Mini-Review on Graphene Quantum Dots as an electro-catalyst in fuel cell
محورهای موضوعی : Iranian Journal of CatalysisBita Roshanravan 1 , Habibollah Younesi 2
1 - Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Iran
2 - Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Iran
کلید واژه: fuel cell, Conductivity, Graphene Quantum Dot, Electro catalyst,
چکیده مقاله :
Due to a significant increase in the demand for usable power, research focused on energy-material relations has garnered considerable attention. Fuel cells, characterized by their high efficiency, high energy density, quiet operation, and environmental friendliness, are regarded as a promising future power source that provides clean power at the point of use. The incorporation of functionalized graphene quantum dots (GQDs) has been shown to enhance catalytic activity and stability, making them attractive materials for various device applications, particularly in fuel cells. This review presents an overview of different synthesis methods for GQDs and discusses the utilization of GQD-doped composites with optimized content and enhanced electro conductivity as electrocatalysts in fuel cells.
[1] M. Armand, J.-M. Tarascon, Building better batteries, nature. 451 (2008) 652.
[2] T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev. 110 (2010) 6474-6502.
[3] J. Potočnik, Renewable energy sources and the realities of setting an energy agenda, Sci. 315 (2007) 810-811.
[4] M.A. Abdelkareem, A. Allagui, E.T. Sayed, M.E.H. Assad, Z. Said, K. Elsaid, Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells, Renew. Energ. 131 (2019) 563-584.
[5] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. energy. 88 (2011) 981-1007.
[6] X. Huang, Z. Zhang, J. Jiang, Fuel cell technology for distributed generation: an overview, in: 2006 IEEE International Symposium on Industrial Electronics, IEEE. 2 (2006), 1613-1618.
[7] K. Liu, Y. Song, S. Chen, Oxygen reduction catalyzed by nanocomposites based on graphene quantum dots-supported copper nanoparticles, Int. J. Hydrog. Energy. 41 (2016) 1559-1567.
[8] A. ElMekawy, H.M. Hegab, K. Vanbroekhoven, D. Pant, Techno-productive potential of photosynthetic microbial fuel cells through different configurations, Renew. Sust. Energ. Rev. 39 (2014) 617-627.
[9] R. Kumar, L. Singh, A. Zularisam, Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications, Renew. Sust. Energ. Rev. 56 (2016) 1322-1336.
[10] E.G.F. Mercuri, A.Y.J. Kumata, E.B. Amaral, J.R.S. Vitule, Energy by Microbial Fuel Cells: Scientometric global synthesis and challenges, Renew. Sust. Energ. Rev. 65 (2016) 832-840.
[11] Z. Chai, C. Wang, H. Zhang, C.M. Doherty, B.P. Ladewig, A.J. Hill, H. Wang, Nafion–carbon nanocomposite membranes prepared using hydrothermal carbonization for proton‐exchange‐membrane fuel cells, Adv. Funct. Mater. 20 (2010) 4394-4399.
[12] S. Mohanapriya, S. Bhat, A. Sahu, A. Manokaran, R. Vijayakumar, S. Pitchumani, P. Sridhar, A. Shukla, Sodium-alginate-based proton-exchange membranes as electrolytes for DMFCs, Energy Environ. Sci. 3 (2010) 1746-1756.
[13] V. Neburchilov, J. Martin, H. Wang, J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources. 169 (2007) 221-238.
[14] R. Wang, X. Wu, X. Yan, G. He, Z. Hu, Proton conductivity enhancement of SPEEK membrane through n-BuOH assisted self-organization, J. Membr. Sci. 479 (2015) 46-54.
[15] L. Mond, C. Langer, V. A new form of gas battery, Proc. R. Soc. 46 (1890) 296-304.
[16] P. Sector, Fuel cell today industry review 2011, Platin. Met. Rev. 55 (2011) 268-270.
