A new application of nano-graphene oxide as a heterogeneous catalyst in crossed-aldol condensation reaction under solvent-free conditions
محورهای موضوعی : Iranian Journal of CatalysisMohammad Nasseri 1 , Ali Allahresani 2 , Heidar Raissi 3
1 - Department of Chemistry, Faculty of Science, University of Birjand, P. O. Box 97175-615, Birjand, Iran.
2 - Department of Chemistry, Faculty of Science, University of Birjand, P. O. Box 97175-615, Birjand, Iran.
3 - Department of Chemistry, Faculty of Science, University of Birjand, P. O. Box 97175-615, Birjand, Iran.
کلید واژه: Nano-graphene oxide, Crossed-aldol condensation reaction, Aryl aldehyde,
چکیده مقاله :
Nano-graphene oxide was synthesized by the oxidation of graphite powders. The structural nature of the nano-graphene oxide was characterized by a variety of techniques including XRD, TEM, FT-IR and UV/Vis. The functional groups on its basal planes and edges of nano-grahene oxide play important role in catalytic activity. The catalytic activity of nano-graphene oxide was investigated on Crossed-Aldol condensation reaction. This nanocatalyst was found to be highly efficient in this reaction and products were obtained in good to excellent yields. The recovered nanocatalyst was successfully reused for several runs without significant loss in its catalytic activity.
[1] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature, 448 (2007) 457–460.
[2] C. Gomez-Navarro, M. Burghard, K. Kern, Nano Lett., 8 (2008) 2045–2049.
[3] H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia, ACS Nano, 3 (2009) 2653–2659.
[4] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev., 39 (2010) 228-240.
[5] O.C. Compton, S.T. Nguyen, Small, 6 (2010) 711-723.
[6] N. Varghese, U. Mogera, A. Govindaraj, A. Das, P.K. Maiti, A.K. Sood, C. N. R. Rao, Chem. Phys. Chem., 10 (2009) 206–210.
[7] L.H. Tang, Y. Wang, Y. Liu, J.H. Li. Acs Nano, 5 (2011) 3817–3822.
[8] W. Lv, M. Guo, M.H. Liang, F.M. Jin, L. Cui, L.J. Zhi, Q-H. Yang, J. Mater. Chem., 20 (2010) 6668–6673.
[9] T. Ferri, D. Frasca, O.A. de Fuentes, R. Santucci, M. Frasconi, Angew. Chem. Int. Ed., 50 (2011) 7074–7078.
[10] Q. Su, S.P. Pang, V. Alijani, C. Li, X.L. Feng, K. Mullen, Adv. Mater., 21 (2009) 3191–3195.
[11] (a) O.C. Compton, D.A. Dikin, K.W. Putz, L.C. Brinson, S.T. Nguyen, Adv. Mater., 22 (2010) 892-896; (b) H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules, 43 (2010) 6515-6530.
[12] D.W. Boukhvalov, M.I. Katsnelson, Nano Lett., 8 (2008) 4373-4379.
[13] H.P. Mungse, S. Verma, N. Kumar, B. Sain, O.P. Khatri, J. Mater. Chem., (2012) 5427-5433.
[14] D.R. Dreyer, H.P. Jia, A.D. Todd, J. Geng, C.W. Bielawski, Org. Biomol. Chem., 9 (2011) 7292-7295.
[15] H.P. Jia, D.R. Dreyer, C.W. Bielawski, Tetrahedron, 67 (2011) 4431-4434.
[16] D.R. Dreyer, H.P. Jia, C.W. Bielawski, Angew. Chem. Int. Ed., 49 (2010) 6813-6816.
[17] A. Dhakshinamoorthy, M.S. Alvaro, P. Concepcion, V. Fornes, H. Garcia, Chem. Commun., 48 (2012) 5443-5445.
[18] S. Verma, H.P. Mungse, N. Kumar, S. Choudhary, S.L. Jain, B. Sain, O.P. Khatri, Chem. Commun., 47 (2011) 12673-12675.
[19] V. Kumar, K. Rama Rao, Tetrahedron Lett., 52 (2011) 5188-5191.
