Ruminal Methane Emission, Microbial Population and Fermentation Characteristics in Sheep as Affected by Malva sylvestris Leaf Extract: in vitro Study
محورهای موضوعی : Camelص. خاموشی 1 , ف. کفیلزاده 2 , ح. جهانی-عزیزآبادی 3 , و. ناصری 4
1 - Department of Animal Science, Faculty of Agriculture, Razi University, Kermanshah, Iran
2 - Department of Animal Science, Faculty of Agriculture, Razi University, Kermanshah, Iran
3 - Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
4 - Department of Animal Science, Faculty of Agriculture, Razi University, Kermanshah, Iran
کلید واژه: Kinetics, rumen, partitioning factor, protozoa, cellulolytic bacteria,
چکیده مقاله :
The objective of this study was to investigate in vitro effect of Malva sylvestris leaf extract (at 0, 25, 50 and 100 µL/30 mL of medium) on sheep ruminal cellulolytic and total viable bacteria growth, protozoa populations, methane production, neutral detergent fiber degradability (NDFD) and fermentation efficiency of oat hay. The addition of Malva sylvestris leaf extract at 25, 50 and 100 µL led to a linear increase (P<0.01) in vitro truly degraded dry matter (INTDDM), NDFD and partitioning factor (PF) of oat hay and decrease (P<0.01) methane emission after 24 hours of incubation. The addition of Malva sylvestris leaf extract resulted in a decrease (P<0.01) in potential of gas production at 25 and 50 µL and increase in lag time (0.95, 1.01 and 1.13 h relative to 0.61 h), constant rate of gas production (b)and gas produced at half-life (c)at 25, 50 and 100 µL. The addition of this extract decreased a number of total protozoa and Entodinium, Isotrichae, Diplodinium and Ophryoscolex species (P<0.01). The number of total and cellulolytic bacteria was not influenced by the addition of Malva sylvestris leaf extract. The result of this study demonstrated that Malva sylvestris extract had some potential for improving the rumen fermentation.
هدف از این مطالعه بررسی اثر عصاره برگ گیاه پنیرک (به میزان صفر، 25، 50 و 100 میکرولیتر\30 میلی لیتر محیط کشت) بر رشد باکتریهای سلولایتیک و کل باکتریهای زنده، جمعیت پروتوزواها، تولید متان، پتانسیل تجزیه الیاف نامحلول در شوینده خنثی، و بازده تخمیر شکمبه ای علوفه یولاف در شکمبه گوسفند در شرایط برون تنی بود. افزودن عصاره پنیرک به میزان 25، 50 و 100 میکرولیتر، سبب افزایش خطی(01/0>P) قابلیت هضم حقیقی ماده خشک، الیاف نامحلول در شوینده خنثی و فاکتور تفکیک علوفه یولاف و کاهش (01/0>P) تولید متان بعد از 24 ساعت انکوباسیون در شرایط برونتنی، شد. نسبت به تیمار شاهد، افزودن عصاره برگ پنیرک در مقادیر 25 و 50 میکرولیتر سبب کاهش(01/0>P) پتانسیل تولید گاز و در مقادیر 25، 50 و 100 میکرولیتر سبب افزایش (01/0>P) فاز تأخیر (به ترتیب 95/0، 01/1 و 13/1 نسبت به 61/0 ساعت)، ثابت نرخ تولید گاز (b) و ثابت نرخ تولید گاز در زمان تولید 50 درصد از کل گاز تولیدی (c)، شد. افزایش این عصاره تعداد کل پروتوزواها و گونههای انتودنیومها، ایزوتریشاها، دیپلودنیوم و گونه اوفیروس کولکس را کاهش داد (01/0>P). تعداد کل باکتریها و باکتریهای سلولولایتیک تحت تأثیر افزودن عصاره برگ پنیرک قرار نگرفت. نتایج این مطالعه نشان داد که عصاره برگ پنیرک دارای پتانسیل بهبود تخمیر شکمبهای میباشد.
Alexander M. (1982). Most probable number method for microbial populations. Pp. 815-820 in Methods of Soil Analysis, Part 2. A.L. Page, R.H. Miller and D.R. Keeney, Eds. American Society of Agronomy, Madison, USA.
Blummel M., Cone J.W., Van Gelder A.H., Nshalai I., Umunna N.N., Makkar H.P.S. and Becker K. (2005). Prediction of forage intake using in vitro gas production methods comparison of multiphase fermentation kinetics measured in an automated gas test and combined gas volume and substrate degradability measurements in a manual syringe system. Anim. Feed Sci. Technol. 5, 123-124.
Blummel M., Makkar H.P.S. and Becker K. (1997). In vitro gas production: a technique revisited. J. Anim. Physiol. Anim. Nutri. 77, 24-34.
Bryant M.P. (1972). Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25(12), 1324-1328.
Busquet M., Calsamiglia S., Ferret A. and Kamel C. (2005). Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim. Feed Sci. Technol. 124, 597-613.
Crutzen P.J. (1995). The role of methane in atmospheric chemistry and climate. Pp. 291-315 in Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. W.V. Engelhardt, S. Leonhard-Marek, G. Breves and D. Giesecke, Eds. Ferdinand Enke Verlag Stuttgart, Germany.
