Enhanced removal of methylene blue dye by bimetallic nano-sized MOF-5s
محورهای موضوعی : Iranian Journal of CatalysisMahshid Zebardast 1 , Abdollah Fallah Shojaei 2 , Khalil Tabatabaeian 3
1 - Department of Chemistry, University of Guilan, Rasht, P.O. Box: 4193833697, Iran.
2 - Department of Chemistry, University of Guilan, Rasht, P.O. Box: 4193833697, Iran.
3 - Department of Chemistry, University of Guilan, Rasht, P.O. Box: 4193833697, Iran.
کلید واژه: photocatalyst, Methylene blue, MOF-5, Bimetallic metal-organic frameworks, Electron acceptor,
چکیده مقاله :
Metal-organic framework 5 (MOF-5) and bimetallic MOF-5s (Co/Zn and Ni/Zn) were prepared via a simple solvothermal method. Samples were characterized by various techniques such as powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (DRS), inductively coupled plasma (ICP) and elemental analysis (EA). Photocatalytic decolorization of methylene blue (MB) dye in the aqueous solutions was examined under UV and visible light irradiation. The degradation of MB solutions was calculated by changes in the UV–Vis absorbencies of the aqueous solutions at λmax = 664 nm. The influence of various parameters such as the catalyst loading, dye concentration, initial pH of the dye solution and adding electron acceptors (H2O2, tert-Butyl hydroperoxide (TBHP), KBrO3, KIO4 and (NH4)2S2O8) on the degradation reaction was studied. Moreover, metal doping can improve the photocatalytic activity of MOF-5 due to the synergistic effect, narrow band gap and so on. The results show that Co/Zn-MOF-5 photocatalyst exhibited better photocatalytic activitythan Ni/Zn-MOF-5 and raw MOF-5 for MB decolorization under UV and visible light irradiation. Furthermore, adding different electron acceptors, except TBHP, enhanced the photocatalytic performance of photocatalysts with a different rate. Also, kinetic studies revealed that the reactions follow pseudo-first-order. Additionally, bimetallic MOF-5s did not show obvious activity reduction in MB decolorization during five recycling usages.
[1] S.K. Ling, S. Wang, Y. Peng, J. Hazard. Mater. 178 (2010) 385–389.
[2] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44 (2010) 2997–3027.
[3] A. Buthiyappan, A.R. Abdul Aziz, W.M.A. Wan Daud, Rev. Chem. Eng. 32 (2016) 1–47.
[4] A. Nezamzadeh-Ejhieh, M. Khorsandi, J. Hazard. Mater. 176 (2010) 629–637.
[5] S. Subudhi, D. Rath, K.M. Parida, Catal. Sci. Tech. (2018).
[6] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A: Chem. 426 (2016) 158-169.
[7] H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, J. Ind. Eng. Chem. 26 (2015) 315-321.
[8] S. Dianat, Iran. J. Catal. 8 (2018) 121–132.
[9] P. Dhiman, M. Naushad, K.M. Batoo, A. Kumar, G. Sharma, A.A. Ghfar, G. Kumar, M. Singh, J. Cleaner Prod. 165 (2017) 1542-1556.
[10] M. Pirhashemi, A. Habibi-Yangjeh, J. Photochem. Photobiol. 363 (2018) 31–43.
[11] M.H. Yap, K.L. Fow, G.Z. Chen, Green Energy Environ. 2 (2017) 218–245.
[12] Z. Sun, G. Li, Y. Zhang, H.O. Liu, X. Gao, Catal. Commun. 59 (2015) 92–96.
[13] J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wang, Chem. Commun. 48 (2012) 11656–11658.
[14] C.G. Silva, A. Corma, H. García, J. Mater. Chem. 20 (2010) 3141-3156.
[15] H.R. Pouretedal, M. Ahmadi, Iran. J. Catal. 3 (2013) 149–155.
[16] A.B. Ghomi, V. Ashayeri, Iran. J. Catal. 2 (2012) 135–140.
[17] A. Nezamzadeh-Ejhieh, M. Khorsandi, Iran. J. Catal. 1 (2011) 99–104.
[18] M.H. Habibi, E. Askari, Iran. J. Catal. 1 (2011) 41–44.
[19] S.A. Hosseini, R. Saeedi, Iran. J. Catal. 7 (2017) 37–46.
[20] N.E. Fard, R. Fazaeli, Iran. J. Catal. 8 (2018) 133–141.
[21] M. Alvaro, E. Carbonell, B. Ferrer, F.X. Llabrés I Xamena, H. Garcia, Chem. Eur. J. 13 (2007) 5106–5112.
[22] H. Yang, X.-W. He, F. Wang, Y. Kang, J. Zhang, J. Mater. Chem. 22 (2012) 21849–21851.
[23] M.C. Das, H. Xu, Z. Wang, G. Srinivas, W. Zhou, Y.-F. Yue, V.N. Nesterov, G. Qian, B. Chen, Chem. Commun. 47 (2011) 11715-11717.
[24] I. Ahmed, Z. Hasan, N.A. Khan, S.H. Jhung, Appl. Catal. B 129 (2013) 123–129.
