Synthesis of Fe-doped TiO2 with improved photocatalytic properties under Vis-L irradiation
محورهای موضوعی : Iranian Journal of CatalysisImane Ellouzi 1 , Boutaina Regraguy 2 , Souad El hajjaji 3 , Mourad Harir 4 , Philippe Schmitt-Kopplin 5 , Hinda Lachheb 6 , Larbi Laânab 7
1 - Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, CERNE2D, Faculty of Sciences, Mohammed V University, in Rabat Av. Ibn Batouta, BP 1014 Rabat, Morocco
2 - Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, CERNE2D, Faculty of Sciences, Mohammed V University, in Rabat Av. Ibn Batouta, BP 1014 Rabat, Morocco
3 - Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, CERNE2D, Faculty of Sciences, Mohammed V University, in Rabat Av. Ibn Batouta, BP 1014 Rabat, Morocco
4 - Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany|Chair Analyt Food Chem, Technical University Munich, Maximus von Imhof Forum 2, 85354 Freising, Germany
5 - Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany|Chair Analyt Food Chem, Technical University Munich, Maximus von Imhof Forum 2, 85354 Freising, Germany
6 - Unité de Recherche Catalyse et Matériaux pour l’Environnement et les procédés (URCMEP), Faculté des sciences de GABES/Université de Gabes. Campus Universitaire.Cité Erriadh 6072 Gabes, Tunisia
7 - Laboratory of Conception and Systems, Faculty of Sciences, Av. Ibn Batouta, BP 1014 Rabat, Morocco
کلید واژه: Iron, MO, Photocatalytic Degradation, Coprecipitation, Titanium dioxide,
چکیده مقاله :
Fe-doped TiO2 nanoparticles were successfully synthesized by the coprecipitation method. TiO2 was doped with a different molar ratio of iron amounts, namely 0.1% and 0.2%. An undoped TiO2 was also prepared for comparison. X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-visible diffuse reflectance spectroscopy techniques were used to characterize the as-synthesized nanoparticles. The XRD spectra revealed that the photocatalysts were mostly in a well-crystallized anatase phase. Optical properties of the powders shifted from UV to the beginning of the visible light (Vis-L) region. Absorption edge wavelengths between 392 and 380 nm were obtained for the Fe-doped TiO2 and TiO2-P25, corresponding to band gap energies between 3.17 and 3.26 eV. TEM images showed homogeneity with a certain degree of agglomeration for all the samples. The photocatalytic efficiency of the as-synthesized Fe-doped TiO2 nanoparticles was performed using azo dye methyl orange (MO) in an aqueous solution under Vis-L irradiation. The photocatalytic results showed that Fe-doped TiO2 nanoparticles effectively degrade MO under Vis-L excitation and follow pseudo-first order kinetics. Besides, kinetic comparison showed that pure TiO2 is less efficient than 0.1% and 0.2% Fe-doped TiO2 because they exhibit unequaled efficiency. Moreover, the photocatalyst at 0.2% Fe-doped TiO2 molar ratio revealed the highest photocatalytic efficiency, which was 4.2 times higher compared to pure TiO2. Different amounts of Fe induced different increases in the apparent first-order rate constant of the photocatalytic process.
[1] S. Krishnan, H. Rawindran, C. M. Sinnathambi, J. W. Lim, Mater. Sci. Eng. 206 (2017) 012089.
[2] M. R. Hoffmann, S. T. Martin, W. Y. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69-96.
[3] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobio. C 1 (2000) 1-21.
[4] G. Lofrano, G. Libralato, A. Casaburi, A. Siciliano, P. Iannece, M. Guida, L. Pucci, E. F. Dentice, M. Carotenuto, Sci. Total Envir. 624 (2018) 461-469.
[5]L. Gomathi Devi, R. Kavitha, RSC Adv. 4 (2014) 28265-28299.
[6]F. Huang, Y. Guo , S. Wang, S. Zhang, M. Cui, Sol. State Sci. 64 (2017) 62-68.
[7] A. Besharati-Seidani, Iran. J. Catal. 6(5) (2016) 447-454.
[8] Y. Ishibai, J. Sato, T. Nishikawa, S. Miyagishi, Appl. Catal. B 79 (2008) 117-121.
[9] J.M. Kwon, Y.H. Kim, B.K. Song, S.H. Yeom, B.S. Kim, J.B. Im, J. Hazard. Mater. 134 (2006) 230-236
[10] A.C. Mecha, M.S. Onyango, A. Ochieng, M.N.B. Momba, Sci. Total Environ. 601–602 (2017) 626–635.
[11] C. Noberi, F. Kaya, C. Kaya, Ceram. Int. 42 (2016) 17202–17209.
[12] M. Safari, M. Nikazar, M. Dadvar, J. Ind. Eng. Chem. 19 (2013) 1697–1702.
[13] O. Yadorao Bisen, R. Nandan, K. Kar Nanda, ACS Omega 5(51) (2020) 32852–32860.
