• Home
  • Nano Emulsion
    • List of Articles Nano Emulsion

      • Open Access Article

        1 - Low Fat Cream Cheese Fortification Based on β-Cyclodextrin / Inulin Nano Emulsions with Vitamins E and D
        M. Tahery T. Mostaghim
        Introduction: Food fortification is a way to compensate for the lack of micronutrients in society, which is used by all countries in the world to minimize or control the lack of essential nutrients. Meanwhile, the cream cheese is a suitable carrier for fortification due More
        Introduction: Food fortification is a way to compensate for the lack of micronutrients in society, which is used by all countries in the world to minimize or control the lack of essential nutrients. Meanwhile, the cream cheese is a suitable carrier for fortification due to its wide range of uses. The aim of this study was to fortify the low-fat cream cheese based on β-cyclodextrin / inulin nano emulsions with vitamins D and E. Materials and Methods: Nano emulsions were prepared with 400, 450 and 500 units of vitamin E and 5, 10 and 15 micrograms per gram of vitamin D. Free radical scavenging tests (antioxidant activity), trapping rate, release rate and nano emulsions size were evaluated. The cream cheese tests consisted of the assessments regarding percent acidity, fat, moisture contents, textural properties (hardness, adhesion and elasticity) and peroxide index. Sensory characteristics (taste, texture, appearance, aroma and overall acceptance) were assessed by a 5-point Hedonic method. Results: The results showed that by increasing the use of these two vitamins, the morphological properties of nano emulsions changed and their size increased. Trapping rates ranged from 65 to 98% and release rates ranged from 61 to 84%. The results showed that during the storage period of the cheese in the time intervals of production days, fifteenth, thirtieth, forty-fifth and sixtieth day storage, the index of hardness, adhesion, acidity and peroxide number increased significantly (p≥0.05). Moisture content, elasticity index and sensory characteristics decreased significantly (p≥0.05). The fat content of treated cheese did not show significant differences with the control sample (p <0.05). Conclusion: Considering all physicochemical properties as well as the results of sensory evaluation, the treatment with 450 units of vitamin E and 5 micrograms per gram of vitamin D was selected as the optimal treatment. Manuscript profile