Synthesis and Characterization of Hybrid Dual Metallic Complexes of Schiff Base Containing (Cd and Mn/Fe/Co/Ni) Derived from Isatin and 1,4-Phenylenediamine As Novel Organometallic Catalysts for Rapid and Efficient Epoxidation of Alkenes
محورهای موضوعی : Iranian Journal of CatalysisAbeer Mohammed 1 , Jassim Alyass 2 , Khalaf Khallow 3
1 - Department of Chemistry, College of Education for Pure Sciences, University of Mosul, Iraq
2 - Department of Chemistry, College of Education for Pure Sciences, University of Mosul, Iraq
3 - Department of Chemistry, College of Education for Pure Sciences, University of Mosul, Iraq
کلید واژه: Epoxidation, catalyst, Alkene, complex, Organometallic,
چکیده مقاله :
In the current study, a new methodology for the epoxidation of alkenes was developed. In this regard, the required ligand was synthesized from the reaction of isatin and 1,4-phenylenediamine to afford (3Z,3'Z)-3,3'-(1,4-phenylenebis(azaneylylidene))bis(indolin-2-one) ligand. Then, the two coordinate ligands were metallated using Cd and Mn/Fe/Co/Ni to obtain a series of hybrid dual metallic complexes containing (Cd and Mn/Fe/Co/Ni). The prepared complexes were characterized using FT-IR spectroscopy, UV-Vis spectroscopy, CHNS analysis, and magnetic susceptibility. Then, the prepared hybrid dual metallic complexes containing (Cd and Mn/Fe/Co/Ni) are used in the epoxidation of different alkenes to afford corresponding epoxides in moderate to good yields. The synthesized complexes were checked relative to recoverability and leaching of metal to the medium of the reaction.
[1] Z. Yan, J. Tian, K. Wang, K.D.P. Nigam, G. Luo, Microreaction processes for synthesis and utilization of epoxides: A review, Chem. Eng. Sci., 229 (2021) 116071.
[2] L. Guo, K.J. Lamb, M. North, Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates, Green Chem., 23 (2021) 77-118.
[3] G.-G. Gu, L.-Y. Wang, R. Zhang, T.-J. Yue, B.-H. Ren, W.-M. Ren, Synthesis of polyethers from epoxides via a binary organocatalyst system, Polymer Chemistry, 12 (2021) 6436-6443.
[4] S.M. Sadeghzadeh, R. Zhiani, S. Emrani, Spirulina (Arthrospira) platensis Supported Ionic Liquid as a Catalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Epoxide, Anilines, Catal. Lett., 148 (2018) 119-124.
[5] B. Wang, E.H.M. Elageed, D. Zhang, S. Yang, S. Wu, G. Zhang, G. Gao, One-Pot Conversion of Carbon Dioxide, Ethylene Oxide, and Amines to 3-Aryl-2-oxazolidinones Catalyzed with Binary Ionic Liquids, ChemCatChem, 6 (2014) 278-283.
[6] L. Wang, H. Li, S. Xin, P. He, Y. Cao, F. Li, X. Hou, Highly efficient synthesis of diethyl carbonate via one-pot reaction from carbon dioxide, epoxides and ethanol over KI-based binary catalyst system, Appl. Catal., A, 471 (2014) 19-27.
[7] H.V. Ashburn, A.R. Collett, C.L. Lazzeli, Some β-Alkoxyethyl Esters of p-Aminobenzoic Acid, J. Am. Chem. Soc., 57 (1935) 1862-1863.
[8] G. Dannhardt, W. Kiefer, G. Lambrecht, S. Laufer, E. Mutschler, J. Schweiger, H.G. Striegel, Regioisomeric 3-, 4- and 5-aminomethyl isoxazoles: synthesis and muscarinic activity, Eur. J. Med. Chem., 30 (1995) 839-850.
[9] L.E.J. Kennis, F.P. Bischoff, C.J. Mertens, C.J. Love, F.A.F. Van den Keybus, S. Pieters, M. Braeken, A.A.H.P. Megens, J.E. Leysen, New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2-c]pyridine having highly active and potent central α2-antagonistic activity as potential antidepressants, Bioorg. Med. Chem. Lett., 10 (2000) 71-74.
[10] H. Zahn, R. Krzikalla, Synthese von einheitlichen, linearen oligoestern vom poly-glykol-terephthalat-typ, Die Makromolekulare Chemie, 23 (1957) 31-53.
[11] W.-L. Dai, L. Chen, S.-F. Yin, W.-H. Li, Y.-Y. Zhang, S.-L. Luo, C.-T. Au, High-Efficiency Synthesis of Cyclic Carbonates from Epoxides and CO2 over Hydroxyl Ionic Liquid Catalyst Grafted onto Cross-Linked Polymer, Catal. Lett., 137 (2010) 74-80.