[17] M.A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E.T. Sayed, A. Olabi, Environmental aspects of fuel cells: A review, Sci. Total Environ. 752 (2021) 141803.
[18] K. Chizari, A. Deneuve, O. Ersen, I. Florea, Y. Liu, D. Edouard, I. Janowska, D. Begin, C. Pham‐Huu, Nitrogen‐doped carbon nanotubes as a highly active metal‐free catalyst for selective oxidation, ChemSusChem. 5 (2012) 102-108.
[19] X.-K. Kong, C.-L. Chen, Q.-W. Chen, Doped graphene for metal-free catalysis, Chem. Soc. Rev. 43 (2014) 2841-2857.
[20] W.A. Saidi, Oxygen reduction electrocatalysis using N-doped graphene quantum-dots, J. Phys. Chem. Lett. 4 (2013) 4160-4165.
[21] M. Favaro, L. Ferrighi, G. Fazio, L. Colazzo, C. Di Valentin, C. Durante, F. Sedona, A. Gennaro, S. Agnoli, G. Granozzi, Single and multiple doping in graphene quantum dots: unraveling the origin of selectivity in the oxygen reduction reaction, ACS Catal. 5 (2014) 129-144.
[22] J.Y. Cheon, J.H. Kim, J.H. Kim, K.C. Goddeti, J.Y. Park, S.H. Joo, Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons, J. Am. Chem. Soc. 136 (2014) 8875-8878.
[23] H. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction, J. Am. Chem. Soc. 137 (2015) 7588-7591.
[24] L.L. Li, J. Ji, R. Fei, C.Z. Wang, Q. Lu, J.R. Zhang, L.P. Jiang, J.J. Zhu, A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots, Adv. Funct. Mater. 22 (2012) 2971-2979.
[25] Y. Liu, P. Wu, Graphene quantum dot hybrids as efficient metal-free electrocatalyst for the oxygen reduction reaction, ACS Appl Mater Interfaces. 5 (2013) 3362-3369.
[26] S. Zhuo, M. Shao, S.-T. Lee, Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis, ACS nano. 6 (2012) 1059-1064.
[27] M. Hassan, K.R. Reddy, E. Haque, S.N. Faisal, S. Ghasemi, A.I. Minett, V.G. Gomes, Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode, Compos. Sci. Technol. 98 (2014) 1-8.
[28] N. Mohanty, D. Moore, Z. Xu, T. Sreeprasad, A. Nagaraja, A.A. Rodriguez, V. Berry, Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size, Nat. Commun. 3 (2012) 844.
[29] L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite, J. Am. Chem. Soc. 131 (2009) 4564-4565.
[30] J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun, Z. Ding, An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs), J. Am. Chem. Soc. 129 (2007) 744-745.
[31] H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.-T. Lee, Z. Kang, One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties, Carbon. 49 (2011) 605-609.
[32] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc. 130 (2008) 5856-5857.
[33] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon. 50 (2012) 4738-4743.
[34] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS nano. 6 (2012) 5102-5110.
[35] J. Sakamoto, J. van Heijst, O. Lukin, A.D. Schlüter, Two‐dimensional polymers: just a dream of synthetic chemists?, Angew. Chem. Int. Ed. 48 (2009) 1030-1069.
[36] C.D. Simpson, J.D. Brand, A.J. Berresheim, L. Przybilla, H.J. Räder, K. Müllen, Synthesis of a giant 222 carbon graphite sheet, Chem. Eur. J. 8 (2002) 1424-1429.
[37] X. Yan, B. Li, X. Cui, Q. Wei, K. Tajima, L.-s. Li, Independent tuning of the band gap and redox potential of graphene quantum dots, J. Phys. Chem. Lett. 2 (2011) 1119-1124.
[38] X. Yan, L.-s. Li, Solution-chemistry approach to graphene nanostructures, J. Mater. Chem. 21 (2011) 3295-3300.
