Synthesis, Characterization, and Antibacterial Properties of Surfactant Encapsulated Mn/Mg Co-doped Titania Nanoparticles
محورهای موضوعی : Iranian Journal of Catalysis
1 - Department of Chemistry, Government Degree College, Puttur,517583, Tirupati, Andhra Pradesh, India
کلید واژه: E. coli, Visible Light, Sol-gel method, Antibacterial activity, Gemini surfactant,
چکیده مقاله :
The current research work was mainly focused on the antibacterial performance of Mn/Mg co-doped TiO2 nanoparticles in presence of Gemini surfactant (GS). Mn, Mg co-doped TiO2 nanoparticles were synthesized by sol-gel method and calcined at 450 0C. The characterization results reveal that among all the co-doped TiO2 and surfactant encapsulated TiO2 nanoparticles, the MMT5-GS2 Nano catalyst exhibited the most favorable properties, featuring a small particle size, a large surface area, with respective values of 6.6 nm, 230.2 m2/g, and a bandgap of 2.66 eV. The efficiency of the synthesized catalysts was examined by the antibacterial activity of Escherichia coli (E. coli) and Klebsiella pneumonia pathogens. Among all the catalysts, MMT5-GS2 demonstrated the best performance. The zone of inhibition of bacterial growth for E. coli and Klebsiella pneumonia was measured to be (33.1±0.12 mm) and (26.1±0.12 mm) respectively, at a concentration of 400 µg/mL. These values are significantly higher than the standard value of (chloramphenicol-16.71±0.2) at 100 µg/mL, indicating the remarkable efficacy of the MMT5-GS2 nanocatalyst. The co-doped nano titania particles encapsulated with surfactant have great potential as antibacterial agents.
[1] A. Yousefi, A. Nezamzadeh-Ejhieh, Iran. J. Catal. 11(3) (2021) 247-259.
[2] I. Khan, K. Saeed, I. Khan, Arab. J. Chem. 12(7) (2019) 908-931.
[3] N. Baig, I. Kammakakam, W. Falath, Mater. Adv. 2 (2021) 1821-1871.
[4] X. Chen, S.S. Mao, Chem. Rev. 107(7) (2007) 2891-2959.
[5] M. Wang, L. Zhang, H. Yijja, Z. Hongwei, J.Mater.Chem.A. 9(2021)5320-5363.
[6] S. Roy, I. Hasan, B. Guo, Coord. Chem. Rev. 482(2023)215075.
[7] M.T. Noman, M.A. Ashraf, A. Ali, Environ. Sci. Pollut. Res. 26 (2019)3262-3291.
[8] A. L. Liensebiger, G. Lu, J. T. Yates, Chem. Rev. 95 (1995) 735-758.
[9] M.S. Rao,T. S. Rao, I.M. Raju, Nanosyst:. Phys. Chem. Math. 13(1) (2022)104–114.
[10] S. A. Alim, T. S. Rao, M. S. Rao, K.V. D. Lakshmi, J. Nanostructure. Chem.10 (2020) 211–226.
[11] B.S. Sekhon, Gemini (dimeric surfactants) Surfactants, Resonance. 9 (2004) 42-49.
[12] Y.Wang, R. Zhang, J. Li, S. Lin, Nanoscale. Res. Lett. 9 (2014) 46.
[13] K. V. D. Lakshmi, T. S. Rao, J. Swatipadmaja, I. M. Raju, S. A. Alim, P. Kalyani, Environ. Nanotechnol. Monit. Manage. 10 (2018)494-504.
[14] C Zhang, S. Chen, L. Y. Huang, H. Tian, Mo, L. Hu, Z. Huo, S. Dai, F. Kong, X. Pan, J. Phys. Chem. C. 115 (2011) 16418-16424.
[15] D. S. Meshesha, R. C. Matangi, T. S. Rao, B. Sreedhar, J. Asian Ceram. Soc. 5 (2017)136–143.
[16] M. V. Sofianou, M. Tassi, N. Boukos, S. Thanos, T. Vaimakis, J. Yu, C. Trapalis, Catal. Today. 230 (2014)125–130.
[17] J. B. Kaper, J. P. Nataro, H. L. Mobley, Nat. Rev. Microbiol. 2(2) (2004)123-140.
[18] T. A. Russo, C. M Marr, Clin. Microbiol. Rev. 32(3(2019) e00001-19.
[19] R. D. Shannon, Acta. Cryst. 32 (1976)751-767.
[20] N. Venkatachalam, M. Palanichamy, M. Murugesan, J. Mol. Catal. A: chem. 273(2007) 177-185.
[21] E. D. Jeong, P. Borse, J. Le, J. Ceram. Process. Res. 9(3) (2008) 250-253.
[22] H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, J. Ind. Eng. Chem. 26 (2015) 315-321.
[23] J. S. Padmaja, T. S. Rao TS, K.V.D. Lakshmi, I. M. Raju, J. Environ. Chem. Eng. 6(2018)6457-6467.
[24] N. Ghobadi, Int. Nano. Lett. 3 (2013) 2.
[25] R. Jaiswal, N. Patel, D. C. Kothari, A. Miotello, Appl. Catal. B. 126(2012) 47-54.
[26] N. Venkatachalam, M. Palanichamy, B. Arabindoo, V. Murugesan, J. Mol. Catal. A: Chem. 273(2007) 177-185.
[27] N. Sharotri, D. Sharma, D. Sud, J. Mater. Res. Technol. 8 (2019)3995-4009.
[28] M. S. Rao, T. S. Rao, I. M. Raju, S. A. Alim, G. Jayasree, M. L. V. Lakshmiprasanna, Sustain. Environ. Res. 31(6) (2021)1-12.
[29] Q. R. Deng, Y. Gao, X. H. Xia, R. S. Chen, L. Wan, G. Shao, J. Phys. Conf. Ser. 152(2009) 12073.
[30] L. Maja, V. Dejan, Mater. Technol. 52(4) (2018)411- 416.
[31] A. B. Mohammad, A. Bahare, M. Nasser, Photochem. Photobiol., 87(2011) 1308–1314.
[32] T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Mater. Chem. Phys. 212(2018)325-335.
[33] S. Mumir, F. Asghar, F. Younis, S. Tabssum, RSC Adv. 12(2022) 3856.
[34] Y.Yuan, J. Ding, J. Xu, J. Deng, J. Guo, J. Nanosci. Nanotechnol. 10(8) (2010) 4868–4874.
[35] S. R. Miditana, S. R. Tirukkovalluri, I.M. Raju, A. B. Babu, A. R. Babu, J. Water. Environ. Nanotechnol. 7(2) (2022) 218-229.