Synthesis of Ag-Ag2O nanoparticles using Ageratum conyzoides leaf extract for the catalytic reduction of nitrobenzene and methylene blue and antibacterial applications
محورهای موضوعی : Iranian Journal of CatalysisDinesh Patil 1 , Kagepura Chandrashekara 2 , Jayappa Manjanna 3 , Malavalli Sridhara 4
1 - Department of Chemistry, Rani Channamma University, Belagavi 591 156, Karnataka, India
2 - Institute of Excellence, Vijnana Bhavana, University of Mysore, Mysuru 570 006, Karnataka, India
3 - Department of Chemistry, Rani Channamma University, Belagavi 591 156, Karnataka, India
4 - Department of Chemistry, Rani Channamma University, Belagavi 591 156, Karnataka, India
کلید واژه: Methylene Blue, Antibacterial activity, Ageratum conyzoides, Ag/Ag2O, 4-nitrophenol,
چکیده مقاله :
The 4-nitrophenol (4-NP) and methylene blue (MB) are commonly used in many industries and remain in the industrial effluent. They have an adverse effect on the environment if not treated properly. Therefore, it is essential to develop a convenient method to remove such toxic chemicals from wastewater. Here, Ag/Ag2O nanoparticles (NPs) were prepared from AgNO3 (0.05 M) using Ageratum conyzoides L. agricultural weed extract (50 mL) in an ultrasonic bath. Then, the synthesized Ag/Ag2O NPs were utilized for the 4-NP and MB reduction in the presence of NaBH4. The Ag/Ag2O NPs efficiently reduce 4-NP to 4-AP and MB to LMB in an aqueous medium. In the case of 4-NP, about 93% of the reduction was achieved in about 10 min at optimum conditions, 2 mL of 4-NP (0.15 mM) and 100 µL of NaBH4 (50 mM) in the presence of 1 mg Ag/Ag2O NPs. About 94% reduction of MB dye was achieved in about 6 min at optimum conditions, 2 mL of MB (10 ppm) and 100 µL of NaBH4 (30 mM) using 1 mg Ag/Ag2O NPs. Furthermore, the bactericidal activity of Ag/Ag2O NPs was studied against S. Mutans, B. Subtilis, and E. coli.
[1] K.B. Narayanan, N. Sakthivel, Bioresour. Technol. 102 (2011) 10737-10740.
[2] P.K. Arora, A. Srivastava, V.P.Singh, J. Hazard. Mater. 266 (2014) 42-59.
[3] Z. Xiong, H. Zhang, W. Zhang, B. Lai, G. Yao, Chem. Eng. J. 359 (2019) 13-31.
[4] Y. Yuan, B. Lai, Y.Y. Tang, Chem. Eng. J. 283 (2016) 1514-1521.
[5] Z.I. Bhatti, H. Toda, K. Furukawa, Water Res. 36 (2002) 1135-1142.
[6] N. Pradhan, A. Pal, T. Pal, Colloids Surf. 196 (2002) 247–257.
[7] S.K. Ghosh, M. Mandal, S. Kundu, S. Nath, T. Pal, Appl. Catal. A Gen. 268 (2004) 61–66.
[8] S.P. Deshmukh, R.K. Dhokale, H.M. Yadav, S.N. Achary, S.D. Delekar, Appl. Surf. Sci. 273 (2013) 676-683.
[9] Q. Hu, X. Liu, L. Tang, D. Min, T. Shia, W. Zhang, RSC Adv. 7 (2017) 7964–7972.
[10] X.Y. Dong, Z.W. Gao, K.F. Yang, W.Q. Zhang, L.W. Xu, Catal. Sci. Technol. 5 (2015) 2554–2574.
[11] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Haz. Mat. 321 (2017) 629–638.
[12] N.E. Farda, R. Fazaelib, Iran. J. Catal. 8(2) (2018) 133–141.
[13] T. Tamiji, A. Nezamzadeh-Ejhieh, J. Ele. Chem. 829 (2018) 95–105.
[14] A. Hiskia, A. Troupis, S. Antonaraki, E. Gkika, P. Kormali, E. Papaconstantinou, Intern. J. Environ. Anal. Chem. 86 (2006) 233–242.
[15] R.N. Bharagava, G. Saxena, S.I. Mulla, in: G. Saxena, R. Bharagava, (Eds.) Bioremediation of Industrial Waste for Environmental Safety, Springer, Singapore, 2020, pp. 1–18.
[16] I. Ahmad, M. Imran, M.B. Hussain, S. Hussain, N.A. Anjum, in: N.A. Anjum. (Eds.) Chemical Pollution Control with Microorganisms, Nova Sci. Publisher, 2017, pp. 197-243.
[17] Textile dyes market., 2022. Textile dyes market by dye type, fiber type, and region-Global forecast to 2027. markets and markets CH6147. https://www.marketsandmarkets.com/Market-Reports/textile-dye-market-226167405.html.
