References:
1. Agrawal, R., Imielinski, T., & Swami, A.(1993) . Mining associations between setsof items in massive databases. Proceedingsof the 1993 ACM SIGMOD ConferenceWashington DC, USA. Pp. 312-322.
2. Berry, J. A. and Linoff, G.: 2000, MasteringData Mining: The Art and Science ofCustomer Relationship Management, JohnWiley & Sons, New York, 494 pp.
3. Chandimala, J. and Zubair, L. 2007.Predictability of stream flow and rainfallbased on ENSO for water resources
management in Sri Lanka. Elsevier, Journalof Hydrology. Vol. 335, pp. 303-312.
4. Huang, Y. and Yu, P. S.: 1999, Adaptivequery processing for time-series data, inProceeding of the 5th International
Conference on Knowledge Discovery andData Mining, ACM, pp. 282–286.
5. Klementine, M.: 1999, A knowledgediscovery methodology for telecommunicationnetwork alarm databases, Ph.D.dissertation, University of Helsinki, Finland.
6. Moron, V., Ward, M. N. and Navarra, A.2001. Observed and SST-Forced seasonalrainfall variability across tropical America.Int. J. Climatol. 21: 1467-1501.
7. Nazemosadat S. M. J. and Shirvani ,2006,A. Prediction of Persian Gulf SST usingmultiple regression and principalcomponents analysis. Journal of AgricultureScience and Technology, Vol. 9, issue 3, 1-11.
8. Povinelli, R. J.: 2000, Using geneticalgorithms to find temporal patternsindicative of time-series events, in GECCO2000 Workshop:Data Mining withEvolutionary Algorithms, pp.80–84.
9. Roucou, P., JO. Rocha de Arago, A.Harzallah, B. Fontain and S. Janicot. 1996.Vertical montion changes related to NorthEastBrazil rainfall variability: A GCMsimulation. Int. J. Climatol. 16: 879-892.
10. Shirvani, A., S. Amin and S. M. J.Nazemosadat. 2003.Moniroring DroughtUsing SPI and Z-score for Different TimeScale for Shiraz Station in Iran.Geophysical Research Abstracts, Vol. 5,03812,
11. Tadesse, T., Wilhite D. A., Harms, S.,Hayes, M. J. and Goddard, S. 2004. DroughtMonitoring Using Data MiningTechniques: A Case Study for Nebraska,USA. Natural Hazards. 33:137-159.