Methanol leaf extract of Albizia chevalieri Harms possesses anticonvulsant activity in acute and chronic models of epilepsy
محورهای موضوعی : مجله گیاهان داروییاحمد دنبالا 1 , بیلکیسو میها 2 , نوهو دانجوما 3 , عبداله نظیفی 4
1 - گروه فارماکولوژی و سم شناسی ، دانشگاه ایالتی کادونا ، کادونا ، نیجریه
2 - گروه فارماکولوژی و درمانی ، دانشکده علوم دارویی ، دانشگاه احمدو بلو ، زریا - نیجریه
3 - گروه داروسازی و درمانی ، دانشکده علوم دارویی ، دانشگاه احمدو بلو ، زریا-نیجریه
4 - گروه داروسازی و درمانی ، دانشگاه Bayero ، کانو ، نیجریه
کلید واژه: Picrotoxin, Albizia chevalieri, Anti-epileptogenic, Kindling, Pentylenetetrazole,
چکیده مقاله :
Background & Aim:Albizia chevalieriHarms (Mimosaceae) is widely used in traditional medicine to treat various kinds of diseases such as epilepsy, diabetes mellitus, hemorrhoids, asthma, leprosy and gonorrhoea. The effectiveness of its leaf extract in the management of epilepsy is widely acclaimed among communities in northern Nigeria. This study aimed at evaluating the anticonvulsant effects of methanol leaf extract ofA. chevalieriusing acute and chronic models of epilepsy. Experimental:Median lethal dose (LD50) of the extract was determined in chicks, mice and rats via intraperitoneal route. Anticonvulsant screening of the extract was performed using maximal electroshock-induced seizure test in day-old chicks; Pentylenetetrazole (PTZ)-, picrotoxin- and 4-aminopyridine-induced seizure models in mice. Similarly, its effects on pentylenetetrazole-induce kindling in rats was evaluated. Results:Intraperitoneal LD50values of the extract were estimated to be 1200, 1130 and 2150 mg/kg in chicks, mice and rats, respectively. The extract provided a dose dependent protection and significantly (P<0.01) increased in the mean onset of seizures induced by PTZ. At 300 mg/kg, it also offered 66.67 and 50% protection against picrotoxin- and 4-aminopyridine-induced seizures, respectively. The extract reduced the severity of seizure episodes induced by sub-convulsive doses of PTZ. The reduction was significant (P<0.01) at 75 and 300 mg/kg on day 11 when seizure score 5 was reached. These findings suggest thatA.chevalierileaf extract possessesanticonvulsant and antiepileptogenic properties. Recommended applications/industries:The anticonvulsant properties ofA.chevalierican be applied in the treatment of epilepsy
Background & Aim:Albizia chevalieri Harms (Mimosaceae) is widely used in traditional medicine to treat various kinds of diseases such as epilepsy, diabetes mellitus, hemorrhoids, asthma, leprosy and gonorrhoea. The effectiveness of its leaf extract in the management of epilepsy is widely acclaimed among communities in northern Nigeria. This study aimed at evaluating the anticonvulsant effects of methanol leaf extract of A. chevalieri using acute and chronic models of epilepsy. Experimental: Median lethal dose (LD50) of the extract was determined in chicks, mice and rats via intraperitoneal route. Anticonvulsant screening of the extract was performed using maximal electroshock-induced seizure test in day-old chicks; Pentylenetetrazole (PTZ)-, picrotoxin- and 4-aminopyridine-induced seizure models in mice. Similarly, its effects on pentylenetetrazole-induce kindling in rats was evaluated. Results: Intraperitoneal LD50 values of the extract were estimated to be 1200, 1130 and 2150 mg/kg in chicks, mice and rats, respectively. The extract provided a dose dependent protection and significantly (P<0.01) increased in the mean onset of seizures induced by PTZ. At 300 mg/kg, it also offered 66.67 and 50% protection against picrotoxin- and 4-aminopyridine-induced seizures, respectively. The extract reduced the severity of seizure episodes induced by sub-convulsive doses of PTZ. The reduction was significant (P<0.01) at 75 and 300 mg/kg on day 11 when seizure score 5 was reached. These findings suggest that A.chevalieri leaf extract possessesanticonvulsant and antiepileptogenic properties. Recommended applications/industries: The anticonvulsant properties of A.chevalieri can be applied in the treatment of epilepsy
Aliyu, B.A., Musa, A.M., Ibrahim, M.A., Ibrahim, H. and Oyewale, A.O. 2009. Preliminary phytochemical screening and antioxidant activity of leaf extract of Albizi achevalieri. Bayero Journal of Pure and Applied Sciences, 2(1): 149-153.