[18] Fibre2Fashion, Booming textile dyes industry in emerging economies (2014). www.fibre2fashion.com
[19] R. Vijayan, S. Joseph, B. Mathew, Bio. Nano. Sci. 8 (2018) 105–117.
[20] S.K. Chandraker, M. Lal, R. Shukla, RSC Adv. 9 (2019) 23408.
[21] M. Maham, M. Nasrollahzadeh, S.M. Sajadi, Compos. B. Eng. 185 (2020) 107783.
[22] W. Jiang, X. Wang, Z. Wu, X. Yue, S. Yuan, H. Lu, B. Liang, Ind. Eng. Chem. Res. 54 (2015) 832−841.
[23] S. Akel, R. Dillert, N.O. Balayeva, R. Boughaled, J. Koch, M.E. Azzouzi, D.W. Bahnemann, Catalysts 8, (2018) 647.
[24] N. Bi, H. Zheng, Y. Zhu, W. Jiang, B. Liang, J. Environ. Chem. Eng. 6(2) (2018) 3150-3160.
[25] E.E. Elemike, D.C. Onwudiwe, A.C. Ekennia, C.U. Sonde, R.C. Ehiri, Molecules 22, (2017) 674.
[26] S. Yallappa, J. Manjanna, B.L. Dhananjaya, Spectrochim. Acta A 137 (2015) 236-243.
[27] X. Wang, S. Li, H. Yu, J. Yu, S. Liu, Chem. Eur. J. 17 (2011) 7777−7780.
[28] A. Kadam, R. Dhabbe, A. Gophane, T. Sathe, K. Garadkar, J. Photochem. Photobiol. B 154 (2016) 24−33.
[29] M. Xu, L. Han, S. Dong, ACS Appl. Mater. Interfaces 5 (2013) 12533−12540.
[30] A.L. Okunade, Fitoterapia 73 (2002) 1-16.
[31] V.H. Thorat, S.S. Ghorpade, T. Patole, Int. J. Pharmacogn. 5(4) (2018) 213-218.
[32] D. Patil, J. Manjanna, S. Chikkamath, V. Upper, M. Chougala, J. Hazard. Mater. Adv. 4 (2021) 100032
[33] M. Sultan, A. Javeed, M. Uroos, M. Imran, F. Jubeen, S. Nouren, N. Saleem, I. Bibi, R. Masood, W. Ahmed, J. Hazard. Mater. 344 (2018) 210–219.
[34] A. Raza, M. Ikram, M. Aqeel, M. Imran, A. Ul-Hamid, K.N. Riaz,·S. Ali, Appl. Nanosci. 10 (2020) 535–1544.
[35] Z.H.A. El-Wahab, M.M. Mashaly, A.A. Salman, B.A. El-Shetary, A.A. Faheim, Spectrochim. Acta A 60 (12) (2004) 2861–2873.
[36] J. Saha, A. Begum, A. Mukherjee, S. Kumar, Sustain. Environ. Res. 27(5) (2017) 245-250.
[37] S. Ravichandran, V. Paluri, G. Kumar, K. Loganathan, B.R.K. Venkata, J. Exp. Nanosci. 11(6) (2016) 445–458.
[38] S.M. Hosseinpour-Mashkani, R. Majid, Mater. Lett. 130 (2014) 259–262.
[39] M.A. Bhosale, S.C. Karekar, B.M. Bhanage, Chemistry Select 1 (2016) 6297-6307.
[40] I. Roy, A. Bhattacharyya, G. Sarkar, N.R. Saha, D. Rana, P.P. Ghosh, M. Palit, A.R. Das, D. Chattopadhyay, RSC Adv. 4 (2014) 52044-52052.
[41] L. Zhou, G. Zou, H. Deng, Catalysts 8 (2018) 272.
[42] S. Elyamny, M. Eltarahony, M. Abu-serie, M. Nabil, A. Kashyout, Sci. Rep. 11 (2021) 22543.
[43] A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Appl. Catal. A Gen. 477 (2014) 83–92.
[44] F. Meva, J. Mbeng, C. Ebongue, C. Schlüsener, U. Kökҫam-Demir, A. Ntoumba, P. Kedi, E. Elanga, E. Loudang, M. Nko’o, E. Tchoumbi, V. Deli, C. Nanga, E. Mpondo, C. Janiak, J. Bio. Nanobio. 10 (2019) 102–119.
[45] M. Hatami, K.V. Rao, M. Ahmadipour, V. Rajendar, Adv. Sci. Eng. Med. 5 (2013) 1–5.
[46] A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Chem. Eng. J. 228 (2013) 631–641.
[47] X. Yang, H. Zhong, Y. Zhu, H. Jiang, J. Shen, J. Huang, C. Li, J. Mater. Chem. A 2 (2014) 9040-9047.
[48] L. Ai, H. Yue, J. Jiang, J. Mater. Chem. 22 (2012) 23447-23453.
[49] Y. Zheng, A. Wang, J. Mater. Chem. 22 (2012) 16552–16559.