Nanomagnetite-Fe3O4 as a highly efficient, green and recyclable catalyst for the synthesis of 4,4´-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s
محورهای موضوعی : Iranian Journal of CatalysisAbdolkarim Zare 1 , Fereshteh Abi 2 , Vahid Khakyzadeh 3 , Ahmad Reza Moosavi-Zare 4 , Alireza Hasaninejad 5 , Mahmoud Zarei 6
1 - Department of Chemistry, Payame Noor University, PO BOX 19395-4697, Tehran, Iran.
2 - Department of Chemistry, Payame Noor University, PO BOX 19395-4697, Tehran, Iran
3 - Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
4 - Department of Chemistry, University of Sayyed Jamaleddin Asadabadi, Asadabad 6541835583, Iran
5 - Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran
6 - Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
کلید واژه: 4, Aromatic aldehyde, Nanomagnetite-Fe3O4, Nanomagnetite, 4´-(Arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol), 3-Methyl-1-phenyl-1H-pyrazol-5(4H)-one,
چکیده مقاله :
Nanomagnetite-Fe3O4 is used as a highly efficient, mild, green and recyclable nanomagnetite catalyst for the synthesis of 4,4´-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives in solvent-free conditions. The condensation reaction of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one with aromatic aldehydes affords the title compounds in high yields and short reaction times. The nanocatalyst is reusable for seven times without significant loss of its catalytic activity. Short reaction times, high yields, generality, efficiency, recyclability of the catalyst for seven times, simple purification, clean reaction, and agreement with the green chemistry protocols are some advantages of in this method. the catalyst was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD) and vibrating sample magnetometer (VSM).
[1] J.B. Manley, P.T. Anastas, B.W. Cue Jr, J. Clean Prod. 16 (2008) 743-750.
[2] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York (1998).
[3] K. Tanaka, Solvent-Free Organic Synthesis, Wiley-VCH, GmbH and KGaA, Weinheim (2004).
[4] A. Zare, M. Merajoddin, M.A. Zolfigol, Iran. J. Catal. 3 (2013) 83-90.
[5] A. Hasaninejad, A. Zare, M. Shekouhy, J. Ameri-Rad, Green Chem. 13 (2011) 958-964.
[6] A. Khazaei, M.A. Zolfigol, A.R. Moosavi-Zare, F. Abi, A. Zare, H. Kaveh, V. Khakyzadeh, M. Kazem-Rostami, A. Parhami, H. Torabi-Monfared, Tetrahedron 69 (2013) 212-218.
[7] S. Shylesh, V. Schunemann, W.R. Thiel, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.
[8] V. Polshettiwar, R.S. Varma, Green Chem. 12 (2010) 743-754.
[9] V. Polshettiwar, R.S. Varma, Org. Biomol. Chem. 7 (2009) 37-40.
[10] J. Safari, Z. Zarnegar, Iran. J. Catal. 2 (2012)
121-128.
[11] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M. Basset, Chem. Rev. 111 (2011) 3036-3075.
[12] M. Ma, Q. Zhang, D. Yin, J. Dou, H. Zhang, H. Xu, Catal. Commun. 17 (2012) 168-172.
[13] V. Polshettiwar, Á. Molnár, Tetrahedron 63 (2007) 6949-6976.
[14] M.A. Zolfigol, V. Khakyzadeh, A.R. Moosavi-Zare, A. Zare, P. Arghavani-Hadi, Z. Mohammadi, M.H. Beyzavi, S. Afr. J. Chem. 65 (2012) 280-285.
[15] L.C. Behr, R. Fusco, C.H. Jarboe, The Chemistry of Heterocyclic Compounds, Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings, Weissberger, A. (Ed.), Interscience Publishers, New York (1967).
[16] D.M. Bailey, P.E. Hansen, A.G. Hlavac, E.R. Baizman, J. Pearl, A.F. Defelice, M.E. Feigenson, J. Med. Chem. 28 (1985) 256-260.
[17] R.N. Mahajan, F.H. Havaldar, P.S. Fernandes, J. Ind. Chem. Soc. 68 (1991) 245-246.
[18] S. Sugiura, S. Ohno, O. Ohtani, K. Izumi, T. Kitamikado, H. Asai, K. Kato, J. Med. Chem. 20 (1977) 80-85.
[19] C.E. Rosiere, M.I. Grossman, Science 113 (1951) 651-651.
[20] B.I. Buzykin, T.I. Lonshchakova, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) (1971) 2224-2226.
[21] A. Hasaninejad, M. Shekouhy, A. Zare, S.M.S. Hoseini Ghattalia, N. Golzar, J. Iran. Chem. Soc. 8 (2011) 411-423.
[22] A. Khazaei, M.A. Zolfigol, A.R. Moosavi-Zare, Z. Asgari, M. Shekouhy, A. Zare, A. Hasaninejad, RSC Adv. 2 (2012) 8010-8013.
[23] A.R. Moosavi-Zare, M.A. Zolfigol, M. Zarei, A. Zare, V. Khakyzadeh, A. Hasaninejad, Appl. Catal. A 467 (2013) 61-68.
[24] D. Singh, D. Singh, J. Chem. Eng. Data 29 (1984) 355-356.
[25] A. Hasaninejad, A. Zare, M. Shekouhy, N. Golzar, Org. Prep. Proced. Int. 43 (2011) 131-137.
[26] W. Wang, S.-X. Wang, X.-Y. Qin, J.-T. Li, Synth. Commun. 35 (2005) 1263-1269.
[27] B. Sadeghi, M. Ghorbani Rad, Iran. J. Catal. 4 (2014) 67-70.
[28] M.N. Elinson, A.S. Dorofeev, R.F. Nasybullin, G.I. Nikishin, Synthesis (2008) 1933-1937.
[29] S. Qu, H. Yang, D. Ren, S. Kan, G. Zou, D. Li, M. Li, J. Colloid Interface Sci. 215 (1999) 190-192.
[30] S. Tayebi, K. Niknam, Iran. J. Catal. 2 (2012), 69-74.
[31] E. Mosaddeghi, A. Hassankhani, A. Baghizadeh, J. Chil. Chem. Soc. 55, (2010) 419-420.
[32] Z. Karimi-Jaberi, B. Pooladian, M. Moradi, E. Ghasemi, Chin. J. Catal. 33 (2012)1945-1949.
[33] S. Tayebi, M. Baghernejad, D. Saberi, K. Niknam, Chin. J. Catal. 32 (2011)1477-1483.
[34] A. Zare, M. Merajoddin, A. R. Moosavi‐Zare, M. Zarei, Chin. J. Catal. 35 (2014) 85-89.