[39] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, An electrochemical avenue to green‐luminescent graphene quantum dots as potential electron‐acceptors for photovoltaics, Adv Mater. 23 (2011) 776-780.
[40] J. Lu, P.S.E. Yeo, C.K. Gan, P. Wu, K.P. Loh, Transforming C 60 molecules into graphene quantum dots, Nat. Nanotechnol. 6 (2011) 247.
[41] G. Chen, Z. Zhuo, K. Ni, N.Y. Kim, Y. Zhao, Z. Chen, B. Xiang, L. Yang, Q. Zhang, Z. Lee, Rupturing C60 Molecules into Graphene‐Oxide‐like Quantum Dots: Structure, Photoluminescence, and Catalytic Application, Small. 11 (2015) 5296-5304.
[42] E. Haque, J. Kim, V. Malgras, K.R. Reddy, A.C. Ward, J. You, Y. Bando, M.S.A. Hossain, Y. Yamauchi, Recent advances in graphene quantum dots: synthesis, properties, and applications, Small Methods. 2 (2018) 1800050.
[43] Z.A.C. Ramli, N. Shaari, T.S.T. Saharuddin, Progress and major BARRIERS of nanocatalyst development in direct methanol fuel cell: A review, Int. J. Hydrog. Energy. 47 (2022) 22114-22146.
[44] S.N. Shreyanka, J. Theerthagiri, S.J. Lee, Y. Yu, M.Y. Choi, Multiscale design of 3D metal–organic frameworks (M− BTC, M: Cu, Co, Ni) via PLAL enabling bifunctional electrocatalysts for robust overall water splitting, Chem. Eng. J. 446 (2022) 137045.
[45] H.C. Lim, S.H. Min, E. Lee, J. Jang, S.H. Kim, J.-I. Hong, Self-assembled poly (3, 4-ethylene dioxythiophene): poly (styrenesulfonate)/graphene quantum dot organogels for efficient charge transport in photovoltaic devices, ACS Appl Mater Interfaces. 7 (2015) 11069-11073.
[46] C. Luk, L. Tang, W. Zhang, S. Yu, K. Teng, S. Lau, An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes, J. Mater. Chem. 22 (2012) 22378-22381.
[47] D.K. Chan, P.L. Cheung, C.Y. Jimmy, A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots, Beilstein J. Nanotechnol. 5 (2014) 689-695.
[48] X. Chu, P. Dai, Y. Dong, W. Sun, L. Bai, W. Zhang, The acetic acid gas sensing properties of graphene quantum dots (GQDs)–ZnO nanocomposites prepared by hydrothermal method, J. Mater. Sci. Mater. Electron. 28 (2017) 19164-19173.
[49] J. Liu, L. Qin, S.-Z. Kang, G. Li, X. Li, Gold nanoparticles/glycine derivatives/graphene quantum dots composite with tunable fluorescence and surface enhanced Raman scattering signals for cellular imaging, Mater. Des. 123 (2017) 32-38.
[50] L.M. Long, N.N. Dinh, T.Q. Trung, Synthesis and characterization of polymeric graphene quantum dots based nanocomposites for humidity sensing, J. Nanomater. 2016 (2016).
[51] X. Wu, Y. Zhang, T. Han, H. Wu, S. Guo, J. Zhang, Composite of graphene quantum dots and Fe 3 O 4 nanoparticles: peroxidase activity and application in phenolic compound removal, RSC Adv. 4 (2014) 3299-3305.
[52] X. Zhou, X. Gao, F. Song, C. Wang, F. Chu, S. Wu, A sensing approach for dopamine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite, Appl. Surf. Sci. 423 (2017) 810-816.
[53] E. Zor, E. Morales-Narváez, A. Zamora-Gálvez, H. Bingol, M. Ersoz, A. Merkoçi, Graphene quantum dots-based photoluminescent sensor: a multifunctional composite for pesticide detection, ACS Appl Mater Interfaces. 7 (2015) 20272-20279.