Amoateng, P., Woode, E. and Kombian, S.B. 2012. Anticonvulsant and related neuropharmacological effects of the whole plant extract of Synedrella nodiflora (L.) Gaertn (Asteraceae). Journal of Pharmaceutical and Bioallied Sciences, 4:140-148.
Arora, T., Mehta, A.K., Sharma, K.K., Mediratta, P.K., Banerjee, B.D., Garg, G.R. and Sharma, A.K. 2010. Effect of Carbamazepine and Lamotrigine on cognitive function and oxidative stress in brain during chemical epileptogenesis in rats. Basic Clinical Pharmacology and Toxicology, 106: 372-377.
Banach, M. and Borowicz, K.K. 2015. Effects of chronic lamotrigine administration on maximal electroshock- induced seizures in mice. CNS and Neurological Disorders - Drug Targets, 14(7):855-862.
Burkill, H.M. 1995. The useful plants of west tropical Africa. Vol. 3. Royal Botanical Gardens, pp. 207-208.
Chindo, B.A., Anuka, J.A., MvNeil, L., Yaro, A.H., Adamu, S.S., Amos, S., Connelly, W.K., Lees, G. and Gamaniel, K.S. 2009. Anticonvulsant properties of saponins from Ficusplatyphylla. Brain Research Bulletin, 78(6): 276-282.
Cocoran, M.E. and Tesky, G.C. 2009. Characteristics and Mechanisms of Kindling. In: Schwartzkroin, P.A. (Ed.), Encyclopedia of Basic Epilepsy Research, Academic Press, Oxford. pp. 741-746.
Czuczwar, S.J. and Patsalos, P.N. 2001. The new generation of GABA enhancers potential in the treatment of epilepsy. CNS Drugs, 15(5): 339-350.
De Sarro, G., Ferreri, G., Gareri, P., Russo, E., De Sarro, A., Gitto, R. and Chimirri, A. 2003. Comparative anticonvulsant activity of some 2, 3-benzodiazepine derivatives in rodents. Pharmacology Biochemistry and Behavior, 74(3): 595-602.
Evans, W.C. 2009. Trease and Evans’ Pharmacognosy. (16th ed). Elsevier Health Sciences, London, U.K.
Fischer, W., Franke, H., Krügel, U., Müller, H., Dinkel, K., Lord, B., Letavic, M.A., Henshall, D.C. and Engel, T.2016. Critical evaluation of P2X7 receptor antagonists in selected seizure models. PLoS ONE, 11(6): e0156468.
Greenfield Jr. and L.J. 2013. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure, 22: 589-600.
Gupta, Y.K., Veerendra-Kumar, M.H. and Srivastava, A.K. 2003. Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacology, Biochemistry and Behavior, 74:579-585.
Heuzeroth, H., Wawra, M., Fidzinski, P., Dag, R. and Holtkamp, M. 2019. The 4-aminopyridine modelof acute seizures in vitro elucidates efficacy of new antiepileptic drugs. Frontiers in Neuroscience, 13: 677.
Iwu, M.M. 1993. Handbook of African Medicinal Plants: BokaRanton: CRC Press, pp. 32.
Khan, S.A., Bello, B.A., Khan, J.A., Anwar, Y., Mirza, M.B., Qadri, F., Farooq, A., Adam, I.K., Asiri, A.M. and Khan, S.B. 2018. Albizia chevalier based Ag nanoparticles: Anti-proliferation, bactericidal and pollutants degradation performance. Journal of Photochemistry and Photobiology B: Biology, 182: 62-70.
