The Pattern of Linkage Disequilibrium in Livestock Genome
محورهای موضوعی : Camel
1 - Department of Agriculture, Payame Noor University, Tehran, Iran
کلید واژه: SNP, genomic selection, Dˊ, linkage disequilibrium, r2,
چکیده مقاله :
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metric parameter Dˊ and r2 were suggested for measuring the extent of LD in population. D' are more influenced by variation in allele frequencies than r2. Until recently all research on LD was carried out by microsatellite, which reported high level of Dˊ in wide extent. As progressing on large scale genomes sequencing a huge number of single nucleotide polymorphism (SNPs) were detected on genome and microsatellite replaced by SNP in such researches. By using SNP, high level of LD in short distance has been reported. Many factors can affect LD such as selection, migration, genetic drift, mutation, small finite population size and recombination. So, LD is basic tools for exploring the genetic basis of quantitative traits in livestock. Likewise, comparative LD maps make a capable us to examine the degree of diversity between breeds and to discover genomic regions that have been subject to selection. Therefore, this review states concept and current approach to estimating LD and extent of LD in livestock population.
پیوستگی متعادل پایه انتخاب ژنومی، ایمپوتیشن نشانگرهای ژنتیکی، انتخاب بر مبنای نشانگر، مکانیابی جایگاه صفات کمی، آزمون تشخیص والدین و مطالعات ارتباطی کل ژنوم میباشد. آللها در جایگاههای نزدیک بهم تمایل به با هم بودن دارند. در جایگاههای پیوسته این الگو منجر به ارتباط بین آللها در جمعیت میشود که پیوستگی نامتعادل خوانده میشود. دو پارامتر Dˊ و r2 برای اندازهگیری وسعت پیوستگی نامتعادل در جمعیت پیشنهاد شده است. Dˊ بیشتر از r2 تحت تأثیر تغییرات فراوانی آللی قرار دارد. در طی سالهای گذشته کلیه مطالعات بر روی پیوستگی نامتعادل با استفاده از نشانگر ریزماهواره انجام میشد. با پیشرفت در توالییابی کل ژنوم حجم بالای از SNP در ژنوم شناسایی شد و ریزماهوارهها با SNPها جایگزین شدند. با استفاده از SNP سطح بالای از پیوستگی نامتعادل در فواصل کوتاه گزارش شد. فاکتورهای زیادی مانند انتخاب، مهاجرت، رانش ژنتیکی، جهش، اندازه جمعیت کوچک و نوترکیبی پیوستگی نامتعادل را تحت تأثیر قرار میدهند. بنابراین به نظر میرسد، پیوستگی ژنتیکی ابزار مناسبی برای بررسی ژنتیکی صفات کمی حیوانات اهلی میباشد. بعلاوه نقشههای مقایسهای پیوستگی نامتعادل، ما را قادر به بررسی میزان تنوع بین نژادها و شناسایی نواحی ژنومی تحت فشار انتخاب میسازد. در این مقاله مروری بر مفهوم و روشهای موجود برای برآورد مقدار و وسعت پیوستگی نامتعادل در جمعیت حیوانات اهلی خواهیم داشت.
Abecasis G.R., Cherny S.S. and Cardon L.R. (2001). The impact of genotyping error on family-based analysis of quantitative traits. European J. Hum. Genet. 9, 130-134.
Aerts J., Megens H.J. and Veenendaal T. (2007). Extent of linkage disequilibrium in chicken. Cytogen. Genome. Res. 117, 338-345.
Akey J.M., Zhang G., Zhang K., Jin L. and Shriver M.D. (2002). Interrogating a highdensity SNP map for signatures of natural selection. Genome. Res. 12, 1805-1814.
Amaral A., Megens H.J., Crooijmans R., Heuven H. and Groenen M. (2008). Linkage disequilibrium decay and haplotype block structure in the pig. Genetics. 179, 569-579.
Andreescu C., Avendano S., Brown S.R., Hassen A., Lamont S.J. and Dekkers J.C.M. (2007). Linkage disequilibrium in related breeding lines of chickens. Genetics. 177, 2161-2169.
Ardlie K.G., Kruglyak L. and Seielstad M. (2002). Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3, 299-309.