[54] S. Mondal, U. Rana, S. Malik, Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials, Chem comm. 51 (2015) 12365-12368.
[55] Q. Chen, Y. Hu, C. Hu, H. Cheng, Z. Zhang, H. Shao, L. Qu, Graphene quantum dots–three-dimensional graphene composites for high-performance supercapacitors, Phys. Chem. Chem. Phys. 16 (2014) 19307-19313.
[56] S. Dhar, T. Majumder, S.P. Mondal, Phenomenal improvement of external quantum efficiency, detectivity and responsivity of nitrogen doped graphene quantum dot decorated zinc oxide nanorod/polymer schottky junction UV detector, Mater. Res. Bull. 95 (2017) 198-203.
[57] A. Cai, X. Wang, Y. Qi, Z. Ma, Hierarchical ZnO/S, N: GQD composites: Biotemplated synthesis and enhanced visible-light-driven photocatalytic activity, Appl. Surf. Sci. 391 (2017) 484-490.
[58] X. Bu, S. Yang, Y. Bu, P. He, Y. Yang, G. Wang, H. Li, P. Wang, X. Wang, G. Ding, Highly Active Black TiO2/N‐doped Graphene Quantum Dots Nanocomposites For Sunlight Driven Photocatalytic Sewage Treatment, ChemistrySelect. 3 (2018) 201-206.
[59] Y. Ji, J. Hu, J. Biskupek, U. Kaiser, Y.F. Song, C. Streb, Polyoxometalate‐Based Bottom‐Up Fabrication of Graphene Quantum Dot/Manganese Vanadate Composites as Lithium Ion Battery Anodes, Chem. Eur. J. 23 (2017) 16637-16643.
[60] C. Lan, J. Zhao, L. Zhang, C. Wen, Y. Huang, S. Zhao, Self-assembled nanoporous graphene quantum dot-Mn 3 O 4 nanocomposites for surface-enhanced Raman scattering based identification of cancer cells, RSC Adv. 7 (2017) 18658-18667.
[61] X. Wu, S. Guo, J. Zhang, Selective oxidation of veratryl alcohol with composites of Au nanoparticles and graphene quantum dots as catalysts, Chem comm. 51 (2015) 6318-6321.
[62] X. Chu, J. Wang, J. Zhang, Y. Dong, W. Sun, W. Zhang, L. Bai, Preparation and gas-sensing properties of SnO 2/graphene quantum dots composites via solvothermal method, J. Mater. Sci. 52 (2017) 9441-9451.
[63] Z. Zhang, C. Fang, X. Bing, Y. Lei, Graphene quantum dots-ZnS nanocomposites with improved photoelectric performances, Mater. 11 (2018) 512.
[64] J. Guo, H. Zhu, Y. Sun, L. Tang, X. Zhang, Doping MoS2 with graphene quantum dots: structural and electrical engineering towards enhanced electrochemical hydrogen evolution, Electrochim. Acta. 211 (2016) 603-610.
[65] V. Kumar, A. Kumar, A.M. Biradar, G. Reddy, D. Sachdev, R. Pasricha, Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots, Liq. Cryst. 41 (2014) 1719-1725.
[66] P.R. Kharangarh, S. Umapathy, G. Singh, Synthesis and luminescence of ceria decorated graphene quantum dots (GQDs): Evolution of band gap, Integr. Ferroelectr. 184 (2017) 114-123.
[67] Z. Protich, P. Wong, K. Santhanam, Composite of Zinc Using Graphene Quantum Dot Bath: A Prospective Material For Energy Storage, ACS Sustain. Chem. Eng. 4 (2016) 6177-6185.
[68] T. Hu, X. Chu, F. Gao, Y. Dong, W. Sun, L. Bai, Trimethylamine sensing properties of graphene quantum Dots/α-Fe2O3 composites, J. Solid State Chem. 237 (2016) 284-291.
