Comparative polyphenol contents, free radical scavenging properties and effects on adipogenesis of Chorisia Chodatii and Chorisia Speciosa
محورهای موضوعی : مجله گیاهان داروییجون رفعت 1 , ثمر یهیا دسوکی 2 , محمد احمد رامادان 3 , محمد صالح کامل 4 , جونکیو هان 5 , هیرکو ایسودا 6
1 - گروه داروسازی، دانشکده داروسازی، دانشگاه Minia، مصر
2 - گروه داروسازی، دانشکده داروسازی، دانشگاه Minia، مصر
3 - گروه داروسازی، دانشکده داروسازی، دانشگاه Assiut، مصر
4 - گروه داروسازی، دانشکده داروسازی، دانشگاه Minia، مصر
5 - اتحادیه تحقیقات شمال آفریقا (ARENA)، دانشگاه تسوکوبا، تسوکوبا، ژاپن.
دانشکده تحصیلات تکمیلی زندگی و علوم محیط زیست، دانشگاه تسوکوبا، تسوکوبا، ژاپن
6 - اتحادیه تحقیقات شمال آفریقا (ARENA)، دانشگاه تسوکوبا، تسوکوبا، ژاپن.
دانشکده تحصیلات تکمیلی زندگی و علوم محیط زیست، دانشگاه تسوکوبا، تسوکوبا، ژاپن
کلید واژه: Antioxidant, Polyphenols, Adipogenesis, Bombacaceae, Chorisia, 3T3-L1 cells,
چکیده مقاله :
Background & Aim: Chorisia is an important Bombacaceous plant that is traditionally used for a variety of ailments. Due to its richness in several bioactive phytocompounds, some Chorisia species showed a wide range of important biological effects. Accordingly, the present work was undertaken to comparatively evaluate the antioxidant potential and effects on adipogenesis of Chorisia chodatii Hassl. and Chorisia speciosa A. St.-Hil. in relation to their phenolic contents. Experimental: Total polyphenol contents and free radical scavenging potentials of the total ethanol extracts of leaves, flowers, fruits and seeds of both species, in addition to four main fractions of their leaf and flower extracts, were evaluated using the Folin-Ciocalteu's method and the DPPH assay, respectively. Besides, their effects on adipogenesis were studied using the 3T3-L1 preadipocytes model. A phytochemical screening of their different phytoconstituents was also considered. Results & Discussion: Total ethanol extracts along with their successive fractions of various parts of both species caused a concentration-dependent induction of 3T3-L1 preadipocytes differentiation, but with a noticeable reduction of the size of the lipid droplets at the lower concentrations 5 and 10 µg/ml. In addition, these extracts showed a strong evidence of their richness in free radical scavengers. The ethyl acetate, aqueous and chloroform fractions of different plant parts exhibited the greatest effects on adipogenesis, substantial free radical scavenging properties and the highest polyphenol contents, respectively. Industrial and practical recommendations: Results collectively revealed that the observed effects of both Chorisia species on adipogenesis as well as their anti-radical properties are positively related to their pool of flavonoids and other phenolics. They also suggest their potential value in obesity-related disorders and for prevention of free radical mediated diseases. Further studies for investigating the molecular basis of their effects on adipogenesis accompanied by detailed phytochemical analysis, especially of their polar and flavonoids-rich extracts, will also be strongly recommended.
مقدمه و هدف: Chorisia گیاهی مهم از خانواده Bombacaceae است که به طور سنتی برای انواع بیماریها استفاده می شود. با توجه به غنی بودن آن از نظر برخی از ترکیبات فیتوشیمیایی زیست فعال، برخی از گونه های Chorisia طیف گسترده ای از اثرات مهم بیولوژیکی را نشان داده اند. بر این اساس، در مطالعه حاضر، به مقایسه پتانسیل آنتی اکسیدانی و اثرات آن بر آدیپوژنز در دو گونهChorisia chodatii و Chorisia speciosa بر اساس مقدار ترکیبات فنولی موجود در آنها پرداخته شده است. روش تحقیق: کل ترکیبات فنلی و پتانسیل مهار رادیکالهای آزاد در عصاره الکلی برگ، گل، میوه و دانه در دو گونه ذکر شده، و فراکشنهای اصلی در عصاره برگ و گل، به ترتیب با استفاده از روش فولین سیوکالتیو و DPPH مورد بررسی قرار گرفتند. به علاوه تاثیر آنها بر آدیپوژنز در مدل سیستمهای آدیپوسیتهای 3T3-L1 مورد