[14] J.C.T. Lin, K. Sopajaree, T. Jitjanesuwan, M.C. Lu, (2018). Sep. Purif. Techno. 191(2018) 233-243.
[15] H. Khan, I.K. Swati, Ind. Eng. Chem. Res. 55 (2016) 6619–33.
[16] T. Ali, P. Tripath, A. Azam, W. Raza, S.A. Arham, A. Ateeq, M. Muneer, Res. Express 4 (2017) 015022
[17] S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, J. Colloid. Interface Sci. 450 (2015) 213–23
[18] S. Yadav, G. Jaiswar, Review on Undoped/Doped TiO2 64(1) (2016) 103-16.
[19] M. Yeganeh, N. Shahtahmasebi, A. Kompany, M. Karimipour, F. Razavi, N.H.S. Nasralla, et al. Physica B: Condensed Matter. 511(2017) 89-98.
[20] M. Ghorbanpour, A. Feizi, J. Water Environ. Nanotechnol. 4(1) (2019) 60-66.
[21]H. Moradi, H. Eshaghi, S. R. Hosseini, K. Ghani, Ultrason .032 (2016) 314-319.
[22] L. Zeng, Z. Lu, M. Li, J. Yang, W. Song, D. Zeng, C. Xie, Appl. Catal. B (183) (2016) 308–316.
[23] M. E. Rockafellow, J. M. Haywood, T. Witte, R.S. Houk, W. S. Jenks, Langmuir 26 (24) (2010) 19052–19059.
[24]Z. Sheng, Y. Hu, J. Xue, X. Wang, W. Liao, Envir. Techn. 33 (2012) 2421-2428.
[25] M. Polat, A. M. Soylu, D. A. Erdogan, H. Erguven, E. I. Vovk, E. Ozensoy, Catal. Today (241) (2015) 25-32.
[26] J.M. Herrmann, F. in: Jansen, R.A. van Santen (Eds.), Catal. Sci. Series, London, Chapitre 9 (1) (1999) 171–194.
[27] S. Sehar, M. A.R. Hafiz, Y. Kamran, I. Mitsumasa,. J. Alloy.Comp. (737) (2018) 740-747.
[28] M. Humayun, F. Raziq, A. Khan, W. Luo, Green Chem. Lett. Rev. 11(2) (2018) 86-102.
[29] M. Madadi, M. Ghorbanpour, A. Feizi, Micro & Nano Lett. 13(11) (2018) 1590-1593.
[30] M. Madadi, M. Ghorbanpour, A. Feizi, Desalin. Water Treat. 145 (2019) 257-261.
[31] H. Yan-Xiao, Y. Chuan-Lu, W. Mei-Shan, M. Xiao-Guang, W. Li-Zhi, Sol. Energy Mater. Sol. Cells (132) (2015) 94–100.
[32] H. Zollinger, VCH Publishers, New York, 1991.
[33] C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.-H. Herrmann, J. Photochem. Photobiol. A: Chem. 158 (2003) 27–36.
[34] R. Cherrak, M. Hadjel, N. Benderdouche, Orient. J. Chem. 31 (2015) 1611-1620.
[35] L. G. Devi, K. M. Reddy, Appl. Surf. Sci. 256 (2010) 3116-3121.
[36] P. Singh, J. Sharma, Conference Proceedings 2006 (2018) 030029.
[37] M. M. Nassar, H. Y. Magdy, Chem. Eng. J. 66 (1997)223–226.
[38] B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, J. C. Polonio, 3 (2) (2019) 275-290.
[39] S. Ashraf, M. A. Rauf, S. Alhadrami, Dyes Pigments 69 (2006) 74–78.
[40]C. F. Patterson, Industrial Waste water Control, Academic Press, USA, 1991.
[41]U. Rott, R. Minke, Water Sci. Technol. 40 (1) (1999) 137–144.
[42]Z. Aksu, Process Biochem. 40 (2005) 997–1026.
[43] S. Ledakowicz, M. Solecka, R. Zylla, J. Biotechnol. 89 (2001) 175–184.
[44] M. Pera-Titus, V. Garcıa-Molina, M. A. Baos, J. Giménez, S. Esplugas, Appl. Catal. B: Environ. 47 (2004) 219–256.
[45] T. Oppenlander, Photochemical Purification of Water and Air, WILEY-VCH Verlag, 2003.
[46] M. Tekbas, H.C. Yatmaz, N. Bektas, Micropor. Mesopor. Mater. 115 (2008) 594–602.
[47] A. Aleboyeh, H. Aleboyeh, Y. Moussa, vol. 57, 2003, pp. 67–75.
[48] N. Riaz, F. Chong, B. K. Dutta, Z. B. Man, M. S. Khan, M. S. Third National Postgraduate Conference (NPC); IEEE: UniversityTeknologi PETRONAS (UTP), Tronoh, Malaysia, 1-5 (2011).
[49]H. Benelmadjat, B. Boudine, M. Halimi, M. Sebais, Opt. laser technol. 41(5) (2009) 630–633.
