Modification of Indonesian Natural Zeolite (Clipnotillite-Mordenite) for Synthesis of Solketal
محورهای موضوعی : Iranian Journal of CatalysisDwi Kurniawati 1 , Jumaeri Jumaeri 2 , Silvester Tursiloadi 3 , Osi Arutanti 4 , Muhammad Safaat 5
1 - Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang Kampus Sekaran Gunungpati, 50229 Semarang, Indonesia
2 - Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang Kampus Sekaran Gunungpati, 50229 Semarang, Indonesia
3 - Research Center for Chemistry, National Research and Innovation Agency of the Republic of Indonesia, Kawasan PUSPIPTEK Serpong, Tangerang Selatan, 15314, Banten
4 - Research Center for Chemistry, National Research and Innovation Agency of the Republic of Indonesia, Kawasan PUSPIPTEK Serpong, Tangerang Selatan, 15314, Banten
5 - Research Center for Chemistry, National Research and Innovation Agency of the Republic of Indonesia, Kawasan PUSPIPTEK Serpong, Tangerang Selatan, 15314, Banten
کلید واژه: glycerol, natural zeolite, Desilication, clipnotilolite, mordenite,
چکیده مقاله :
Desilication of natural zeolite by alkali treatment to produce solketal was successfully prepared. Natural zeolite from Tasikmalaya, West Java, Indonesia, has been used as a catalyst source. The natural zeolite source was mordenite type structure. The experimental condition was varied to study their effect on the catalyst efficiency. Several characterization methods, such as Thermogravimetric Analysis (TGA), Brunauer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron microscopy (SEM), etc., were used to analyze the physicochemical properties of the prepared catalyst. From the temperature-programmed desorption of NH3 (TPD analysis), the acidity of zeolite decreased from 0.597 to 0.444 by increasing NaOH concentration from 0.1 to 0.7 M, respectively. The result showed that alkali treatment did not change the phase structure of natural zeolite significantly. Here, the ratio of Si/Al decreased by increasing NaOH concentration, resulting in the decrease of acidity value. Interestingly, the efficiency of zeolite catalyst (HZ-01) shows the highest conversion and selectivity at around 98.73% and 74.66%, respectively. This exciting result opens the possibility to develop an economic catalyst with high efficiency from the abundant Indonesian mineral resource.
[1] C.G. Chol, R. Dhabhai, A.K. Dalai, M. Reaney, Fuel Process. Technol. 178 (2018) 78–87.
[2] M. Ayoub, A.Z. Abdullah, Chem. Eng. J. 225 (2013) 784-789.
[3] M. Manikandan, P. Sangeetha, Chem. Select 4 (2019) 6672–6678.
[4] K. Yamamoto, A. M. Kiyan, J. C. Bagio, K. A. B. Rossi, F. D. Berezuk, M. E. Berezuk, Green Process Synth. 8 (2019) 183–190.
[5] R.M. Kulkarni, N. Arvind, Holiyon 7 (2021) e06018
[6] K. Stawicka, A.E. Díaz-Álvarez, V. Calvino-Casilda, M. Trejda, M.A. Bañares, M. Ziolek, J. Phys. Chem. C 120 (2016) 16699–16711.
[7] W. Xiong, Z. Yu-hua, L. Cheng-chao, H. Jing-ping, W. Liang, C. Yao, L. Jin-lin, J. Fuel Chem. Technol. 45 (2017) 950-955.
[8] M.N. Moreira, R.P.V. Faria, A.M. Ribeiro, A.E. Rodrigues, Ind. Eng. Chem. Res. 58 (2019) 17746-17759.
[9] J.A. Vannucci, N.N. Nichio, F. Pompeo, Catal. Today (2020)
[10] J.C. Groen, J.A. Moulijn, J. Pérez-Ramírez, Microporous Mesoporous Mater. 87 (2005) 153-161.
[11] P. Manjunathan, S.P. Maradur, A.B. Halgeri, V.S. Ganapati, J. Mol. Catal. A:Chem. 396 (2015) 47-54.
[12] S.K. Sonar, A.S. Shinde, P.S. Niphadkar, S. Mayadevi, P.N. Joshi, V.V. Bokade, Environ. Prog. Sustainable Energy 37 (2017) 797-807.
[13] N. Nuryoto, H. Sulistyo, W.B. Sediawan, I. Perdana, Reaktor 16 (2016) 72-80.
[14] G. Hu, J. Yang, X. Duan, R. Farnood, C. Yang, J. Yang, W. Liu, Q. Liu, Chem. Eng. J. 417 (2021) 129209-129227.
[15] A. Nezamzadeh-Ejhieh, M. Khorsandi, J. Hazard. Mater. 176 (2010) 629-637.
