• List of Articles multi-band

      • Open Access Article

        1 - Circular Polarized Multi-Band Comb Antenna for Wireless and IoT Applications
        Reza Khajeh Mohammad Lou Tohid aribi Tohid Sedghi
        In this research, a new multi-band microporous antenna with circular polarization is introduced for mobile and IoT applications. The applied frequency bands are covered simultaneously by the mentioned antenna, which are WLAN (2400 to 2484 MHz), WiMAX (IEEE 802.16e) 2500 More
        In this research, a new multi-band microporous antenna with circular polarization is introduced for mobile and IoT applications. The applied frequency bands are covered simultaneously by the mentioned antenna, which are WLAN (2400 to 2484 MHz), WiMAX (IEEE 802.16e) 2500 to 2600 MHz, IoT (2400 to 2480 MHz with IEEE 802.11.ax standard, WLAN (5150 to 5825 MHz) which is called IEEE802.11ac standard. The antenna design process for accessing the desired frequency bands is performed step by step in the text of the article. Using the technique of facilitating the rotation of the current on the antenna, the excitation of two orthogonal modes is easily done and as a result, circular polarization is achieved. On the other hand, the circular polarization property is achieved in almost all the applied bands, which is considered as a significant advantage for this radiation system. The overall dimensions of the antenna are 0.8 × 34 ×23 mm3, which is fabricated on the FR4 substrate with a relative dielectric constant of 4.4 and a loss tangent of 0.024. In order to validate the design process, the structure is constructed and tested and measured. The extracted results show that the antenna has a directional radiation pattern and a good gain in the desired frequency bands. Manuscript profile
      • Open Access Article

        2 - Multi-Band Compact MIMO Antenna for New Generations of Mobile Applications & IoT
        Tohid Aribi Tohid Sedghi Reza Khajeh Mohammad Lou
        In this paper, the aim is to cover LTE, band by presenting a new design of multi-input / multi-output radiators an acceptable radiation pattern and gain. The design process in this research is a bipolar radiator with a physical size of 1.6 × 40 × 40 mm3, whe More
        In this paper, the aim is to cover LTE, band by presenting a new design of multi-input / multi-output radiators an acceptable radiation pattern and gain. The design process in this research is a bipolar radiator with a physical size of 1.6 × 40 × 40 mm3, when the port number one is excited, the frequency bands are 0.78-1.07, 2.01-2.67, 3.74-4.7.0.77-7.14, 9.38-10.10 GHz forsecond port. Based on the results, the structure has a good isolation between the two ports. By applying a spiral slit in the span of one and one inverted slit and creating a diagonal state in the corners of the element in the second span of circular polarization in the bands of 0.59-1.01, GHz in the first port in the left direction and 0.58-1.45 GHz is obtained in the second port in a right-handed. This scheme with its charaterestics is good candidate for mobile applications & IOT. Manuscript profile
      • Open Access Article

        3 - Design and Simulation of a Dual-Band Filtering Power Divider Using Stepped Impedance Resonators and present a novel method for generation of transmission zeros
        Mojtaba Mirzaei Mohammad Amin Honarvar
        In this article, a compact power divider with dual-band frequency response, designed and simulated using dual-mode stepped impedance resonators (SIRs) for WLAN application. The resonant frequencies of the proposed stepped impedance resonator are investigated using even- More
        In this article, a compact power divider with dual-band frequency response, designed and simulated using dual-mode stepped impedance resonators (SIRs) for WLAN application. The resonant frequencies of the proposed stepped impedance resonator are investigated using even- and odd-mode analysis for frequency of 2.4 GHz and 5.2 GHz. A new method is presented for feeding the stepped impedance resonators that using the wave cancellation theory to create transmission zeros near the pass bands. Finally, four transmission zeros are generated around the both pass bands to improve the selectivity and out of band isolation. To reducing the circuit size and possibility of the feeding method implementation, two spiral stepped impedance resonators are used to design the filtering power divider. the designed power divider is simulated by HFSS software. The proposed filtering power divider has a miniature size (0.14 λg × 0.15 λg), good isolation between the output ports as well as appropriate operation at the pass bands. Manuscript profile