Badke Y.M., Bates R., Ernst C.W., Schwab C. and Steibel J.P. (2012). Estimation of linkage disequilibrium in four US pig breeds. BMC Genom. 13, 24.
Bohmanova J., Sargolzaei M. and Schenkel F.S. (2010). Characteristics of linkage disequilibrium in North American Holsteins. BMC Genom. 11, 421.
Cohen M., Seroussi E., Larkin D.M., Loor J.J., Everts-van der Wind A., Heon-Lee J., Drackley J.K., Band M.R., Hernandez A.G., Shani M., Lewin H.A., Weller J.I. and Ron M. (2005). Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome. Res. 15, 936-944.
Corbin L.J., Blott S.C., Swinburne J.E., Vaudin M., Bishop S.C. and Woolliams J.A. (2010). Linkage disequilibrium and historical effective population size in the Thoroughbred horse. Anim. Genet. 41(2), 8-15.
Dekkers J.C. (2004). Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J. Anim. Sci. 82, 313-328.
Du F.X., Clutter A.C. and Lohuis M.M. (2007). Characterizing linkage disequilibrium in pig populations. Int. J. Biol. Sci. 3, 166-178.
Espigolan R., Baldi F., Boligon A.A., Souza F.R., Gordo D.G., Tonussi R.L., Cardoso D.F., Oliveira H.N., Tonhati H., Sargolzaei M., Schenkel F.S., Carvalheiro R., Ferro J.A. and Albuquerque L.G. (2013). Study of whole genome linkage disequilibrium in Nellore cattle. BMC Genom. 14, 305.
Farnir F., Coppieters W., Arranz J.J., Berzi P., Cambisano N., Grisart B., Karim L., Marcq F., Moreau L., Mni M., Nezer C., Simon P., Vanman-shoven P., Wagenaar D. and Georges M. (2000). Extensive genome-wide linkage disequilibrium in cattle. Genome. Res. 10(2), 220-227.
Fu W., Dekkers J., Lee W.R. and Abasht B. (2015). Linkage disequilibrium in crossbred and pure line chickens. Genet. Select. Evol. 47, 11.
Gabrie S.B., Schaffner S.F., Nguyen H., Moore J.M., Roy J., Blumenstiel B., Higgins J., DeFelice M., Lochner A. and Faggart M. (2002). The structure of haplotype blocks in the human genome. Science. 296, 2225-2229.
García-Gámez E., Sahana G., Gutiérrez-Gil B. and Arranz J. (2012). Linkage disequilibrium and inbreeding estimation in Spanish Churra sheep. BMC Genet. 13, 43.
Gonzalez-Neira J.M., Rosa-Rosa A. and Osorio A. (2007). Genome wide high-density SNP linkage analysis of non-BRCA1/2 breast cancer families identifies various candidate regions and has greater power than microsatellite studies. BMC Genom. 8, 299-2007.
Gouveia J.J.S., Da Silva M.G.B.V., Paiva S.R. and de Oliveira S.M.P. (2014). Identification of selection signatures in livestock species. Genet. Mol. Biol. 37(2), 330-342.
Greenwood T.A., Rana B.K. and Schork N.J. (2004). Human haplotype block sizes are negatively correlated with recombination rates. Genome. Res. 14, 1358-1361.
Grisart B., Farnir F., Karim L., Cambisano N., Kim J.J., Kvasz A., Mni M., Simon P., Frere J.M., Coppieters W. and Georges M. (2001). Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome. Res. 12, 222-231.
Hayes B.J., Chamberlain A.J., Maceachern S., Savin K., McPartlan H., MacLeod I., Sethuraman L. and Goddard M.E. (2009). A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle. J. Anim. Gene. 40, 176-184.
Hayes B.J., Visscher P.M., Mcpartlan H.C. and Goddard M.E. (2003). Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome. Res. 13, 635-643.
Heifetz E.M., Fulton J.E. and Sullivan N.O. (2005). Extent and consistency across generations of linkage disequilibrium in commercial layer chicken breeding populations. Genetics. 171, 1173-1181.
Hill W.G. and Robertson A. (1966). The effect of linkage on limits to artificial selection. Genet. Res. 8, 269-294.
Jeffreys A.J., Kauppi L. and Neumann R. (2001). Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217-222.