[25] I. Ahmed, N.A. Khan, Z. Hasan, S.H. Jhung, J. Hazard. Mater. 250–251 (2013) 37–44.
[26] I. Ahmed, N.A. Khan, S.H. Jhung, Inorg. Chem. 52 (2013) 14155–14161.
[27] S.-H. Huo, X.-P. Yan, J. Mater. Chem. 22 (2012) 7449–7455.
[28] M.M. Tong, D.H. Liu, Q.Y. Yang, S. Devautour-Vinot, G. Maurin, C.L. Zhong, J. Mater. Chem. A 1 (2013) 8534–8537.
[29] E.Y. Park, Z. Hasan, N.A. Khan, S.H. Jhung, J. Nanosci. Nanotechnol. 13 (2013) 2789–2794.
[30] M. Zhou, Y. nan Wu, J. Qiao, J. Zhang, A. McDonald, G. Li, F. Li, J. Colloid Interface Sci. 405 (2013) 157–163.
[31] J.W. Jun, M. Tong, B.K. Jung, Z. Hasan, C. Zhong, S.H. Jhung, Chem. Eur. J. 21 (2015) 347–354.
[32] Z. Hasan, E.-J. Choi, S.H. Jhung, Chem. Eng. J. 219 (2013) 537–544.
[33] T. Welton, Chem. Rev. 99 (1999) 2071–2083.
[34] Y. He, B. Li, M. O’Keeffe, B. Chen, Chem. Soc. Rev. 43 (2014) 5618–5656.
[35] J.A. Botas, G. Calleja, M. Sánchez-Sánchez, M.G. Orcajo, Langmuir 26 (2010) 5300–5303.
[36] C.K. Brozek, M. Dincă, Chem. Sci. 3 (2012) 2110-2113.
[37] R. Sabouni, H. Kazemian, S. Rohani, Chem. Eng. J. 165 (2010) 966–973.
[38] S.M. Sabet, H. Mahfuz, A.C. Terentis, J. Hashemi, B. Boesl, Mater. Lett. 168 (2016) 9–12.
[39] J.M. Yang, Q. Liu, W.Y. Sun, J. Solid State Chem. 218 (2014) 50–55.
[40] L.Y.S. Zhao Z. Li Z, Ind. Eng. Chem. Res. 48 (2009) 10015–10020.
[41] J. Hafizovic, M. Bjørgen, U. Olsbye, P.D.C. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti, K.P. Lillerud, J. Am. Chem. Soc. 129 (2007) 3612–3620.
[42] D. Saha, S. Deng, Z. Yang, J. Porous Mater. 16 (2009) 141–149.
[43] H. Li, W. Shi, K. Zhao, H. Li, Y. Bing, P. Cheng, Inorg. Chem. 51 (2012) 9200–9207.
[44] A. Nezamzadeh-Ejhieh, S. Tavakoli-ghinani, C.R. Chim. 17 (2014) 49-61.
[45] J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38 (2009) 1477–1504.
[46] N. Stock, S. Biswas, Chem. Rev. 112 (2012) 933–969.
[47] L. Zhang, Y.H. Hu, Phys. Lett. A 375 (2011) 1514–1517.
[48] G.R. Desiraju, J. Am. Chem. Soc. 135 (2013) 9952–9967.
[49] M. Nowak, B. Kauch, P. Szperlich, Rev. Sci. Instrum. 80 (2009) 4–7.
[50] P. Wurfel, Physics of solar cells from principles to new concepts, First ed., Wiley-VCH, Weinheim, 2005.
[51] K.K. Tanabe, S.M. Cohen, Chem. Soc. Rev. 40 (2011) 498–519.
[52] J.J. Du, Y.P. Yuan, J.X. Sun, F.M. Peng, X. Jiang, L.G. Qiu, A.J. Xie, Y.H. Shen, J.F. Zhu, J. Hazard. Mater. 190 (2011) 945–951.
[53] A. Eslami, A. Oghazyan, M. Sarafraz, Iran. J. Catal. 8 (2018) 95–102.
[54] X. Li, W. Guo, Z. Liu, R. Wang, H. Liu, Appl. Surf. Sci. 369 (2016) 130–136.
[55] S.E.H. Etaiw, M.M. El-bendary, Appl. Catal. B 126 (2012) 326–333.
[56] N. Bakhtiari, S. Azizian, J. Mol. Liq. 206 (2015) 114–118.
[57] A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Chem. Eng. J. 228 (2013) 631–641.
[58] S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai, G. Jiang, J. Hazard. Mater. 167 (2009) 560–566.
[59] L. Ai, C. Zhang, L. Li, J. Jiang, Appl. Catal. B 148–149 (2014) 191–200.
[60] N. Ajoudanian, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 36 (2015) 162–169.
[61] M. Hossein, N. Talebian, J. Choi, Dyes Pigm. 73 (2007) 103–110.
[62] A. Nezamzadeh-Ejhieh, H. Zabihi-Mobarakeh, J. Ind. Eng. Chem. (2013) 1–11.
[63] Z. Shams-ghahfarokhi, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 39 (2015) 265–275.
[64] S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143–150.