[16] A. Ates, J. Colloid Interface Sci. 523 (2018) 266-281.
[17] Y. He, S. Tang, S. Yin, S. Li, Journal of Cleaner Production 306 (2021) 127248-127265.
[18] T. Tamiji, A. Nezamzadeh-Ejhieh, J. Solid State Electrochem. 23 (2019) 143–157
[19] Y. Wang, T. Yokoi, S. Namba, T. Tatsumi, Catalysts 6 (2016) 1–19.
[20] Z.V. Rahbari, M. Khosravan, A.N. Kharat, Iran. J. Catal. 7(3) (2017) 217-223.
[21] A. Khaleque, M. M. Alam, M. Hoque, S. Mondal, J. B. Haider, B. Xu, M.A.H. Johir, A.K. Karmakar, J.L. Zhou, M. B. Ahmed, M.A. Moni, Environmental Advances 2 (2020) 100019-100042.
[22] R.A. Fauzi, S. Tursiloadi, A.A. Dwiatmoko, D. Sukandar, F. Aulia, N. Rinaldi, Sudiyarmanto, Jurnal Kimia Valensi 5 (2019) 236-241.
[23] W. Xiao, F. Wang, G. Xiao, RSC Advances 5 (2015) 1-8.
[24] S. Chassaing, V. Bénéteau, P. Pale, Current Opinion in Green and Sustainable Chemistry 10 (2018) 35-39
[25] A. Nezamzadeh-Ejhieh, S. Tavakoli-Ghinani, Comptes Rendus Chimie, 17 (2014) 49-61
[26] R. J. Argauer, M.D. Kensington, G. R. Landolt, N.J. Audubon, U.S. Patent No. 3702886, Mobil Co. (1972).
[27] M.M.J. Treacy, J.B. Higgins, Elsevier Science 485 (2007) 182-243.
[28] N. Pourshirband, A. Nezamzadeh-Ejhieh, S.N. Mirsattari, Chem. Phys. Lett. 761 (2020) 138090
[29] M. Balakrishnan, R. John, Iran. J. Catal. 10 (2020) 1-16
[30] T. Tamiji, A. Nezamzadeh-Ejhieh, J. Taiwan Institute Chem. Eng. 104 (2019) 130-138
[31] T. Tamiji, A. Nezamzadeh-Ejhieh, J. Electroanal. Chem. 829 (2018) 95–105
[32] M. Reháková, S. Cuvanovˇá, M. Dzivák, J. Rimár, Z. Gaval’ova, Curr. Opin. Solid State Mater. Sci. 8 (2004) 397–404.
[33] R. Saab, K. Polychronopoulou, L. Zheng, S. Kumar, A. Schiffer, J. Ind. Eng. Chem. 89 (2020) 83-103
[34] C. Feng, J. E, W. Han, Y. Deng, B. Zhang, X. Zhao, D. Han, Renew. Sustain. Energy Rev. 144 (2021) 110954-110980.
[35] M. Akgul, A. Karabakan, Microporous Mesoporous Mater. 145 (2011) 157-164.
[36] M. Ravi, V.L. Sushkevich, J.A. van Bokhoven, Chem. Sci. 12 (2021) 4094-4103.
[37] S. Rostami, S.N. Azizi, F. Rigi, Iran. J. Catal. 7(4) (2017) 267-276.
[38] T.T. Le, A. Chawla, J.D.Rimer, J. Catal. 391 (2020) 56-68
[39] M.R. Nanda, Z. Yuan, W. Qin, H.S. Ghaziaskar, M.A. Poirier, C.C. Xu, Fuel 117 (2014) 470-477.
[40] M.R. Nanda, Y. Zhang, Z. Yuan, W. Qin, H.S. Ghaziaskar, C. Xu, Renew. Sustain. Energy Rev. 56 (2016) 1022-1031.
[41] M.J. da Silva, A.A. Rodrigues, P. F. Pinheiro, Fuel, 276 (2020) 118164-118171.
[42] R. Bai, Y. Song, Y. Li, J. Yu, Trends Chem. 1 (2019) 601-611
[43] Suriyaprapadiloka, B. Kitiyanan. Energy Procedia 9 (2011) 63 – 69.
[44] F. Taddeo, R. Esposito, V. Russo, M. Di Serio, Catalysts 11 (2021) 83-94.
[45] I.C.M.S. Santos-Vieira, R.F. Mendes, F.A.A. Paz, J. Rocha, M.M.Q. Simões, Catalysts 11 (2021) 598-611.
[46] V. Rossa, G.C. Díaz, G.J. Muchave, D.A.G. Aranda, S.B.C. Pergher, Glycerine Production and Transformation - An Innovative Platform for Sustainable Biorefinery and Energy (2019)