• Home
  • Single-effect absorption chiller
    • List of Articles Single-effect absorption chiller

      • Open Access Article

        1 - Performance prediction of a steam single-effect absorption chiller by the artificial neural network
        Farshad Panahizadeh Mahdi Hamzehei Mahmood Farzaneh-Gord
        Depending on the temperature and pressure of the heat source, single-effect absorption chillers are categorized in two types of hot water and steam single-effect chillers. Due to the ability to use the waste steam in oil, gas and petrochemical industries for air conditi More
        Depending on the temperature and pressure of the heat source, single-effect absorption chillers are categorized in two types of hot water and steam single-effect chillers. Due to the ability to use the waste steam in oil, gas and petrochemical industries for air conditioning and process cooling purposes, the steam type chiller is more widely used. In this study, the artificial neural network is exploited in the prediction of the steam single-effect absorption chiller performance since it is faster and has lower computational cost compared to thermodynamic modeling methods. The perceptron multilayer neural network with the error backpropagation algorithm, the hyperbolic tangent excitation function and the Levenberg-Marquardt learning method with 15285 data points and also the mean squared error estimation index are used. Inputs of the artificial neural network are the inlet cooling tower water temperature, inlet chilled water temperature, inlet steam temperature, outlet chilled water temperature and the solution heat exchanger efficiency respectively. Also, outputs of the neural network are the coefficient of performance and thermal energy consumption of the chiller. Results of this study show that the artificial neural network is capable to predict the coefficient of performance and the thermal energy consumed by the single-effect absorption chiller while the values of mean squared error are 3.183×10^(-7) and 7.466×10^(-8) respectively which verify the accuracy of the method proposed here in absorption chiller performance prediction. Manuscript profile