Experimental design study of RB 255 photocatalytic degradation under visible light using synthetic Ag/TiO2 nanoparticles: Optimization of experimental conditions
محورهای موضوعی : Iranian Journal of CatalysisNarges Elmi Fard 1 , Reza Fazaeli 2
1 - Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Chemical Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
کلید واژه: Photocatalytic degradation, Taguchi design, Ag/TiO2 nanoparticles, RB 255,
چکیده مقاله :
In the present study, silver-doped TiO2 (Ag/TiO2) nanoparticles were prepared by various Ag doping (wt%) and a combination of sol-gel and ultrasound irradiation. Ag/TiO2 nanoparticles were characterized by energy-dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Based on the Taguchi method, photocatalytic degradation of (Reactive Blue 255) RB 255 azo dye was examined with Ag/TiO2 nanoparticles under visible light irradiation. Using this method, operation factors such as Ag doping (wt%), pH, mass of catalyst (g) and RB 255 concentration (ppm) were optimized successfully. The results showed that pH, compared to the other factors, plays an important role in the photocatalytic degradation of RB 255 azo dye. The isotherm study Weber-Van Vliet and Fritz-Schlunder (IV) models are the best descriptors of equilibrium behavior. In addition, the kinetic study results indicated that the pseudo first-order has a good agreement with the experimental data.
[1] S. Cheng, D.L. Oatley, P.M. Williams, C.J. Wright, Water Res. 46 (2012) 33-42.
[2] K.V. Radha, V. Sridevi, K. Kalaivani, Bioresour. Technol. 100 (2009) 987-990.
[3] A. Buthiyappan, A.R. Abdul Aziz. W.M. Ashri. W. Daud, Rev. Chem. Eng. 32 (2016) 1-47.
[4] S. Wijannarong, S. Aroonsrimorakot, P. Thavipoke, A. Kumsopa, S. Sangjan, APCBEE Proc. 5 (2013) 279-282.
[5] Q. Wang, J. Li, Y. Bai, X. Lu, Y. Ding, Sh. Yin, H. Huang, H. Ma, F. Wang, B. Su, J. Photochem. Photobiol. B 126 (2013) 47-54.
[6] A. Ehsania, R. Asgari, A. Rostami-Vartoonia, H.M. Shiri, A. Yeganeh-Faal, Iran. J. Catal. 6 (2016) 269-274.
[7] L. Vafayi, S. Gharibe, Iran. J. Catal. 5 (2015) 365-371.
[8] S. Aghdasi, M. Shokri, Iran. J. Catal. 6 (2016) 481-487.
[9] M. Karimi-Shamsabadi. M. Behpour. A. Kazemi Babaheidari. Z. Saberi, J. Photochem. Photobiol. A 346 (2017) 133-143.
[10] J. Yan, K. Wang, H. Xu, J. Qian, W. Liu, X. Yang, H. Li, Chin. J. Catal. 34 (2013) 1876-1882.
[11] L. Zhu, Z. Meng, K. Cho, W. Oh, New Carbon Mater. 27 (2012) 166-174.
[12] A.R. Khataee, M.N. Pons, O. Zahraa, J. Hazard. Mater. 168 (2009) 451-457.
[13] B. Piriti, S. Dhiraj, Sep. Purif. Technol. 85 (2012) 112-119.
[14] A. Rezaee, M.T. Ghaneian, N. Taghavinia, M.K. Aminian, S.J. Hashemian, Environ. Technol. 30 (2008) 233-239.
[15] E. Pelizzetti, Sol. Energy Mater. Sol. Cells 38 (1995) 453-457.
[16] A. Fuerte, M.D. Hernández-Alonso, A.J. Maira, A. Martínez-Arias, M. Fernández-García, J.C. Conesa, J. Soria, Chem. Commun. 24 (2001) 2718-2719.
[17] A.A. Ismail, D.W. Bahnemann, L. Robben, V. Yarovyi, M. Wark, Chem. Mater. 22 (2010) 108-116.
[18] R.S. Juang, S.H. Lin, P.Y. Hsueh, J. Hazard. Mater. 182 (2010) 820–826.
[19] W.W.P. Lai, H.H.H. Lin, A.Y.C. Lin, J. Hazard. Mater. 287 (2015) 133-141.
[20] C.S. Kuo, C.F. Lin, P.K.A. Hong, J. Hazard. Mater. 301 (2016) 137-144.
[21] X. Li, L. Wang, X. Lu, J. Hazard. Mater. 177 (2010) 639-647.
[22] G.G. Lenzi, C.V.B. Fávero, L.M.S. Colpini, H. Bernabe, M.L. Baesso, S. Specchia, O.A.A. Santos, Desalination 270 (2011) 241-247.
[23] S. Angkaew, P. Limsuwan, Procedia Eng. 32 (2012) 649-655.
[24] J. García-Serrano, E. Gómez-Hernández, M. Ocampo-Fernández, U. Pal, Curr. Appl. Phys. 9 (2009)1097-1105.
[25] M.J. Nalbandian, M. Zhang, J. Sanchez, S. Kim, Y.H. Choa, D.M. Cwiertny, N.V. Myung, J. Hazard. Mater. 299 (2015) 141-148.
[26] M. Nasir, S. Bagwasi, Y. Jiao, F. Chen, B. Tian, J. Zhang, Chem. Eng. J. 236 (2014) 388-397.
[27] G. Taguchi, Tables of orthogonal arrays and linear graphs, Maruzen, Tokyo, Japan, 1962.
[28] G. Taguchi, Introduction to Quality Engineering, Asian Productivity Organization, Tokyo, 1990.
[29] P.J. Ross, G. Taguchi, Taguchi Techniques for Quality Engineering, McGraw- Hill, New York, 1988.
[30] N. Elmi Fard, R. Fazaeli, R. Ghiasi. Chem. Eng. Technol. 39 (2016) 149-157.
[31] B.E. Warren, X-rays diffraction, Dover Publications, New York, 1990.
[32] F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, Appl. Catal. B 15 (1998) 147-156.
[33] M. Kilic, Z. Cinar, J. Mol. Struct. Theochem 851 (2008) 263-270.
[34] M. Guedes, J.A. Ferreira, A. Ferro, J. Colloid Interface Sci. 337 (2009) 439-448.
[35] A. Nezamzadeh-Ejhieh, A. Shirzadi, Chemosphere 107 (2014) 136-144.
[36] R. Saadi, Z. Saadi, R. Fazaeli, N. Elmi Fard. Korean J. Chem. Eng. 32. (2015) 787-799.
[37] J. Porter, G. McKay, K. Choy, Chem. Eng. Sci. 54 (1999) 5863-5885.
[38] D.W. Marquardt. J. Soc. Ind. Appl. Math. 11 (1963) 431-441.
[39] A. Kapoor, R.T. Yang, Gas Sep. Purif. 3 (1989) 187-192.