[69] H. Liu, Q. Zhao, J. Liu, X. Ma, Y. Rao, X. Shao, Z. Li, W. Wu, H. Ning, M. Wu, Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction, Appl. Surf. Sci. 423 (2017) 909-916.
[70] S. Kundu, R.M. Yadav, T. Narayanan, M.V. Shelke, R. Vajtai, P.M. Ajayan, V.K. Pillai, Synthesis of N, F and S co-doped graphene quantum dots, Nanoscale. 7 (2015) 11515-11519.
[71] L. Tang, R. Ji, X. Li, K.S. Teng, S.P. Lau, Energy-level structure of nitrogen-doped graphene quantum dots, J. Mater. Chem. C. 1 (2013) 4908-4915.
[72] X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang, Y. Qu, Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction, Nanoscale. 6 (2014) 2603-2607.
[73] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups, J. Am. Chem. Soc. 134 (2011) 15-18.
[74] Q. Li, S. Zhang, L. Dai, L.-s. Li, Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction, J. Am. Chem. Soc. 134 (2012) 18932-18935.
[75] D.B. Shinde, V.M. Vishal, S. Kurungot, V.K. Pillai, Electrochemical preparation of nitrogen-doped graphene quantum dots and their size-dependent electrocatalytic activity for oxygen reduction, Bull. Mater. Sci. 38 (2015) 435-442.
[76] H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E.L. Samuel, P.M. Ajayan, J.M. Tour, Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction, ACS nano. 8 (2014) 10837-10843.
[77] X. Wu, F. Tong, X. Yong, J. Zhou, L. Zhang, H. Jia, P. Wei, Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells, J. Hazard. Mater. 308 (2016) 303-311.
[78] C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects, Adv Mater. 29 (2017) 1604103.
[79] J. Zhang, L. Dai, Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction, ACS Catal. 5 (2015) 7244-7253.
[80] M. Kaur, M. Kaur, V.K. Sharma, Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment, Adv. Colloid Interface Sci. 259 (2018) 44-64.
[81] T. Fan, G. Zhang, L. Jian, I. Murtaza, H. Meng, Y. Liu, Y. Min, Facile synthesis of defect-rich nitrogen and sulfur Co-doped graphene quantum dots as metal-free electrocatalyst for the oxygen reduction reaction, J. Alloys Compd. 792 (2019) 844-850.
[82] M. Fan, C. Zhu, J. Yang, D. Sun, Facile self-assembly N-doped graphene quantum dots/graphene for oxygen reduction reaction, Electrochim. Acta. 216 (2016) 102-109.
[83] J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS 2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11 (2012) 963.
[84] T. Wang, D. Gao, J. Zhuo, Z. Zhu, P. Papakonstantinou, Y. Li, M. Li, Size‐Dependent Enhancement of Electrocatalytic Oxygen‐Reduction and Hydrogen‐Evolution Performance of MoS2 Particles, Chem. Eur. J. 19 (2013) 11939-11948.
[85] L. Sun, Y. Luo, M. Li, G. Hu, Y. Xu, T. Tang, J. Wen, X. Li, L. Wang, Role of Pyridinic-N for Nitrogen-doped graphene quantum dots in oxygen reaction reduction, J. Colloid Interface Sci. 508 (2017) 154-158.
[86] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B. 108 (2004) 17886-17892.
[87] A.M. Herring, Inorganic–polymer composite membranes for proton exchange membrane fuel cells, J. macromol. sci., Polym. rev. 46 (2006) 245-296.
[88] M. Maréchal, F. Niepceron, G. Gebel, H. Mendil-Jakani, H. Galiano, Inside the structure of a nanocomposite electrolyte membrane: how hybrid particles get along with the polymer matrix, Nanoscale. 7 (2015) 3077-3087.