[12] M. North, C. Young, Reducing the Cost of Production of Bimetallic Aluminium Catalysts for the Synthesis of Cyclic Carbonates, ChemSusChem, 4 (2011) 1685-1693.
[13] W. Cheng, Z. Fu, J. Wang, J. Sun, S. Zhang, ZnBr2-Based Choline Chloride Ionic Liquid for Efficient Fixation of CO2 to Cyclic Carbonate, Synth. Commun., 42 (2012) 2564-2573.
[14] D.-Y. Wang, R. Liu, W. Guo, G. Li, Y. Fu, Recent advances of organometallic complexes for rechargeable batteries, Coord. Chem. Rev., 429 (2021) 213650.
[15] A. Asif, R.Y. Nadeem, M.A. Iqbal, S. Bibi, M. Irfan, Organometallic complexes of neodymium: an overview of synthetic methodologies based on coordinating elements, Reviews in Inorganic Chemistry, 41 (2021) 77-130.
[16] P.T. Truong, S.G. Miller, E.J. McLaughlin Sta. Maria, M.A. Bowring, Large Isotope Effects in Organometallic Chemistry, Chemistry – A European Journal, 27 (2021) 14800-14815.
[17] M.C. Stipp, A. Acco, Involvement of cytochrome P450 enzymes in inflammation and cancer: a review, Cancer Chemother. Pharmacol., 87 (2021) 295-309.
[18] D. Machalz, S. Pach, M. Bermudez, M. Bureik, G. Wolber, Structural insights into understudied human cytochrome P450 enzymes, Drug Discovery Today, 26 (2021) 2456-2464.
[19] B. Large, N.G. Baranska, R.L. Booth, K.S. Wilson, A.-K. Duhme-Klair, Artificial metalloenzymes: The powerful alliance between protein scaffolds and organometallic catalysts, Current Opinion in Green and Sustainable Chemistry, 28 (2021) 100420.
[20] P. Ebensperger, C. Jessen-Trefzer, Artificial metalloenzymes in a nutshell: the quartet for efficient catalysis, Biol. Chem., (2021).
[21] V. Carreras, N. Tanbouza, T. Ollevier, The Power of Iron Catalysis in Diazo Chemistry, Synthesis, 53 (2021) 79-94.
[22] N. Awasthi, R. Yadav, D. Kumar, Metabolism of 8-aminoquinoline (8AQ) primaquine via aromatic hydroxylation step mediated by cytochrome P450 enzyme using density functional theory, J. Organomet. Chem., 957 (2022) 122154.
[23] L. Liu, A. Corma, Isolated metal atoms and clusters for alkane activation: Translating knowledge from enzymatic and homogeneous to heterogeneous systems, Chem, 7 (2021) 2347-2384.
[24] D. Sadhukhan, P. Ghosh, S. Ghanta, Spectroscopic evidence of chirality in tetranuclear Cu(II)-Schiff base complexes, catalytic potential for oxidative kinetic resolution of racemic benzoin, Inorganic and Nano-Metal Chemistry, 51 (2021) 1714-1724.
[25] T. Linker, The Jacobsen–Katsuki Epoxidation and Its Controversial Mechanism, Angewandte Chemie International Edition in English, 36 (1997) 2060-2062.
[26] T. Hamada, T. Fukuda, H. Imanishi, T. Katsuki, Mechanism of one oxygen atom transfer from oxo (salen) manganese(V) complex to olefins, Tetrahedron, 52 (1996) 515-530.
[27] V. Mirkhani, S. Tangestaninejad, M. Moghadam, M. Moghbel, Rapid and efficient oxidative decarboxylation of carboxylic acids with sodium periodate catalyzed by manganese (III) Schiff base complexes, Bioorg. Med. Chem., 12 (2004) 903-906.
[28] S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, M.S. Saeedi, Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese(III) salophen supported on multi-wall carbon nanotubes, Appl. Catal., A, 381 (2010) 233-241.
[29] P. Campitelli, M. Aschi, C. Di Nicola, F. Marchetti, R. Pettinari, M. Crucianelli, Ionic liquids vs conventional solvents: A comparative study in the selective catalytic oxidations promoted by oxovanadium(IV) complexes, Appl. Catal., A, 599 (2020) 117622.
[30] S. Roy, Saswati, S. Lima, S. Dhaka, M.R. Maurya, R. Acharyya, C. Eagle, R. Dinda, Synthesis, structural studies and catalytic activity of a series of dioxidomolybdenum(VI)-thiosemicarbazone complexes, Inorg. Chim. Acta, 474 (2018) 134-143.
[31] M. Karman, M. Wera, G. Romanowski, Chiral cis-dioxidomolybdenum(VI) complexes with Schiff bases possessing two alkoxide groups: Synthesis, structure, spectroscopic studies and their catalytic activity in sulfoxidation and epoxidation, Polyhedron, 187 (2020) 114653.
