Preparation of α-Fe2O3 Nano-photocatalyst supported on Cd(II)-Terephthalic MOF for photocatalytic removal of Cefazolin aqueous solution
محورهای موضوعی : Iranian Journal of CatalysisSeyed Kamal Blourfrosh 1 , Kazem Mahanpoor 2
1 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
2 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
کلید واژه: Photocatalyst, Metal-organic framework, α-Fe2O3, Solid-state distribution, Cefazolin,
چکیده مقاله :
The main purpose of this study was to investigate the photocatalytic decomposition of the antibiotic Cefazolin (CFZ) from aqueous solutions using a new effective catalyst. This catalyst was made of α-Fe2O3-supported nanoparticles on a metal-organic framework (MOF). The synthesis of Nano α-Fe2O3 photocatalyst was performed by the reflux condensation method. The MOF was synthesized using Cadmium nitrate and Terephthalic acid and Nano α-Fe2O3 supported on MOF using a solid-state distribution (SSD) method. FTIR, XRD, SEM, EDX, N2 adsorption-desorption and TGA technique were used for the identification of the catalyst. Analysis of these results revealed that α-Fe2O3 circular nanoparticles bonded together and occupy a large area on the MOF crystal surfaces. The BET surface area and the pore diameter of the catalyst obtained were 479 m2g-1 and 3.86 nm respectively. UV/H2O2 photocatalytic processes were applied for the decomposition of CFZ from aqueous solutions. This process was optimized and modeled using the full factorial method. Initial concentrations of CFZ, pH, α-Fe2O3/MOF amounts and initial concentration of H2O2 were the variables for the determination of optimal conditions and mathematical models. The highest degradation percentage of CFZ in the optimum condition (CFZ=30 ppm, pH=8, H2O2=5ppm, catalyst=150mg.l-1) was 85.88%. This photocatalyst reaction has pseudo-first-order kinetic with a constant rate of 0.0752 min-1 and it also matched the Langmuir–Hinshelwood model.
[1] H. Vera, S. Lúcia, J. Environ. Manage. 92 (2011) 2304-2347.
[2] F. Yuan, C. Hu, X. Hu, J. Qu, M. Yang, Water. Res. 43 (2009) 1766-1774.
[3] I. A. Balcioglu, M. Otker, Chemosphere. 50(1) (2003) 85-95.
[4] M. B Heeb, J. Criquet, S. G. Zimmermann-Steffens, Water. Res. 48 (2014) 15-42.
[5] N. Omrani, A. Nezamzadeh-Ejhieh, J. Water. Proc. Eng. 33 (2020) 101094-101105.
[6] A. Pourtaheri, S. Jiao, S. Zheng, D. Yin, L. Wang, L. Chen, Chemosphere. 73 (2008) 377-382.
[7] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 321 (2017) 629–638
[8] A. Nezamzadeh-Ejhieh, Chem. Eng. Res. Des. 104 (2015) 835-843.
[9] M. Mishra, D. M. Chun, Appl. Catal. A: Gen. 498 (2015) 126-141
[10] A. Norouzi, A. Nezamzadeh-Ejhieh, Physica B: Condensed Matter. 599 (2020) 412422-412431.
[11] M. Zebardast, A. F. Shojaei, K. Tabatabaeian, Iran. J. Catal. 8 (4) (2018) 297-309
[12] M.H. Yap, K. L. Fow, G.Z. Chen, Green. Energ. Environ. 2 (2017) 218–245.
[13] J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wang, Chem. Commun. 48 (2012) 11656–11658.
[14] N. E. Fard, R. Fazaeli, Iranian J. Catal. 8(2) (2018) 133-141
[15] S Ghattavi, A. Nezamzadeh-Ejhieh, Inter. J. Hydrog. Energy. 45 (2020) 24636-24656
[16] S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil, K. Yong, J. Phys. D: Appl. Phys. 43 (2010) 015501-015510.
[17] A. Nezamzadeh-Ejhieh, A. Shirzadi, Chemosphere. 107 (2014) 136–144
[18] B. Alqasem, N. Yahya, S. Qureshi, M. Irfan, Z. U. Rehman, H. Soleimani, Mat. Sci. Eng. B. 217 (2017) 49-62
[19] A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, J. Ind. Eng. Chem. 21 (2015) 668–676
[20] M.B. Bahar Khodadadi, Iran. J. Catal. 6(1) (2016) 37-42
[21] S. D. Khairnar, V. S. Shrivastava, Iran. J. Catal. 8 (2018) 143-150
[22] M. Balakrishnan, R. John, Iran. J. Catal. 10(1) (2020) 1-16
[23] Y. T. Prabhu, K. V. Rao, V. S. S. Kumar, B. S. Kumari, World. J. Nano Sci. Eng. 4 (2014) 21-28.
[24] A. Kusior, K. Michalec, P. Jelen, M. Radecka, Appl. Surf. Sci. 476 (2019) 342-352
[25] T. Tamiji, A. Nezamzadeh-Ejhieh, J. Electroanal. Chem. 829 (2018) 95–105
[26] S. A Hosseini, R. Saeedi, Iran. J. Catal. 7(1) (2017) 37-46
[27] M. Saghi, K. Mahanpoor, Int. J. Ind. Chem. 8 (2017) 297–313
[28] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Photochem. Photobiol. A: Chem. 348 (2017) 68–78
[29] R. Daghrir, P. Drogui, M.A.E. Khakani, Electrochim. Acta. 83 (2012) 113-124.
[30] R. A. French, A. R. Jacobson, B. Kim, S. L. Isley, R. L. Penn, P. C. Baveye, Environ Sci. Technol. 43(5) (2009) 1354-1359.
[32] B. Divband, A. Jodaei, M. Khatmian, Iran. J. Catal. 9 (2019) 63-70
[33] Z. Shams-Ghahfarokhi, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Proc. 39 (2015) 265–275.
[34] S. D. Khairnar, M. R. Patil, V. S. Shrivastava, Iran. J. Catal. 8(2) (2018) 143-150
[35] N. Omrani, A. Nezamzadeh-Ejhieh, J. Photochem. Photobiol. A: Chem. 400 (2020) 112726-112735.
[36] M. Mehrali-Afjani, A. Nezamzadeh-Ejhieh, H. Aghaei, Chem. Phys. Lett. 759 (2020) 137873-137882.
[37] Y. Xiao, X. Song, Z. Liu, R. Li, X. Zhao, Y. Huang, J. Ind. Eng. Chem. 45 (2017) 248-256.
[38] Y.Y. Gurkan, N. Turkten, A. Hatipoglu, Z. Cinar, Chem. Eng. J. 184 (2012) 113-124.
[39] M.R. Samarghandi, A. Rahmani, G. Asgari, G. Ahmadidoost, A. Dargahi, Global. NEST. J. 20 (2018) 399-407.
[40] M. Shokri, G. Isapour, M. A. Behnajady, S. Dorosti, Desalin. Water. Treat. 57(27) (2016) 12874-12881.
[41] M. R. Samarghandi, A. Dargahi, A. Rahmani, G. Asgari, G. Ahmadidoust, J Environ Health Eng. 5(2) (2018) 132-146.