ارزیابی قرار گرفت و بررسی ترکیبات مختلف فیتوشیمیایی آن نیز در نظر گرفته شد. نتایج و بحث: کل عصاره اتانولی همراه با فراکشن های به دست آمده از قسمتهای مختلف در هر دو گونه، باعث القای تمایز وابسته به غلظت در آدیپوسیتهای 3T3-L1 شد ولی در کمترین غلظت (µg/ml 10-5) باعث کاهش قابل توجه در اندازه ذرات چربی شد. به علاوه این عصاره ها تاثیرات قوی بر مهار رادیکالهای آزاد از خود نشان دادند. فراکشن های به دست آمده از بخشهای مختلف گیاه با استفاده از اتیل استات، آب و کلروفرم به ترتیب بیشترین تاثیر بر آدیپوژنز، مهار رادیکالهای آزاد و بیشترین مقدار ترکیبات فنلی را نشان دادند. توصیه های کاربردی/ صنعتی: نتایج به دست آمده در مجموع نشان داد که تاثیر هر دو گونه Chorisia بر آدیپوژنز و رادیکالهای آزاد ناشی از میزان قابل توجه فلاونوئیدها و ترکیبات فنلی در آنها است. به علاوه نتایج حاکی از ارزش بالقوه این دو گونه در پیشگیری از اختلالات مرتبط با چاقی و بیماریهای مرتبط با رادیکال های آزاد است. مطالعات بیشتر برای بررسی اساس مولکولی تاثیر آنها بر آدیپوژنز همراه با آنالیزهای فیتوشیمیایی دقیق به خصوص در عصاره های غنی از فلاونوئیدها و ترکیبات قطبی پیشنهاد می شود.
Adjanohoun, E.J. 1988. Contribution aux etudes ethnobotaniques et floristiques en Republique Populaire du Congo. ACCT, Paris, p. 605.
Ames, B.N., Gold, L.S. and Willet, W.C. 1995. The causes and prevention of cancer. Proceedings of The National Academy of Sciences USA, 92: 5258-5265.
Ashmawy, A.M., Azab, S.S. and Eldahshan, O.A. 2012. Effects of Chorisia crispiflora ethyl acetate extract on P21 and NF-κB in breast cancer cells. Journal of American Sciences, 8: 965-972.
Bailey, L.H. 1976. Hortus Third: A Concise Dictionary of Plants Cultivated in the United States and Canada. Staff of the L.H. Bailey Hortorium, Cornell University.
Blois, M.S. 1958. Antioxidant determination by the use of stable free radicals. Nature, 181: 1199-1200.
Brand-Williams, W., Cuvelier, M.E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss A-Technology, 28: 25-30.
Chopra, M., Galbraith, S. and Darnton-Hill, I. 2002. A global response to a global problem: The epidemic of over nutrition. Bulletin of World Health Organization, 80: 952-958.
Coussio, J.D. 1964. Isolation of rhoifolin from Chorisia species (Bombacaceae). Experientia, 20: 562.
El-Alfy, T.S., El-Sawi, S.A., Sleem, A. and Moawad, D.M. 2010. Investigation of flavonoidal content and biological activities of Chorisia insignis H.B.K. leaves. Australian Journal of Basic and Applied Sciences, 4: 1334-1348.
Erding, H., Bum, K.J., Pasha, S. and Spiegelman, B.M. 1996. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science, 27: 2100-2103.
Farmer, S.R. 2005. Regulation of PPARγ activity during adipogenesis. International Journal of Obesity, 29: 13-16.
Farmer, S.R. 2006. Transcriptional control of adipocyte formation. Cell Metabolism, 4: 263-273.
Farmer, S.R. and Auwerx, I. 2004. Adipose tissue: new therapeutic targets from molecular and genetic studies: IASO stock conference 2003 report. Obesity Research, 5: 189-196.
Goto, T., Teraminami, A., Lee, J.Y., Ohyama, K., Funakoshi, K., Kim, Y.I., Hirai, S., Uemura, T., Yu, R., Takahashi, N. and Kawada, T. 2012. Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice. Journal of Nutrition and Biochemistry, 23: 768-776.
Grimble, R.F. 1994. Nutritional anti-oxidants and the modulation of inflammation: Theory and practice. New Horizons, 2: 175-185.
Hafez, S.S., Abdel-Ghani, A.E. and El-Shazly, A.M. 2003. Pharmacognostical and antibacterial studies of Chorisia speciosa St. Hil. flower (Bombacaceae). Mansoura Journal of Pharmaceutical Sciences, 19: 40-43.
Hassan, A.A. 2009. Phytochemical and biological investigation of certain plants containing pigments. A Thesis for the Doctor Degree submitted to Faculty of Pharmacy, Mansoura University, Egypt.
Huxley, A. 1992. Dictionary of Gardening: The New Royal Horticultural Society. The Macmillan Press Limited, London, the Stockton Press, New York.
