Promoting effects of calcium on the performance of Cu-MgO catalyst in hydrogenation of furfuraldehyde
محورهای موضوعی : Iranian Journal of CatalysisVahid Farzaneh 1 , Samira Shirvani 2 , Samahe Sadjadi 3 , Mohammad Ghashghaee 4
1 - Biomass Conversion Science and Technology (BCST) Division, Iran Polymer and Petrochemical Institute, P.O. Box 14975-115, Tehran, Iran.|
Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran.
2 - Biomass Conversion Science and Technology (BCST) Division, Iran Polymer and Petrochemical Institute, P.O. Box 14975-115, Tehran, Iran.|Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran.
3 - Biomass Conversion Science and Technology (BCST) Division, Iran Polymer and Petrochemical Institute, P.O. Box 14975-115, Tehran, Iran.|Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran.
4 - Biomass Conversion Science and Technology (BCST) Division, Iran Polymer and Petrochemical Institute, P.O. Box 14975-115, Tehran, Iran.|
Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran.
کلید واژه: Heterogeneous catalyst, Hydrogenation, Furfuraldehyde, Furfuryl alcohol, Cu-MgO, Calcium promoter, Biomonomer,
چکیده مقاله :
In the present study, the effects of calcium doping on the performance of the co-precipitated Cu-MgO catalysts prepared with different calcium loadings in the selective hydrogenation of furfuraldehyde were investigated. The results proved that the addition of this promoter had a remarkable impact on the catalytic performance. The conversion of furfuraldehyde enhanced up to 83% and the furfuryl alcohol selectivity remained above 96% over the run length on the promoted Cu-Ca-MgO catalyst. However, the conversion level decreased to 60% after 240 min of operation period which was still superior with respect to the negligible conversion with the non-promoted Cu-MgO catalyst.
[1] H.E. Hoydonckx, W.M. Van Rhijn, W. Van Rhijn, D.E. De Vos, P.A. Jacobs, Furfural and Derivatives, In: Ullmann's Encyclopedia of Industrial Chemistry, Wiley Online Library, 2007.
[2] S. Sitthisa, T. Sooknoi, Y. Ma, P.B. Balbuena, D.E. Resasco, J. Catal. 277 (2011) 1–13.
[3] D. Vargas-Hernández, J.M. Rubio-Caballero, J. Santamaría-González, R. Moreno-Tost, J.M. Mérida-Robles, M.A. Pérez-Cruz, A. Jiménez-López, R. Hernández-Huesca, P. Maireles-Torres, J. Mol. Catal. A: Chem. 383–384 (2014) 106–113.
[4] K. Yan, J. Liao, X. Wu, X. Xie, RSC Adv. 3 (2013) 3853–3856.
[5] R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sadaba, M. Lopez Granados, Energ. Environ. Sci. 9 (2016) 1144–1189.
[6] H. Zhang, C. Canlas, A.J. Kropf, J.W. Elam, J.A. Dumesic, C.L. Marshall, J. Catal. 326 (2015) 172–181.
[7] B.M. Reddy, G.K. Reddy, K.N. Rao, A. Khan, I. Ganesh, J. Mol. Catal. A: Chem. 265 (2007) 276–282.
[8] B.M. Nagaraja, A.H. Padmasri, B. David Raju, K.S. Rama Rao, J. Mol. Catal. A: Chem. 265 (2007) 90–97.
[9] R.S. Rao, R.T.K. Baker, M.A. Vannice, Catal. Lett. 60 (1999) 51–57.
[10] B.M. Nagaraja, V.S. Kumar, V. Shasikala, A.H. Padmasri, B. Sreedhar, B.D. Raju, K.S. Rao, Catal. Commun. 4 (2003) 287–293.
[11] M. Li, Y. Hao, F. Cárdenas-Lizana, M.A. Keane, Catal. Commun. 69 (2015) 119–122.
[12] B.M. Nagaraja, H.P. Aytam, S. Podila, K.H.P. Reddy, B.D. Raju, S.R.R. Kamaraju, J. Mol. Catal. A: Chem. 278 (2007) 29–37.
[13] L. Baijun, L. Lianhai, W. Bingchun, C. Tianxi, K. Iwatani, Appl. Catal. A 171 (1998) 117–122.
[14] S.-P. Lee, Y.-W. Chen, Ind. Eng. Chem. Res. 38 (1999) 2548–2556.
[15] H. Luo, H. Li, L. Zhuang, Chem. Lett. 5 (2001) 404–405.
[16] J. Kijeński, P. Winiarek, T. Paryjczak, A. Lewicki, A. Mikołajska, Appl. Catal. A 233 (2002) 171–182.
[17] R. Rao, A. Dandekar, R.T.K. Baker, M.A. Vannice, J. Catal. 171 (1997) 406–419.
[18] M.J. Burk, T.G.P. Harper, J.R. Lee, C. Kalberg, Tetrahedron Lett. 35 (1994) 4963–4966.
[19] B.M. Nagaraja, V. Siva Kumar, V. Shashikala, A.H. Padmasri, S. Sreevardhan Reddy, B. David Raju, K.S. Rama Rao, J. Mol. Catal. A: Chem. 223 (2004) 339–345.
[20] B.M. Nagaraja, A.H. Padmasri, B.D. Raju, K.S. Rama Rao, Int. J. Hydrogen Energ. 36 (2011) 3417–3425.
[21] S. Mallik, S.S. Dash, K.M. Parida, B.K. Mohapatra, J. Colloid Interf. Sci. 300 (2006) 237–243.
[22] J. Wu, Y. Shena, C. Liu, H. Wang, C. Geng, Z. Zhang, Catal. Commun. 6 (2005) 633–637.
[23] H.V. Lee, J.C. Juan, N.F. Binti Abdullah, R. Nizah MF, Y.H. Taufiq-Yap, Chem. Cent. J. 8 (2014) 30.
[24] D. Liu, D. Zemlyanov, T. Wu, R.J. Lobo-Lapidus, J.A. Dumesic, J.T. Miller, C.L. Marshall, J. Catal. 299 (2013) 336–345.