Kobayashi, K., Nishizawa, Y., Sawada, K., Ogura, H. and Miyabe, M. 2008. K+-Channel openers suppress epileptiform activities induced by 4-aminopyridine in cultured rat hippocampal neurons. Journal of Pharmacological Sciences, 108: 517-528.
Lason, W., Chlebicka, M. and Rejdak, K. 2013. Research advances in basic mechanisms of seizures and antiepileptic drug action. Pharmacology Reports, 65(4): 787-801.
Li, B., Wang, L., Sun, Z., Zhou, Y., Shao, D., Zhao, J., Song,Y., Lv, J., Dong, X., Liu, C., Wang, P., Zhang, X. and Cui, R. 2014. The anticonvulsant effects of SR 57227 on pentylenetetrazole-induced seizure in mice. PLoS One. 9(4): e93158.
Loomis, T.A. and Hayes, A.W. 1996. Loomis’s essentials of toxicology. 4th edition, California, Academic press. pp. 17-32.
Lorke, D. 1983. A new approach to practical acute toxicity testing, Archives of Toxicology, 54:275-287.
Löscher, W. 2017. Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochemical Research, 42: 1873-1888.
Malami, S., Idris, A.Y., Yaro, A.H., Anuka, J.A., Hussaini, I.M. and Patel, M.K. 2017. Dichloro-substituted phenyl amino propanamides exhibit anticonvulsant effect and reduce inward sodium ion current (NaV1.6). Egyptian Journal of Basic and Applied Sciences, 4: 168-174.
Malami, S., Kyari, H., Danjuma, N.M., Ya’u, J. and Hussaini, I.M. 2016. Anticonvulsant properties of methanol leaf extract of Laggera aurita Linn. F. (Asteraceae) in laboratory animals. Journal of Ethnopharmacology, 191:301-306.
Mares, P. and Kubova, H. 2006. Electrical stimulation induced model of seizures and Epilepsy. Pitkanen, A., Schwarzkroin, P.A., Moshe, S.L. (Eds). Elsevier Academic Press, USA, pp. 153-159.
Megiddo, I., Colson, A., Chisholm, D., Dua, T., Nandi, A. andLaxminarayan, R. 2016. Health and economic benefits of public financing of epilepsy treatment in India: An agent-based simulation model. Epilepsia, 57(3): 464-474, 2016, doi: 10.1111/epi.13294
Neni, S.W., Latif, A.Z.A., Wong, S.Y., Lua, P.L. 2010. Awareness, knowledge and attitudes towards epilepsy among rural populations in East Coast Peninsular Malaysia: a preliminary exploration. Seizure, 19(5): 280-290.
Noté, O.P., Messi, L.M., Mbing, J.N., Azouaou, S.A., Sarr, M., Guillaume, D., Muller, C.D., Pegnyemb, D.E. and Lobstein, A. 2017. Pro-apoptotic activity of acylated triterpenoid saponins from the stem bark of Albizia chevalieri Harms. Phytochemistry Letters, 22:95-101.
Rabiei, Z. 2017. Anticonvulsant effects of medicinal plants with emphasis on mechanisms of action. Asian Pacific Journal of Tropical Biomedicine, 7(2):166-172.
Rang, H.P., Ritter, J.M., Flower, R.J. and Henderson, G. 2016. Rang and Dales Pharmacology. 8th edition. Churchill Livingstone, Elsevier science limited, pp. 546-548.
Rathor, N., Arora, T., Manocha, S., Patil, A.N., Mediratta, P.K. and Sharma, K.K. 2013. Anticonvulsant activity of Aloe veraleaf extract in acute and chronic models of epilepsy in mice. Journal of Pharmacy and Pharmacology, 66: 477-485.
Riazi, K., Roshanpour, M., Rafiei-Tabatabaei, N., Homayoun, H., Ebrahimi, F. and Dehpour, A.R. 2006. The proconvulsant effect of sildenafil in mice: role of nitric oxide-cGMP pathway. British Journal of Pharmacology, 147: 935-943.
Rogawski, M.A. and Loscher, W. 2004. The neurobiology of antiepilepticdrugs. Nature Reviews Neuroscience, 5: 553-564.