Karimi K., Esmailizadeh Koshkoiyeh A. and Gondro C. (2014). Comparison of linkage disequilibrium levels in Iranian indigenous cattle using whole genome SNPs data. J. Anim. Sci. Technol. 57, 47-53.
Kennedy G.C., Matsuzaki H., Dong S., Liu W.M., Huang J., Liu G., Su X., Cao M., Chen W., Zhang J., Liu W., Yang G., Di X., Ryder T., He Z., Surti U., Phillips M.S., Boyce-Jacino M.T., Fodor S.P. and Jones K.W. (2003). Large-scale genotyping of complex DNA. Natur. Biotechnol. 21, 1233-1237.
Khanyile K.S., Dzomba E.F. and Muchadeyi F.C. (2015). Population genetic structure, linkage disequilibrium and effective population size of conserved and extensively raised village chicken populations of Southern Africa. Front. Genet. 6, 13.
Khatkar M.S., Collins A., Cavanagh J.A.L., Hawken R.J. and Hobbs M. (2006a). A first-generation metric linkage disequilibrium map of bovine chromosome 6. Genetics. 174, 79-85.
Khatkar M.S., Nicholas F.W., Collins A.R., Zenger K.R. and Cavanagh J.A. (2008). Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genom. 9, 187.
Khatkar M.S., Thomson P.C., Tammen I., Cavanagh J.A.L. and Nicholas F.W. (2006b). Linkage disequilibrium on chromosome 6 in Australian Holstein-Friesian cattle. Genet. Select. Evol. 38, 463-477.
Kijas J.W., Porto-Neto L., Dominik S. and Reverter A. (2014). Linkage disequilibrium over short physical distances measured in sheep using a high-density SNP chip. Stich. Int. Found. Anim. Genet. 45, 754-757.
Kiselyova T.Y., Kantanen J., Vorobyov N.I., Podoba B.E. and Terletsky V.P. (2014). Linkage disequilibrium analysis for microsatellite loci in six cattle breeds. Russ J. Genet. 50(4), 406-414.
Kruglyak L. (1997). The use of a genetic map of biallelic markers in linkage studies. Nat. Genet. 17, 21-24.
Lander E.S. and Schork N.J. (1994). Genetic dissection of complex traits. Science. 266, 353-353.
Lee Y.S., Lee J.W. and Kim H. (2014). Estimating effective population size of thoroughbred horses using linkage disequilibrium and theta (4 Nμ) value. Livest. Sci. 168, 32-37.
Lewontin R.C. and Kojima K. (1960). The evolutionary dynamics of complex polymorphisms. Evolution. 14, 458-472.
Lewontin R.C. (1964). The interaction of selection and linkage. I. General considerations; heterotic models. Genetics. 49, 49-67.
Lu D., Sargolzaei M., Kelly M., Li C., Vander Voort G., Wang Z., Plastow G., Moore S. and Miller S.P. (2012). Linkage disequilibrium in Angus, Charolais and Crossbred beef cattle. Front. Genet. 3, 152.
Mastrangelo S., Gerlando R.D., Tolone M., Tortorici L. and Sardina M.T. (2014). Genome wide linkage disequilibrium and genetic structure in Sicilian dairy sheep breeds. BMC Genet. 15, 108.
McKay S.D., Schnabel R.D., Murdoch B.M., Matukumalli L.K., Aerts J. and Coppieters W. (2007). Whole genome linkage disequilibrium maps in cattle. BMC Genet. 8, 74-85.
McRae A.F., McEwan J.C., Dodds K.G., Wilson T., Crawford A.M. and Slate J. (2002). Linkage disequilibrium in domestic sheep. Genetics. 160(3), 1113-1122.
Meadows J.R., Chan E.K. and Kijas J.W. (2008). Linkage disequilibrium compared between five populations of domestic sheep. BMC Genet. 9, 61.
Meuwissen T.H.E., Hayes B.J. and Goddard, M.E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157, 1819-1829.
Mokry F., Buzanskas M., de Alvarenga Mudadu M., do Amaral Grossi D., Higa R. and Ventura R. (2014). Linkage disequilibrium and haplotype block structure in a composite beef cattle breed. BMC Genom. 15(7), 6.
Pengelly R.R., Gheyas A.A., Kuo R., Mossotto1 E., Seaby E.G., Burt D.W., Ennis S. and Collins A. (2016). Commercial chicken breeds exhibit highly divergent patterns of linkage disequilibrium. Heredity. 117, 375-382.
