P-type semiconducting NiO nanoparticles synthesis and its photocatalytic activity
محورهای موضوعی : Iranian Journal of CatalysisAlireza Heidarineko 1 , Azar Bagheri Ghomi 2
1 - Department of Chemistry, Center Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Chemistry, Center Tehran Branch, Islamic Azad University, Tehran, Iran.
کلید واژه: Tetracycline, Catalytic activity, Ponceau 4R, NiO, Ammonia precipitation,
چکیده مقاله :
Nickel oxide (NiO) nano-size powder is synthesized using nickel (II) acetate tetrahydrate, sodium lauryl sulfate (SLS) and ammonia as precursors. Applied surfactant is anionic surfactant. The sample was characterized by FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM). The results obtained confirm the presence of nickel oxide nano-powders produced during chemical precipitation. Evaluation of the catalytic activity of developed nano-NiO particles were carried out using ultraviolet visible spectra. The uv-vis spectra obtained after ultraviolet irradiation in the presence of nickel oxide can indicate the degradation of tetracycline (TC) and dye Acid red -18 (ponceau 4R). The prepared NiO exhibits that 75% of Acid red -18 has been eliminated after 10 min.The results indicate that optimum concentration of NiO catalyst and the best pH for the degradation of AR were 0.5 g L-1 and pH 7, respectively. The best TC degradation results were obtained with 2 g L−1of the photocatalyst at pH 11.
[1] R. Chauhan, A. Kumar, R.P. Chaudhary, Spectrochim. Acta Part A 113 (2013) 250–256.
[2] S. Pereiran, A. Gonçalves, N. Correia, J. Pinto, L. Pereira, Rodrigo Martins, Sol. Energy Mater. Sol. Cells 120 (2014) 109–115.
[3] T. Xie, G. Liu, B. Wen, J.Y. Ha, N.V. Nguyen, A. Motayed, R. Debnath, ACS Appl. Mater. Interfaces 3 (2015) 9660–9667.
[4] H. Steinebach, S. Kannan, L. Rieth, F. Solzbacher, Sens. Actuators B 151 (2010) 162–168.
[5] A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Appl. Catal. A 477 (2014) 83–92.
[6] M. Razuc, M. Garrido, Y.S. Caro, C.M. Teglia, H.C. Goicoechea, B.S. Fernandez Band, Spectrochim. Acta A 106 (2013) 146–154.
[7] S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song and J.H. Jang, ACS Appl. Mater. Interfaces 5 (2013)1596–1603.
[8] SK. Meher, P. Justin, G.R. Rao, ACS Appl. Mater. Interfaces 3 (2011) 2063–2073.
[9] K.K. Purushothaman, I.M. Babu, B. Sethuraman, G. Muralidharan, ACS Appl. Mater. Interfaces 5 (2013) 10767–10773.
[10] H. Gao, D. Gao, J. Zhang, Z. Zhang, G. Yang, Z. Shi, J. Zhang, Z. Zhu, D. Xue, Micro Nano Lett. 7 (2012) 5-8.
[11] N.N. Mallikarjuna, A. Venkataraman, Talanta 60 (2003)139-147
[12] N.N. Mallikarjuna, B. Govindraj, L. Arunkumar, A. Venkataraman, J. Therm. Anal. Cal. 71 (2003) 915-926.
[13] A. Venkataraman, V.A. Hiremath, S.K. Date, S.M. Kulkarni, Bull. Mater. Sci. 24 (2001) 617-621.
[14] X. Zhang, W. Shi, J. Zhu, W. Zhao, Nano Res. 3 (2010) 643-652.
[15] L. Lu, Y. Xue, W. Jianbo, Z. He, H. Xiaoyan, T. Yiwen, J. Phys. Chem. C 116 (2012) 14638-14643.
[16] M. Mukhlish, B. Zobayer, M. Mahmudul Huq, K. Ferdous, M.M. Salatul Islam, K.M. Rahman, M. Akhtarul Islam, Int. Res. J. Environ. Sci. 2 (2013)
49-53.
[17] T.F. Ahmad, S. Manderia, K. Manderia, Int. Res. J. Environ. Sci. 1 (2012) 41-45.
[18] Y. Jia, C. Liu, R. Li, J. Magn. 21 (2016) 46-50.
[19] R. Daghrir, P. Drogui, Environ. Chem. Lett. 11 (2013) 209–227.
[20] A. Bagheri, V. Ashayeri, Iran. J. Catal. 2 (2012) 135-140.
[21] A. Bahranifard, Iran. J. Catal. 1 (2011) 45-50.
[22] M.H. Khan, H. Bae, J.Y. Jung, J. Hazard. Mater. 181 (2010) 659–665.
[23] K.S. Tay, N.A. Rahman, M.R. Bin Abas, Int. J. Environ. Sci. Technol. 10 (2013) 103–112.
[24] S. Azimi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A 408 (2015) 152–160.
[25] H. Chen, H. Luo, Y. Lan, T. Dong, B. Hu, Y. Wang, J. Hazard. Mater 192 (2011) 44–53.
[26] C.S. Turchi, D.F. Oills, J. Catal 122 (1990) 178-192.
[27] G. Zhou, D.W. Wang, L.C. Yin, N. Li, F. Li, H.M. Cheng, ACS Nano 6 (2012) 3214-3223.
[28] D.T. Dam, J.M. Lee, Electrochim. Acta 108 (2013) 617–623
[29] S. Aghdasi, M. Shokri, Iran. J. Catal. 6 (2016) 481-487.
[30] C.C. Wong, W. Chu, Chemosphere 50 (2003) 981–987.
[31] J. Lea, A.A. Adesina, J. Photochem. Photobiol. A 118 (1998) 111–122.
[32] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 478–487.
[33] Z. Zamora, Chemosphere 40 (2000) 443-440.
[34] B. Neppolian, M.V. Shankar, V. Murugesan, J. Sci. Ind. Res. 61 (2002) 224-230.
[35] Y. Wang, H. Zhang, J. Zhang, C. Lu, Q. Huang, J. Wu, F. Liu, J. Hazard. Mater 192 (2011) 35-43.