• List of Articles MMP9

      • Open Access Article

        1 - Evaluation of metalloproteinases MMP2 and MMP9 expression in liver of male wistar rats exposure to Lead and N-acetylcysteine
        Najmeh Ranji Hadi Habibollahi Reihaneh Kochakinegad Eisa Vefghi Mohammad Mahdi Jafarzadeh
        Background & Aim: Matrix metalloproteinases (MMPs) as MMP2 and MMP9 degrade extracellular matrix. Lead (Pb) is a well-known environmental contaminant which could impair the activity of MMPs. The aim of this study was to investigate the effects of N-acetylcysteine, as an More
        Background & Aim: Matrix metalloproteinases (MMPs) as MMP2 and MMP9 degrade extracellular matrix. Lead (Pb) is a well-known environmental contaminant which could impair the activity of MMPs. The aim of this study was to investigate the effects of N-acetylcysteine, as an antioxidant, on the expression of MMP2 and MMP9 genes in the liver of rats exposed with Pb. Materials & Methods: In this study, the 30 male rats were randomly divided into five groups(n=6): 1) control, 2) acute dose of Pb (70 mg/kg), 3) acute dose of Pb (70 mg/kg) + continuous administration of NAC (50 mg/kg), 4) chronic dose of Pb (2 mg/kg), and 5) chronic dose of Pb (2 mg/kg) + continuous administration of NAC (50 mg/kg). Acute dose of Pb was administrated on the first day of study and chronic dose of Pb and Continuous administration of NAC was used every day for 4 weeks as gavage. Hematoxylin and eosin (H&E) staining was used to study histopathological changes. The expression of MMP2 and MMP9 genes was evaluated using Quantitative RT-PCR Results: In the liver of rats exposed with Lead (Pb) especially at chronic dose, was observed structural abnormality and increased inflammatory. Q-RT-PCR analysis showed the expression of MMP2a and MMP9 genes increased in Pb exposed liver and decreased in NAC administrated liver after Pb exposure. Conclusion: Our results suggest that NAC can protect the liver of rats through downregulation of metalloproteinases after Pb exposure and decrease inflammation and tissue damage. Manuscript profile