propionate production and acetate to propionate ratio. Furthermore, monensin linearly increased the efficiency of microbial protein synthesis.
هدف از این مطالعه بررسی قابلیت هضم مواد غذایی، تخمیر شکمبه و سنتز پروتئین میکروبی در گاوهای اواسط دوره شیردهی بود که با سطح بالای موننسین تغذیه شدند. دوازده گاو هلشتاین به چهار مربع لاتین 3 × 3 توزیع شدند و به تیمار های: شاهد (CON)، موننسین 24 (M24، افزودن 24 میلیگرم موننسین/کیلوگرم ماده خشک جیره) و موننسین 48 (M48، افزودن 48 میلیگرم موننسین/کیلوگرم ماده خشک جیره) تقسیم شدند. سطوح موننسین در جیره به طور خطی سبب کاهش مصرف ماده خشک بدون تغییر در قابلیت هضم ظاهری کل مواد مغذی شد. موننسین به طور خطی pH مایع شکمبه و غلظت استات را افزایش داد. موننسین به طور درجه دوم کل اسیدهای چرب با زنجیره کوتاه شکمبه، غلظت پروپیونات، استات و تولید پروپیونات و نسبت استات به پروپیونات را تحت تأثیر قرار داد. علاوه بر این، موننسین به طور خطی بازده سنتز پروتئین میکروبی را افزایش داد.
AOAC. (1990). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
Benchaar C., Petit H.V., Berthiaume R., Whyte T.D. and Chouinard P.Y. (2006). Effects of addition of essential oils and monensin premix on digestion, ruminal fermentation, milk production and milk composition in dairy cows. J. Dairy Sci. 89(11), 4352-4364.
Broderick G.A. (2004). Effect of low level monensin supplementation on the production of dairy cows fed alfalfa silage. J. Dairy Sci. 87(2), 359-368.
Chen X.B. and Gomes M.J. (1992). Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives-an Overview of the Technical Details. International Feed Resources Unit, Rowett Research Institute, Occasional Publication, Bucksburn Aberdeen, UK.
Chizzotti M.L., Valadares Filho S.C., Valadares R.F.D., Chizzotti F.H.M, Marcondes M.I. and Fonseca MA. (2007). Intake, digestibility and nitrogen metabolism in Holstein cows with different milk production levels. Rev. Br. Zootec. 36(1), 138-146.
Duffield T.F. and Bagg R. (2000). Use of ionophores in lactating dairy cattle: a review. Canadian Vet. J. 41(5), 388-394.
Duffield T.F., Rabiee A.R. and Lean I.J. (2008). A meta-analysis of the impact of monensin in lactating dairy cattle. Part 1. Metabolic effects. J. Dairy Sci. 91(4), 1334-1346.
Eifert E.C., Lana R.P., Lanna D.P.D., Leopoldino W.M., Arcuri P.B., Leão M.I., Costa M.R. and Valadares Filho S.C. (2006). Milk fatty acid profile of cows fed monensin and soybean oil in early lactation. Rev. Br. Zootec. 35(1), 219-228.
Erwin E.S., Marco G.J. and Emeri E.M. (1961). Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44(9), 1768-1771.
Gehman A.M., Kononoff P.J., Mullins C.R. and Janicek B.N. (2008). Evaluation of nitrogen utilization and the effects of monensin in dairy cows fed brown midrib corn silage. J. Dairy Sci. 91(1), 288-300.
González-Ronquillo M., Balcells J. and Guada J.A. (2003). Purine derivative excretion in dairy cows: endogenous excretion and the effect of exogenous nucleic acid supply. J. Dairy Sci. 86(4), 1282-1291.
Hall M.B. (2000). Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. BulletinUniversity of Florida, Gainesville, USA.
HaneyM.E. and Hoehn M.M. (1967). Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrob. Agents. Chemoth. 7, 349-352.
Ipharraguerre I.R. and Clark J.H. (2003). Usefulness of ionophores for lactating dairy cows: a review. Anim. Feed Sci. Technol. 106(1), 39-57.
Martineau R., Benchaar C. and Petit H.V. (2007). Effects of lasalocid or monensin supplementation on digestion, ruminal fermentation, blood metabolites, and milk production of lactating dairy cows. J. Dairy Sci. 90(12), 5714-5725.
McGuffey R.K., Richardson L.F. and Wilkinson J.I.D. (2001). Ionophores for dairy cattle: current status and future outlook. J. Dairy Sci. 84, 194-203.
Nocek J.E. (1998). In situ and other methods to estimate ruminal protein and energy digestibility: a review. J. Dairy Sci. 71(8), 2051-2069.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7thEd.NationalAcademy Press, Washington, DC, USA.
Oelker E.R., Reveneau C. and Firkins J.L. (2009). Interaction of molasses and monensin in alfalfa hay-or corn silage-based diets on rumen fermentation, total tract digestibility and milk production by Holstein cows. J. Dairy Sci. 92(1), 270-285.
Orellana Boero P., Balcells J., Martín-Orúe S.M., Liang J.B. and Guaba J.A. (2001). Excretion of purine derivates in cows: endogenous contribution and recovery of exogenous purine bases. Livest. Prod. Sci. 68(2), 243-250.
Ramanzin M., Bailoni L., Schiavon S. and Bittante G. (1997). Effect of monensin on milk production and efficiency of dairy cows fed two diets differing in forage to concentrate ratios. J. Dairy Sci. 80(6), 1136-1142.
SAS Institute. (2004). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Silva D.C., Santos G.T., Branco A.F., Damasceno J.C., Kazama R., Matsushita M., Horst J.A., Santos V. and Petit H.V. (2007). Production performance and milk composition of dairy cows fed whole or ground flaxseed with or without monensin. J. Dairy Sci. 90(6), 2928-2936.
Valadares R.F.D., Broderick G.A., Valadares Filho S.C. and Clayton M.K. (1999). Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 82(12), 2686-2696.
Van Soest P.J., Robertson J.B. and Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10), 3583-3597.