Ronald, E.E. 2013. A Herbarium of Nigerian Medicinal Plants. Unical Press, Calabar. pp. 36.
Sahranavard, S., Ghafari, S. and Mosaddegh, M. 2014. Medicinal plants used in Iranian traditional medicine to treat epilepsy. Seizure, 23: 328-332.
Saidu, Y., Lawal, M., Isezuo, S.A., Shehu, R.A., Sahabi D.M. and Bilbis, L.S. 2007. Partial purification and elucidation of mechanisms of hypoglycaemic agent of aqueous leaf extract of Albizia chevalieri Harms (Leguminosae). Journal of Pharmacology and Toxicology, 2(6): 513-523.
Saidu, Y., Nwanchukwu, F.C., Bilbis, L.S., Faruk, U.Z. and Abbas, A.Y. 2010. Hypoglycaemic and hypolipidemic effects of root extracts of Albizia chevalieri in Alloxan induced diabetic rats. Nigerian Journal of Basic and Applied Sciences, 18(1):72-78.
Singh, D. and Goel, R.K. 2016. Anticonvulsant mechanism of saponins fraction from adventitious roots of Ficus religiosa: Possible modulation of GABAergic, calcium andsodium channel functions. Revista Brasileira de Farmacognosia, 26(5):579-585.
Swinyard, E.A. and Kupferberg, H.J. 1985. Antiepileptic drugs: detection, quantification and evaluation. Federation Proceedings, 44(10): 2629-2623.
Swinyard, E.A., Woodhead, J.H., White, H.S. and Franklin, M.R. 1989. General Principles: Experimental selection, quantification and evaluation of anticonvulsants. In: Levy, R.H., Mattson, B., Melrum, J.K. and Dreifuss, F.E. (Eds) Antiepileptic Drugs, 3rd edition. Raven Press. New York. pp. 85-103.
Tambe, R., Patil, A., Jain, P., Sancheti, J., Somani, G. and Sathaye, S. 2016. Assessment of Luteolin isolated from Ecliptaalba leaves in animal models of epilepsy. Pharmaceutical Biology, 55(1): 264-268.
Velısek, L. 2017. Models of Generalized Seizures in Freely Moving Animals. New York Medical College, Valhalla, New York, pp. 1-8.
Vogel, G.H. 2008. Psychotrophic and neurotrophic activity. In: Vogel, G.H. (Ed.). Drug discovery and evaluation: Pharmacological assays. 3rd edition, Springer, New York, pp. 566-874.
Wagner, R.G., Bottomley, C., Ngugi, A.K., Ibinda, F., Gómez-Olivé, F.X., Kahn, K., Tollman, S. and Newton, C.R. 2015. Incidence, remission and mortality of convulsive epilepsyin rural northeast South Africa. PLoS One, 10(6): e0129097.
Waller, D.G. and Sampson, A.P. 2018. Medical Pharmacology and Therapeutics (5thed). Elsevier, U.K. pp. 311-323.
Wapa, K.L., Nazifi, A.B. and Malami, S. 2018. Effect of Peristrophebicalyculata leaf extract on oxidative stress enzymes and haematological indices of Pentylenetetrazole-induced kindled rats. Nigerian Journal of Pharmaceutical and Applied Science Research, 7(2): 39-45.
World Health Organization (WHO). Epilepsy Fact Sheet. 2018. Available from: www.who.int/news-room/factsheets.
Yamaguchi, S. and Rogawski, M.A. 1992. Effects of anticonvulsant drugs on 4-aminopyridine induced seizures in mice. Epilepsy Research, 11:9-16.
Yuen, E.S.M. and Troconiz, I.F. 2015. Can pentylenetetrazole and maximal electroshock rodent seizure models quantitatively predict antiepileptic efficacy in humans? Seizure, 24:21-27.
Zhu, H.L., Wan, J.B., Wang, Y.T., Li, B.C., Xiang, C., He, J. and Li, P. 2014. Medicinal compounds with antiepileptic/anticonvulsant activities. Epilepsia, 55(1):3-16.