Dado R.G. and Allen M.S. (1995). Intake limitation, feeding behaviour and rumen function of cows challenged with rumen fill from dietary fiber or inert bulk. J. Dairy Sci. 78, 118-113.
Davys M.N.G., Pirie N.W. and Street G. (1969). A laboratory-scale press for extracting juice from leaf pulp. Biotech. Bioeng. 11, 529-538.
Dehority B.A. (1984). Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Appl. Environ. Microbiol. 48, 182-185.
Durmic Z., Moate P.L., Eckard R., Revell D.K., Williams R. and Vercoe P. (2014). In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agric. 94, 1191-1196.
European Union. (2003). Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition. Council of the European Union , European Parliament.
Fievez V., Babayemi O.J. and Demeyer D. (2005). Estimation of direct and indirect gas production in syringes: a tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol. 123, 197-210.
France J., Dhanoa M.S., Theodorou M.K., Lister S.J., Davies D.R. and Isaac D.A. (1993). Model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. J. Theor. Biol. 163, 99-111.
Gasparetto J.C., Martins A.F., Hayashi S.S., Otuky M.F. and Pontarolo R. (2011). Ethnobotanical and scientific aspects of Malva sylvestris: a millennial herbal medicine. J. Pharm. Pharmacol. 64, 172-182.
Gonzalez J.A., Barriuso M.G. and Amich F. (2010). Ethnobotanical study of medicinal plants traditionally used in the Arribesdel Duero, western Spain. J. Ethnopharmacol. 131, 343-355.
Hindrichsen I.K., Osuji P.O., Odenyo A.A., Madsen J. and Hvelplund T. (2002). Effects of supplementation of a basal diet of maize stover with different amounts of Leucaenadiversifoliaon intake, digestibility and nitrogen metabolism and rumen parameters in sheep. Anim. Feed Sci. Technol. 98, 131-142.
Iason G. (2005). The role of plant secondary metabolites in mammalian herbivory: ecological perspectives. Proc. Nutr. Soci. 64, 123-131.
Idolo M., Motti R. and Mazzoleni S. (2010). Ethnobotanical and phytomedicinal knowledge in a long history protected area, the Abruzzo, Lazio and Molise National Park (Italian Apennines). J. Ethnopharmacol. 127, 379-395.
Jahani-Azizabadi H., Mesgaran M.D.,Vakili A.R., Rezayazdi K. and Hashemi M. (2011). Effect of various medicinal plant essential oils obtained from semi-aridclimate on rumen fermentation characteristics of a high forage diet using in vitro batch culture. African J. Microbiol. Res. 5, 4812-4819.
Johnson K.A. and Johnson D.E. (1995). Methane emission from cattle. J. Anim. Sci. 73, 2483-2492.
Kim E.T., Guan Le L., Lee S.J., Lee S.M., Lee S.S., Lee I.D., Lee S.K. and Lee S.S. (2015). Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australas J. Anim. Sci. 28, 530-537.
Kim E.T., Min K.S., Kim C.H., Moon Y.H., Kim S.C. and Lee S.S. (2013). The effect of plant extracts on in vitro ruminal fermentation, methanogenesis and methane-related microbes in the rumen. Asian-Australas J. Anim. Sci. 26, 517-522.
McDougall E.I. (1948). Studies on ruminant saliva. 1. The composition and output of sheeps saliva. Biochem. J. 43, 99-109.
Morgavi D.P., Forano E., Martin C. and Newbold C.J. (2008). Microbial ecosystem and methanogenesis in ruminants. Animal. 4, 1024-1036.
Morgavi D.P., Martin C., Jouany J.P. and Ranilla M.J. (2012). Rumen protozoa and methanogenesis: not a simple cause-effect relationship. Br. J. Nutr. 107, 388-397.
Newbold C.J., Lassalas B. and Jouany J.P. (1995). The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21, 230-234.
Oba M. and Allen M.S. (1999). Evaluation of the importance of NDF digestibility: effects on dry matter intake and milk yield of dairy cows. J. Dairy Sci. 82, 589-596.
Ogimoto K. and Imai S. (1981). Atlas of Rumen Microbiology. Japanese Science Society Press, Tokyo, Japan.
Patra P.K. and Sahoo A.K. (2015). Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro. Spanian J. Agric. Res. 13, 1-12.
Santra A., Karim S.A., Mishra A.S., Chaturvedi O.H. and Prasad R. (1998). Rumenciliate protozoa and fibre digestion in sheep and goats. Smal Rumin. Res. 30, 13-18.
SAS. (2002). SAS®/STAT Software, Release 9. SAS Institute, Inc., Cary, NC. USA.
Stumm C.K., Gijzen H.J. and Vogels G.D. (1982). Association of methanogenic bacteria with ovine rumen ciliates. Br. J. Nutr. 47, 95-99.
Theodorou M.K., Williams B.A., Dhanoa M.S., McAllan A.B. and France J. (1995). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48, 185-197.
Wallace R.J. (2004). Anti-microbial properties of plant secondary metabolites. Proc. Nutr. Soc. 63, 621-629.