• Home
  • Staphyloroccos aureus
    • List of Articles Staphyloroccos aureus

      • Open Access Article

        1 - Fabrication and evaluation of (chitosan / poly-vinyl-pyrrolidone) scaffold properties containing gum tragacanth by freeze-drying method
        hamed ghomi Azadeh Sepyani Marjan Mirhaj
        Chitosan as a component of the extracellular matrix is extensively investigated for preparation of porous scaffolds for tissue engineering. In this study, chitosan and (chitosan/polyvinylpyrrolidone) scaffolds as control and (chitosan/polyvinylpyrrolidone) / tragacanth More
        Chitosan as a component of the extracellular matrix is extensively investigated for preparation of porous scaffolds for tissue engineering. In this study, chitosan and (chitosan/polyvinylpyrrolidone) scaffolds as control and (chitosan/polyvinylpyrrolidone) / tragacanth composite scaffolds with 25:75, 50:50, and 75:25 ratios were fabricated by the freeze-drying method. The effect of tragacanth on the structural and antibacterial properties of the samples was evaluated. Surface morphology, mechanical properties, porosity and functional groups on the surface of the samples were evaluated by scanning electron microscopy (SEM), compressive strength test, and FTIR. The results showed the porosity of scaffolds with tragacanth increased in comparison to scaffolds without tragacanth. Biodegradable behavior of the scaffolds was examined by retaining the samples in phosphate buffer solution (PBS) for 14 days and the results showed an increase in the degradation of the (chitosan/polyvinylpyrrolidone) / tragacanth scaffold with the ratio of 75:25. The results showed decreased growth of E.coli and Staphylococcus aureus bacteria in the presence of three-component scaffold with tragacanth. Therefore, according to the results of this study, tragacanth containing scaffolds improve antibacterial properties. Manuscript profile