• Home
  • Quatrefoil Perforated Plate
    • List of Articles Quatrefoil Perforated Plate

      • Open Access Article

        1 - Optimization of the shell and tube heat exchanger with perforated quatrefoil plate using the meta-heuristic algorithms
        seyed iman hashemi marghmaleki hadi eskandari
        In this research, the thermal and hydraulic characteristics of the shell side of the shell and tube heat exchanger with perforated quatrefoil plate are optimized by a gray wolf and genetic algorithms in a single-objective multi-objective manner. The objective functions More
        In this research, the thermal and hydraulic characteristics of the shell side of the shell and tube heat exchanger with perforated quatrefoil plate are optimized by a gray wolf and genetic algorithms in a single-objective multi-objective manner. The objective functions are heat transfer capacity for the maximum value and pressure drop for the minimum value. Shell and tube heat exchanger variables for optimization are: the diameter and number of tubes, the Reynolds number, the distance between baffles, and the height of the quatrefoil hole. The results show that for the maximum heat transfer of the quatrefoil baffle, the tube diameter is 0.03 m, the number of tubes is 30, The Reynolds number is 20000, the height of the perforated hole is 0.0018 m, and the distance between the baffles is 0.15 m. For the lowest pressure drop value, the diameter of the tubes is 0.03 m for the square arrangement and 0.01 m for the triangle arrangement; the Reynolds number is 5000, the height of the perforated hole is 0.003 m, and the distance between the baffles is 0.25 m. The optimization by the gray wolf and genetic algorithms has the same results for the shell and tube heat exchanger with a quatrefoil baffle. Manuscript profile