[89] A.K. Mishra, S. Bose, T. Kuila, N.H. Kim, J.H. Lee, Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Prog. Polym. Sci. 37 (2012) 842-869.
[90] P. Antonucci, A. Arico, P. Cretı, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation, Solid State Ion. 125 (1999) 431-437.
[91] E.-B. Cho, D.X. Luu, D. Kim, Enhanced transport performance of sulfonated mesoporous benzene-silica incorporated poly (ether ether ketone) composite membranes for fuel cell application, J. Membr. Sci. 351 (2010) 58-64.
[92] Y.-H. Su, Y.-L. Liu, Y.-M. Sun, J.-Y. Lai, D.-M. Wang, Y. Gao, B. Liu, M.D. Guiver, Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells, J. Membr. Sci. 296 (2007) 21-28.
[93] D. Jung, S. Cho, D. Peck, D. Shin, J. Kim, Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell, J. Power Sources. 106 (2002) 173-177.
[94] R. Nagarale, G. Gohil, V.K. Shahi, R. Rangarajan, Organic− inorganic hybrid membrane: thermally stable cation-exchange membrane prepared by the sol− gel method, Macromol. 37 (2004) 10023-10030.
[95] B.P. Tripathi, V.K. Shahi, Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci. 36 (2011) 945-979.
[96] F. Xu, S. Mu, Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells, J. Nanosci. Nanotechnol. 14 (2014) 1169-1180.
[97] S. Gahlot, V. Kulshrestha, Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM, ACS Appl Mater Interfaces. 7 (2014) 264-272.
[98] Y.-L. Liu, Y.-H. Su, C.-M. Chang, D.-M. Wang, J.-Y. Lai, Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells, J. Mater. Chem. 20 (2010) 4409-4416.
[99] Y. Jun, H. Zarrin, M. Fowler, Z. Chen, Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells, Int. J. Hydrog. 36 (2011) 6073-6081.
[100] B. Matos, E. Santiago, J. Rey, A. Ferlauto, E. Traversa, M. Linardi, F. Fonseca, Nafion-based composite electrolytes for proton exchange membrane fuel cells operating above 120 C with titania nanoparticles and nanotubes as fillers, J. Power Sources. 196 (2011) 1061-1068.
[101] B.R. Matos, E.I. Santiago, F.C. Fonseca, M. Linardi, V. Lavayen, R.G. Lacerda, L.O. Ladeira, A.S. Ferlauto, Nafion–titanate nanotube composite membranes for PEMFC operating at high temperature, J. Electrochem. Soc. 154 (2007) B1358-B1361.
[102] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, AA, Two-dimensional gas of massless Dirac fermions in graphene, nature. 438 (2005) 197.
[103] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv Mater. 22 (2010) 3906-3924.
[104] Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene‐based materials in supercapacitors, Small. 8 (2012) 1805-1834.
[105] Y. Zhang, D. Li, X. Tan, B. Zhang, X. Ruan, H. Liu, C. Pan, L. Liao, T. Zhai, Y. Bando, High quality graphene sheets from graphene oxide by hot-pressing, Carbon. 54 (2013) 143-148.
[106] H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Flexible graphene–polyaniline composite paper for high-performance supercapacitor, Energy Environ. Sci. 6 (2013) 1185-1191.
[107] A.K. Geim, Graphene: status and prospects, sci. 324 (2009) 1530-1534.
[108] H. Zarrin, D. Higgins, Y. Jun, Z. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem. C. 115 (2011) 20774-20781.
[109] D. Carter, M. Ryan, J. Wing, The fuel cell industry review 2013, Fuel Cell, 21 (2012).
[110] R.S. Malik, U. Soni, S.S. Chauhan, P. Verma, V. Choudhary, Development of functionalized quantum dot modified poly (vinyl alcohol) membranes for fuel cell applications, RSC Adv. 6 (2016) 47536-47544.