[32] H. Zakeri, S. Rayati, G. Zarei, A. Parsa, F. Adhami, Mn(II)-Schiff base complex immobilized onto MCM-41 matrix as a heterogeneous catalyst for epoxidation of alkenes, Iran. J. Catal., 10 (2020) 71-78.
[33] A. Farokhi, H. Hosseini Monfared, Highly efficient asymmetric epoxidation of olefins with a chiral manganese-porphyrin covalently bound to mesoporous SBA-15: Support effect, J. Catal., 352 (2017) 229-238.
[34] Z.H. Chohan, H. Pervez, S. Kausar, C.T. Supuran, Synthesis and Charactrization of Antibacterial Co(II), Cu(II), Ni(II), AND Zn(II) Complexes of Acylhydrazine Derived Pyrrolyl Compounds, Synth. React. Inorg. Met.-Org. Chem., 32 (2002) 529-543.
[35] P. Jain, K.K. Chaturvedi, Complexes of Cu(II), Ni(II) and Co(II) with sulphamerazine salicylaldimine, J. Inorg. Nucl. Chem., 39 (1977) 901-903.
[36] P.P. Dholakiya, M.N. Patel, Synth. React. Inorg. Met.-Org. Chem., 32 (2002) 753-762.
[37] M.I. Khan, A. Khan, I. Hussain, M.A. Khan, S. Gul, M. Iqbal, R. Inayat Ur, F. Khuda, Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes, Inorg. Chem. Commun., 35 (2013) 104-109.
[38] A.H. Kianfar, W.A.K. Mahmood, M. Dinari, M.H. Azarian, F.Z. Khafri, Novel nanohybrids of cobalt(III) Schiff base complexes and clay: Synthesis and structural determinations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127 (2014) 422-428.
[39] H. Naeimi, J. Safari, A. Heidarnezhad, Synthesis of Schiff base ligands derived from condensation of salicylaldehyde derivatives and synthetic diamine, Dyes Pigm., 73 (2007) 251-253.
[40] M. Fan, S. Ma, N. Ferdousi, Z. Dai, J.L. Woo, Modeling of Carbonyl/Ammonium Sulfate Aqueous Brown Carbon Chemistry via UV/Vis Spectral Decomposition, Atmosphere, 11 (2020) 358.
[41] A.J. Atkin, J.M. Lynam, B.E. Moulton, P. Sawle, R. Motterlini, N.M. Boyle, M.T. Pryce, I.J.S. Fairlamb, Modification of the deoxy-myoglobin/carbonmonoxy-myoglobin UV-vis assay for reliable determination of CO-release rates from organometallic carbonyl complexes, Dalton Trans., 40 (2011) 5755-5761.
[42] M.H. Powelson, B.M. Espelien, L.N. Hawkins, M.M. Galloway, D.O. De Haan, Brown Carbon Formation by Aqueous-Phase Carbonyl Compound Reactions with Amines and Ammonium Sulfate, Environ. Sci. Technol., 48 (2014) 985-993.
[43] E. Dmitrieva, M. Rosenkranz, J.S. Danilova, E.A. Smirnova, M.P. Karushev, I.A. Chepurnaya, A.M. Timonov, Radical formation in polymeric nickel complexes with N2O2 Schiff base ligands: An in situ ESR and UV–vis–NIR spectroelectrochemical study, Electrochim. Acta, 283 (2018) 1742-1752.
[44] N. Raman, J. Dhaveethu Raja, A. Sakthivel, Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies, J. Chem. Sci., 119 (2007) 303-310.
[45] E. Yousif, A. Majeed, K. Al-Sammarrae, N. Salih, J. Salimon, B. Abdullah, Metal complexes of Schiff base: Preparation, characterization and antibacterial activity, Arabian Journal of Chemistry, 10 (2017) S1639-S1644.
[46] N. Raman, A. Sakthivel, K. Rajasekaran, Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes, Mycobiology, 35 (2007) 150-153.
[47] S. Haghshenas Kashani, M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-Baltork, Ruthenium Nanoparticles Immobilized on Nano-silica Functionalized with Thiol-Based Dendrimer: A Nanocomposite Material for Oxidation of Alcohols and Epoxidation of Alkenes, Catal. Lett., 148 (2018) 1110-1123.
[48] M. Zakeri, M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, A.R. Khosropour, Multi-wall carbon nanotube supported manganese(III)tetraphenylporphyrin: efficient catalysts for epoxidation of alkenes with NaIO4 under various reaction conditions, J. Coord. Chem., 65 (2012) 1144-1157.
[49] M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, H. Kargar, N. Zeini-Isfahani, Manganese(III) porphyrin supported on multi-wall carbon nanotubes: A highly efficient and reusable biomimetic catalyst for epoxidation of alkenes with sodium periodate, Polyhedron, 28 (2009) 3816-3822.