• Home
  • مدل گردش عمومی جو
    • List of Articles مدل گردش عمومی جو

      • Open Access Article

        1 - Fluctuations Analysis of Rainfall and Runoff in Aras Border Basin under Climate Change Conditions
        Amin Sadeqi Yagob Dinpashoh
        In this study, rainfall and runoff data recorded of selected stations of Aras Boundary Basin were used to analyze rainfall and runoff fluctuations and they are projected for horizons, 2050. The Pettitt test was used to detect the breakpoint in rainfall and runoff time s More
        In this study, rainfall and runoff data recorded of selected stations of Aras Boundary Basin were used to analyze rainfall and runoff fluctuations and they are projected for horizons, 2050. The Pettitt test was used to detect the breakpoint in rainfall and runoff time series. Trends in rainfall and runoff were also calculated using the original and modified Mann-Kendall test. To project the future, general circulation models (GCMs) under two greenhouse gas emission scenarios i.e. RCP4.5 (low emission) and RCP8.5 (high emissions) were used. The Eureqa Formulize tool was used to simulate the rainfall-runoff process. Results showed that most of the abrupt changes have occurred in the second half of the 1990s. 83% of seasonal time series breakpoints were related to runoff. Also, 67% of the abrupt changes have occurred in the winter and spring seasons. The highest increase in annual rainfall (according to RCP4.5 scenario) at Nir station is expected to be 9% and the highest decrease in annual rainfall (according to RCP8.5 scenario) at Khoy station is predicted at 11%. It is also worth mentioning that in the seasonal time scale will have the highest rainfall reduction in summer. The Eureqa Formulize performed very well at all stations with NRMSE of less than 0.5%. The results indicated that the lowest slope of the base period runoff trend line (in seasonal time scale) was -1.3 million m3 in summer at Badalan station. There will be no significant change in the annual flow in the future period. Manuscript profile