[50] Z. Wu, F. Dong, W. Zhao, S. Guo, (2008). J. Hazard. Mater. 157(1) (2008) 57-63.
[51] J. H. Tan, J. C. Sin, and S. M. Lam, IOP Conf. Series: Earth Env. Sci. 945 (2021) 12034.
[52] S. Mihai., D. L. Cursaru, D. Matei, et al. Sci Rep 9, (2019) 18798
[53]L. Jiang, S. Fernandez-Garcia, M. Tinoco, Z. Yan, Q Xue, G. Blanco, J. J. Calvino, A. B. Hungria, X. Chen, ACS Appl. Mater. Interfaces 9 (2017) 18595–18608.
[54]T. C. Paul, M.H. Babu, J. Podder, B. C. Dev, S. K. Sen, S. Islam, Phys. B Condens. Matter. 604 (2021) 412618.
[55] H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett. (32) (2003) 772-773.
[56] S.U.M. Khan, M. Al-Shahry, W. B. Ingler, Sci. (297) (2002) 2243-2245.
[57]I. Ellouzi, L. ELayazi, M. Hari, P. Schmitt-Kopplin, L. Laanab, H. Mountacer, S. El Hajjaji, Phys. Chem. News (75) (2015) 60-67.
[58] R. Shan, L. Lu, J. Gu, Y. Zhang, H. Yuan,Y. Chen, B. Luo, Mater. Sci. Semiconduct. Process.114 (2020) 105088.
[59] J. A. Pinedo-Escobar, J. Fan, E. Moctezuma, C. Gomez-Solís, C. J. Carrillo Martinez, E. Gracia-Espino. ACS Omega 6 (2021) 11840-11848.
[60] R. Saravanan, D. Manoj, J. Qin, M. Naushad, F. Gracia, A.F. Lee, M.M. Khan, M.
A. Gracia-Pinilla, Process. Saf. Environ. 120 (2018)339–347.
[61] H. Gu, H. Zhang, X. Zhang, Y. Guo, L. Yang, H. Wu and N. Mao, Catalysts 11 (2021) 12-34.
[62] M. Hasan Khan Neon, M.S. Islam, Environ. Nanotechnol. Monit. Manag.
12 (2019) 100244.
[63] J. H. Shen, H. Y. Chuang, Z. W. Jiang, X. Z. Liu, J. L. Horng, Chemosph. 251 (2020) 126380.
[64] X. Xiong, I.K.M. Yu, L. Cao, D.C.W. Tsang, S. Zhang, Y.S. Ok, Bioresour. Technol. 246 (2017) 254–270.
[65] C. Qin, H. Wang, X. Yuan, T. Xiong, J. Zhang, J. Zhang, Chem. Eng. J. 382 (2020) 122977.
[66]L. Lu, R. Shan, Y. Shi, S. Wang, H. YuanChemosphere 222 (2019) 391–398.
[67]S. V. Kite, A. N. Kadam, D. J. Sathe, S. Patil, S. S. Mali, C. K. Hong, S.-W. Lee, K. M. Garadkar. ACS Omega 6 (2021) 17071-17085.
[68]S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143–150.
[69]A. Sobhani- Eghbali-Arani, Nasab, M. S.M. Hosseinpour-Mashkani, F. Ahmadi, M. RahimiNasrabadi, V. Ameri, Iran. J. Catal. 10 (2018) 91–99.
[70]M. Arunkumar, A.S. Nesaraj, Iran. J. Catal. 10 (2020) 235–245.
[71] F. Soleimani, A. Nezamzadeh-Ejhieh, J. Mater. Res. Technol. 9 (2020) 16237–16251.
[72]S.A. Mirsalari, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 122 (2021) 105455.
[73]M. Samandari, A.T. Manesh, S.A. Hosseini, S. Mansouri, Iran. J. Catal. 11 (2021) 175–180.
[74] A. N. Ejhieh, M. Khorsandi, J. Hazard. Mat. 176 (2010) 629–637
[75] J. Toth, J.coll. inter. Sci. 225 (2000) 378–383.
[76] A. R. Khan, R. Ataullah, A. Al−Haddad, J. Coll. Inter. Sci. 194 (1997) 154–165.
[77] MJ, Valero-Romero, JG, Santaclara, L. Oar-Arteta, L. van Koppen,
DY. Osadchi, et al. Chem. Eng. J. 360 (2019) 75–88
[78]C. Martínez, M. I. Fern andez, J. A. Santaballa, J. Faria, Appl. Catal., B 107 (1-2) (2011) 110-118.
[79] R. Molinari, A. Caruso, L. Palmisano, J. Membr. Sci. Res. 3 (2010) 165-193
[80] J. Lin, L. Wang, C. Sun, 535–537 (2012) 2209–2213.
[81] G.V. Morales, E.L. Shan, R. Cornejo, E.M. Farfan Torres, Lat. Am. Appl. Res., 42 (2012)45–49.
[82] A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakehi, P, J. Ind. Eng. Chem., 21 (2015) 668–676.