Inaguma, T., Han, J. and Isoda, H. 2011. Improvement of insulin resistance by cyanidin-3-glucoside, anthocyanin from black beans through the up-regulation of GLUT4 gene expression. BMC Proceedings, 5: 21.
Ito, N., Hagiwara, A., Shibata, O., Ogiso, T. and Fukushima, A. 1982. Induction of squamous cell carcinoma in the fore stomach of F344 rats treated with butylated hydroxyanisole. Gann, 73, 332-334.
Johnson, P.R. and Greenwood, M.R.C. 1988. The adipose tissue. In: cell and tissue biology: A Textbook of Histology. In: Weiss, L., (Ed.), Sixth ed. Urban and Schwarzenberg, Baltimore, MD, pp. 191-209.
Kaur, G.J. and Arora, D.S. 2009. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complementary and Alternative Medicines, 9: 1-10.
Kirkland, J.L., Hollenberg, C.H. and Gillon, W.S. 1990. Age, anatomic site, and the replication and differentiation of adipocyte precursors. American Journal of Physiology, 258 (2 Pt 1): C206-210.
Lee, W.J., Koh, E.H., Won, J.C., Kim, M.S., Park, J.Y. and Lee, K.U. 2005. Obesity: the role of hypothalamic AMP-activated protein kinase in body weight regulation. International Journal of Biochemistry and Cell Biology, 37: 2254-2259.
Lefterova, M.I. and Lazar, M.A. 2009. New developments in adipogenesis. Trends in Endocrinology and Metabolism, 20: 107-114.
Lister, E. and Wilson, P. 2001. Measurement of total phenolics and ABTS assay for antioxidant activity (personal communication), Crop Research Institute, Lincoln, New Zealand.
Miller, N. and Rice-Evans, C. 1997. Factors influencing the antioxidant activity determined by the ABTS radical cation assay. Free Radical Research, 26: 195-198.
Newman, D.J. and Cragg, G.M. 2007. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70: 461-477.
Ngounou, F.N., Melia, A.L., Lontsia, D., Sondengama, B.L., Rahman, A.U., Choudharyb, M.I., Malik, S. and Akhtar, F. 2000. New isoflavones from Ceiba pentandra. Phytochemistry, 54: 107-110.
Otto, T.C. and Lane, M.D. 2005. Adipose development: from stem cell to adipocyte. Critical Reviews in Biochemistry and Molecular Biology, 40: 229-242.
Pietta, P.G. 2000. Flavonoids as antioxidant. Journal of Natural Products, 63: 1035-1042.
Polterait, O. 1997. Antioxidants and free-radical scavengers of natural origin. Current Organic Chemistry, 1: 415-422.
Rao, Y.K., Lee, M-J., Chen, K., Lee, Y-C., Wu, W.S. and Tzeng, Y-M. 2011. Insulin-mimetic action of rhoifolin and cosmosiin isolated from Citrus grandis (L.) Osbeck leaves: enhanced adiponectin secretion and insulin receptor phosphorylation in 3T3-L1 cells. Evidence-Based Complementary and Alternative Medicine, 624375: 1-9.
Ratty, A.K., Sunamoto, J. and Das, N.P. 1988. Interaction of flavonols with 1,1-diphenyl-2-picrylhydrazyl free radical, liposomal membranes and soybean lipoxyegenase-1. Biochemical Pharmacology, 37: 989-995.
Ravenna, P. 1998. On the identity, validity and actual placement in Ceiba of several Chorisia species (Bombacaceae) and description of two new South American species. Oniro, 3: 42-51.
Refaat, J., Desoky, S.Y., Ramadan, M.A. and Kamel, M.S. 2013. Bombacaceae: A phytochemical review. Pharmaceutical Biology, 51: 100-130.
Roh, C. and Jung, U. 2012. Screening of crude plant extracts with anti-obesity activity. International Journal of Molecular Sciences, 13: 1710-1719.
Scogin, R. 1986. Reproductive phytochemistry of Bombacaceae: floral anthocyanins and nectar constituents. Aliso, 11: 377-385.
Slinkard, K. and Singleton, V.L. 1977. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49-55.
Tominaga, H., Kobayashi, Y., Goto, T., Kasemura, K. and Nomura, M. 2005. DPPH radical-scavenging effect of several phenylpropanoid compounds and their glycoside derivatives. Yakushigaku zasshi- The Pharmacological Society of Japan, 125: 371-375.
Trease, E.G. and Evans, W.C. 1989. Textbook of Pharmacognosy. Third ed., Bailliere Tindal, London, pp. 81-90, 268-298.
Wagner, H. and Bladt, S. 1996. Plants Drug Analysis: A Thin Layer Chromatography Atlas. Second ed., Springer, Berlin, pp. 306-364.
Yun, J.W. 2010. Possible anti-obesity therapeutics from nature- A review. Phytochemistry, 71: 1625-1641.