• Home
  • Seasonal Precipitation Forecasts
    • List of Articles Seasonal Precipitation Forecasts

      • Open Access Article

        1 - Drought Prediction Using North American Multi-Model Ensemble (NMME) Over Western Regions of Iran
        Mehdi Moghasemi Narges Zohrabi Hossein Fathian Alireza Nikbakht Shahbazi Mohammadreza Yeganegi
        Background and Aim: Drought as a natural hazard significantly impacts various sectors such as agriculture and water resources and causes considerable damage to these sectors worldwide. Therefore, adaptation strategies should be taken to reduce drought damage, and in the More
        Background and Aim: Drought as a natural hazard significantly impacts various sectors such as agriculture and water resources and causes considerable damage to these sectors worldwide. Therefore, adaptation strategies should be taken to reduce drought damage, and in the meantime, planning and adaptation to drought conditions using drought forecasting is one of the most effective strategies. Due to the need for drought forecasting and the limited studies that evaluated drought indicators obtained from the rainfall forecast output from the North American Multi-Model Ensemble (NMME) in Iran. This study evaluated these models in four catchments of Karkheh, Karun, Heleh, and Hindijan-Jarahi for1982-2018.Method: In this study, the monthly output of different NMME ensembles were evaluated in the forecast leads of 0 to 9 months from 1982 to 2018, the SPI drought index was calculated. Comparison of these data with GPCC data was used for evaluation. Three quantitative criteria, including correlation coefficient, RMSE, and BIAS, were used for evaluation. Also, to integrate the existing models, two methods: a: Arithmetic mean between the existing models and B: Weighted average between the models have been evaluated by considering the correlation coefficient (CC) results. Also, two criteria (i.e., POD and FAR) and the quantitative statistical criterion (i.e., correlation coefficient) were used to evaluate the SPI drought index.Results: The results of the precipitation evaluation of the models showed that the integrated models have better performance than the individual models. In this integrated model, the weighted model also had better performance. Evaluation of spatial distribution of precipitation models also showed the excellent performance of NMME models in Karun and Hindijan-Jarahi catchments in the zero-month forecast lead and Hindijan-Jarahi catchments in the one-month forecast lead. The results of drought index evaluation showed that integrated models, although having better performance in precipitation forecasting, but in drought forecasting, the best performance belongs to NASA-GMAO-062012 and CFSv2 models. The results also showed that drought index forecasts in three and six-month periods have better performance than one month. Spatial distribution evaluation also showed that the models perform better in the southern basins. In general, it can be concluded that NMME models have good performance in predicting drought in some places and specific forecast leads, so they should be evaluated at each point before use.Conclusion: The results of precipitation evaluation showed that, in general, integrating the output of dynamic models increases its proficiency, and integration in weighted mode (WeightedNMME) performs better than the non-weighted model (NMME). According to the zero-month forecast among individual models, the NASA-GMAO-062012 model has the most skills in terms of the correlation coefficient. However, in the one-month forecast lead in terms of the correlation coefficient, RMSE and BIAS, the best performance belongs to the CFSv2 model. Evaluation of drought indices showed that the model's performance could be different from their performance in predicting rainfall. WeightedNMME, for example, performed well in NASA-GMAO-062012 and CFSv2 months, although they performed well in predicting drought. The spatial evaluation also showed that the southern catchments perform better than other basins. Manuscript profile