Porto-Neto L.R., Kijas J.W. and Reverter A. (2014). The extent of linkage disequilibrium in beef cattle breeds using high-density SNP genotypes. Genet. Select. Evol. 46, 22.
Pritchard J.K. and Przeworski M. (2001). Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet. 69, 1-14.
Rao Y.S., Liang Y., Xia M.N., Shen X., Du Y.J., Luo C.G., Nie Q.H., Zeng H. and Zhang X.Q. (2008). Extent of linkage disequilibrium in wild and domestic chicken populations. Heredities. 145(5), 251-257.
Reich D.E., Cargill M., Bolk S., Ireland J., Sabeti P.C., Richter D.J., Lavery T., Kouyoumjian R., Farhadian S.F., Ward R. and Lander E.S. (2001). Linkage disequilibrium in the human genome. Nature. 411, 199-204.
Ross-Ibarra J., Morrell P.L. and Gaut B.S. (2007). Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc. Natl. Acad. Sci. USA. 104, 8641-8648.
Sargolzaei M., Schenkel F.S., Jansen G.B. and Schaeffer L.R. (2008). Extent of linkage disequilibrium in Holstein cattle in North America. J. Dairy Sci. 91(5), 2106-2117.
Schaid D.J., Guenther J.C., Christensen G.B., Hebbring S., Rosenow C., Hilker C.A., McDonnell S.K., Cunningham J.M., Slager S.L., Blute M.L. and Thibodeau S.N. (2004). Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility Loci. Am. J. Hum. Genet. 75, 948-965.
Taylor J.F. (2014). Implementation and accuracy of genomic selection. Aquaculture. 420, 8-14.
Teare M.D., Dunning A.M., Durocher F., Rennart G. and Easton D.F. (2002). Sampling distribution of summary linkage disequilibrium measures. Ann. Hum. Genet. 66, 223-233.
Tenesa A.P., Hayes B.J., Duffy D.L., Clarke G.M., Goddard M.E. and Visscher P.M. (2007). Recent human effective population size estimated from linkage disequilibrium. Genome. Res. 17, 520-526.
Terwilliger J.D., Zollner S., Laan M. and Paabo S. (1998). Mapping genes through the use of linkage disequilibrium generated by genetic drift: 'Drift mapping' in small populations with no demographic expansion. Hum. Hered. 48, 138-154.
Tozaki T., Hirota K., Hasegawa T., Tomita M. and Kurosawa M. (2005). Prospects for whole genome linkage disequilibrium mapping in thoroughbreds. Gene. 346, 127-132.
Uimari P. and Tapio M. (2011). Extent of linkage disequilibrium and effective population size in Finnish Landrace and Finnish Yorkshire pig breeds. J. Anim. Sci. 89(3), 609-614.
Valle D.L., Clayton E.W. and Jorde L.B. (2003). The international HapMap project. Nature. 426(6968), 789-796.
Vallejo R.L., Li Y., Rogers G.W. and Ashwell M.S. (2003). Genetic diversity and background linkage disequilibrium in the North American Holstein cattle population. J. Dairy Sci. 86(12), 4137-4147.
Van Laere A.S., Nguyen M., Braunschweig M., Nezer C., Collette C., Moreau L., Archibald A.L., Haley C.S., Buys N., Tally M., Andersson G., Georges M. and Andersson L. (2003). A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature. 425, 832-836.
Vignal A., Milan D., Sancristobal M. and Eggen A. (2002). A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Select. Evol. 34, 275-305.
Wade C.M., Giulotto E. and Sigurdsson S. (2009). Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 326, 865-867.
Zhao F., Wang G., Zeng T., Wei C. and Zhang L. (2014). Estimations of genomic linkage disequilibrium and effective population sizes in three sheep populations. Livest. Sci. 170, 22-29.
Zhu M., Zhu B., Wang Y.H., Wu Y., Xu L., Guo L.P., Yuan Z.R., Zhang L.P., Gao X., Gao H.J., Xu S.Z. and Li J.Y. (2013). Linkage disequilibrium estimation of chinese beef simmental cattle using high-density SNP panels. Asian-Australas J. Anim. Sci. 26(6), 772-279.