Kinetics investigation of the synthesis reaction of 2,3-dihydroquinazolin-4(1H)-ones in the presence of acetic acid as a catalyst
محورهای موضوعی : Iranian Journal of CatalysisSayeyd Mosatfa Habibi-Khorassani 1 , Malek Taher Maghsoodlou 2 , Mehdi Shahraki 3 , Marjan Hashemi Shahri 4 , Jasem Aboonajmi 5 , Tahere Zarei 6
1 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
2 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
3 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
4 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
5 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
6 - Department of Chemistry
Faculty of Science
University of Sistan and Baluchestan
Zahedan, Iran
P.O. Box: 98135-674
کلید واژه: Catalyst, Kinetics, Mechanism, Green solvent,
چکیده مقاله :
Acetic acid has been applied as an efficient catalyst and a green solvent for the two–component condensation reaction consisting of benzaldehyde, 2-amino-benzamide. The advantages of this protocol was excellent yield, short reaction time, mild reaction conditions, higher availability, low costs, more environmentally friendly, lack of need for column chromatography and simple work-up procedure. In addition, based on the spectral data, the partial order with respect to each reactant was one. Furthermore, useful information regarding the mechanism of the reaction was obtained from studies of the effect of solvent, concentration and catalyst on the rate of the reaction. The results showed that the first step of the mechanism was a rate-determining step. In the studied temperature range, the second order rate constant (lnk1, lnk1/T) depended on reciprocal temperature was in good agreement with the Arrhenius and Eyring equations. These data provided the suitable plots for calculating the activation energy (Ea = 52.80 kJmol-1) and the related kinetic parameters (ΔG‡ = 63.74 kJmol-1, ΔS‡ = -54.22 Jmol-1 and ΔH‡ = 50.28 kJmol-1) of the reaction.
[1] R.O. Dempcy, E.B. Skibo, Biochemistry 30 (1991) 8480-8487.
[2] K. Hattori, Y. Kido, H. Yamamoto, J. Ishida, A. Iwashita, K. Mihara, Bioorg. Med. Chem. Lett. 17 (2007) 5577-5581.
[3] J. Rudolph, W.P. Esler, S. O’Connor, P.D.G. Coish, P.L. Wickens, M. Brands, D.E. Bierer, B.T. Bloomquist, G. Bondar, L. Chen, C. Chuang, T.H. Claus, Z. Fathi, W. Fu, U.R. Khire, J.A. Kristie, X. Liu, D.B. Lowe, A.C. McClure, M. Michels, A.A. Ortiz, P.D. Ramsden, R.W. Schoenleber, T.E. Shelekhin, A. Vakalopoulos, W. Tang, W. Lei, L. Yi, S.J. Gardell, J.N. Livingston, L.J. Sweet, W.H.J. Bullock, J. Med. Chem. 50 (2007) 5202-5216.
[4] J.K. Padia, M. Field, J. Hinton, K. Meecham, J. Pablo, R. Pinnock, B.D. Roth, L. Singh, N. Suman-Chauhan, B.K. Trivedi, L.Webdale, J. Med. Chem. 41 (1998) 1042-1049 .
[5] Y. Xia, Z. Yang, M. Hour, S. Kuo, P. Xia, K.F. Bastow, Y. Nakanishi, P. Nampoothiri, T. Hackl, E. Hamel, K. Lee, Med. Chem. Lett. 11 (2001) 1193-1196.
[6] M.R. Yadav, S.T. Shirude, A. Parmar, R. Balaraman, R. Giridhar, Khim. Geterotsikl. Soedin. 470 (2006) 1198-1205.
[7] T. Singh, S. Sharma, V. K. Srivastava, A. Kumar, Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem. 45 (2006) 25-58.
[8] R.J. Abdel-Jalil, W. Volter, M. Saeed, Tetrahedron Lett. 45 (2004) 3475-3476.
[9] J.F. Liu, J. Lee, A.M. Dalton, G. Bi, L. Yu, C.M. Baldino, E. McElory, M. Brown, Tetrahedron Lett. 46 (2005) 1241-1244.
[10] J.X. Chen, H.Y. Wu, W.K. Su, Chin. Chem. Lett. 18 (2007) 536-538.
[11] A. Shaabani, A. Maleki, H. Mofakham, Synth. Commun. 38 (2008) 3751-3759.
[12] J.A. Moore, G.J. Sutherland, R. Sowerby, E.J. Kelly, S. Palermo, W.J. Webster, J. Org. Chem. 34 (1969) 887-892.
[13] R.J. Abdel-Jalil, W. Voelter, M. Saeed, Tetrahedron Lett. 45 (2004) 3475-3476.
[14] J .Chen, W. Su, H. Wu, M. Liu, C. Jin, Green Chem. 9 (2007) 972-975.
[15] M. Lashkari, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, S.S. Sajadikhah, R. Doostmohamadi, Synth. Commun. 43 (2013) 635-644.
[16] N. Hazeri, M.T. Maghsoodlou, S.M. Habibi-Khorassani, J. Aboonajmi, M. Lashkari, S.S. Sajadikhah, Res. Chem. Intermed. 40 (2014) 1781-1788.
[17] M. Rostamizadeh, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, L. Leishams, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 334-337.
[18] S.M. Habibi-Khorassani, A. Ebrahimi, M.T. Maghsoodlou, O. Asheri, M. Shahraki, N. Akbarzadeh, Y. Ghalandarzehi, Int. J. Chem. Kinet. 45 (2013) 596-612.
[19] M. Shahraki, S.M. Habibi-Khorassani, A. Ebrahimi, M.T. Maghsoodlou, A. Paknahad, Prog. React. Kinet. Mech. 37 (2012) 321-343.
[20] S.M. Habibi-Khorassani, A. Ebrahimi, M.T. Maghsoodlou, M. Zakarianezhad, H. Ghasempour, Z. Ghahghayi, Curr. Org. Chem. 15 (2011) 942-952.
[21] L.M. Schwartz, R.I. Gelb, Anal. Chem. 50 (1978) 1592.
[22] G. Lente, I. Fabian, A.J. Poe, New J. Chem. 29 (2005) 759-760.
[23] J.H. Espenson, Chemical kinetics and mechanisms, 2nd ed., McGraw-Hill, New York, 1995.
[24] A.J. Poe, Mechanisms of inorganic and organometallic reaction, Plenum Press, New York, 1994, p. 220.