[20] F. Liu, J. Sun, L. Zhu, X. Meng, C. Qi, F.S. Xiao, J. Mater. Chem., 22 (2012) 5495-5502.
[21] (a) J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, Z. Zhang, Nanoscale, 2 (2010) 2733-2738; (b) K. Jasuja, J. Linn, S. Melten, V. Berry, J. Phys. Chem. Lett., 1 (2010) 1853-1860.
[22] G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc., 131 (2009) 8262-8270.
[23] M. Zhou, A. Zhang, Z. Dai, C. Zhang, Y.P. Feng, J. Chem. Phys., 132 (2010) 194704.
[24] M. Stein, J. Wieland, P. Steurer, F. Tolle, R. Mulhaupt, B. Breit, Adv. Synth. Catal., 353 (2011) 523-527.
[25] M.A. Nasseri, M. Salimi, Lett. In Org. Chem., 10 (2013) 164–170.
[26] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc., 80 (1958) 1339-1339.
[27] S. Donner, H.W. Li, E.S. Yeung, M.D. Porter, Anal. Chem., 78 (2006) 2816-2822.
[28] H. Frey, G. Behmann, G. Kaupp, Chem. Ber., 120 (1987) 387-393.
[29] N. Iranpoor, F. Kazemi, Tetrahedron, 54 (1998) 9475-9480.
[30] M. Zheng, L. Wang, J. Shao, Q.A Zhong, Synth. Commun., 27 (1997) 351-354.
[31] H. Yamakoshi, H. Ohori, C. Kudo, A. Sato, N. Kanoh, C. Ishioka, H. Shibata, Y. Iwabuchi, Bioorg. & Med. Chem., 18 (2010) 1083–1092.
[32] S. Pei, H-M. Cheng, Carbon, 50 (2012) 3210-3228.
[33] M. Wojtoniszak, X. Chen, R. J. Kalenczuk, A. Wajda, J. Lapczuk, M. Kurzewski, M. Drozdzik, P.K. Chu, E. Borowiak-Palen. Colloids and Surfaces B: Biointerfaces, 89 (2012) 79– 85.
[34] W. Lu, R. Ning, X. Qin, Y. Zhang, G. Chang, S. Liu,Y. Luo, X. Sun. J. Hazard. Materials, 197(2011) 320–326.
[35] A. Zali, K. Ghani, A. Shokrolahi, M. H. Keshavarz. Chin. J. Catal., 29 (2008) 602–606.
[36] N. Iranpoor, F. Kazemi. Tetrahedron, 54 (1998) 9475-9480.
[37] B. Das, P. Thirupathi, I. Mahender, K. R. Reddy. J. Mole. Catal. A: Chem., 247 (2006) 182–185.
[38] W-B. Yi, C. Cai. J. Fluor. Chem., 126 (2005) 1553–1558.
[39] Y. Riadi, R. Mamouni, R. Azzalou, R. Boulahjar, Y. Abrouki, M. E. Haddad , S. Routier,G. Guillaumet, S. Lazar. Tetrahedron Lett., 51 (2010) 6715–6717.
[40] K. Rawal, M. K. Mishra, M. Dixit, M. Srinivasarao. J. Indust. Engin. Chem., 18 (2012) 1474–1481.
[41] A. Rostami, F. Ahmad-Jangi. Chin. Chem. Lett., 22 (2011) 1029–1032.
[42] D. H. Kim, A. F. M. Motiur Rahman, B-S. Jeong, E. S. Lee, Y. Jahng. Bull. Korean Chem. Soc., 30 (2009) 797-802.
[43] X. Zhang, X. Fan, H. Niu, J. Wang. Green Chem., 5 (2003) 267–269.
[44] A. Dhakshinamoorthy, M. Alvaro, H. Garcia. Adv. Synth. Catal., 352 (2010) 711–717.
[45] G. H. Mahdavinia, S. P.Trends in Modern Chem., 1 (2011) 5-10.
[46] A. Gharib, N. Noorozi Pesyan, M. Jahangir, M. Roshani, J. W. Scheeren. Bulgarian Chem. Communm. 45 (2013) 314–325.