Determination of Basin’s Physiographic Characteristics Derived from the ASTER Digital Elevation Model (Case Study: The KabudRahang Plain, Hamedan, IRAN)
Subject Areas : Article frome a thesisMajid Rahmizadegan 1 , Mohammad Hossein Merrikhpour 2
1 - استادیار گروه مدیریت منابع آب، دانشکده عمران، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران
2 - دانشجوی دکتری رشته مدیریت منابع آب، دانشکده عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران
Keywords: Basin, ASTER, physiographic characteristics, KabudRahang, digital elevation models (DEM),
Abstract :
Elevation is one of the main sources of information required for the determination of physiographic characteristics of a basin. Digital Elevation model (DEM) is one of the products derived from the Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) sensor satellite images. The objective of this study is the determination of physiographic characteristics of basins using ASTER DEM. Thus, The KabudRahang Plain KRP was selected as the study area, which is a part of 3448 km2 of Gharechai Catchment Basin in the northern part of The Province of Hamedan. In order to evaluate the outputs, comparison was made with values provided by the Office of Regional Water Studies of Hamedan, which were extracted from an aerial imagery of National Cartographic Center, and the digital elevation model derived from the SRTM sensor images and the Geographic Information System methods. To achieve the study objectives, Firstly, the channel network, including flow and cumulative flow direction was determined, using the ASTER derived DEM. Then The KPR Basin was studied and the rivers were ranked. Finally, the physiographic characteristics of the basin were extracted. The results show that the basin area, perimeter, and length were 3410.43 km2, 406.34 km, and 112.82 km, with a relative error of 1.09, 5.82, and 8.28 percent, respectively. Furthermore, the basin shape factor was calculated using the Horton, Gravelius, Miller and Schumm methods, which resulted in 0.267, 1.94, 0.259 and 0.584 values, respectively. The time of concentration values were 13.33, 4.86, 6.91, 46.53 and 148.57 hours calculated using the Kirpich, Kerby- Hathaway, Bransby Williams, Carter, and Ventura methods, respectively.
1. اسلامیان، س.س. 1384. تعیین روابط تجربی برای برآورد زمان تمرکز حوضههای آبخیز کوهستانی، مجله علوم کشاورزی و منابع طبیعی.
2. اشرفی، ع،. 1393. مقایسه روشهای مختلف تهیه مدل ارتفاع رقومی حوضه آبخیز نوفرست، شهرستان بیرجند، استان خراسان جنوبی، مجله جغرافیا و آمایش شهری- منطقهای، 13: 140-119.
3. خانی تملیه، ذ. 1391. استخراج خصوصیات فیزیوگرافی حوضههای آبریز و شبکههای آبراهه با استفاده از GIS، مطالعه موردی حوضه آبریز دریاچه ارومیه، نهمین سمینار بینالمللی مهندسی رودخانه، دانشگاه شهید چمران اهواز.
4. دهقان پ. 1392. بررسی اشکال ژئومورفولوژی حوضهی آبریز رودخانه کشفرود، هشتمین همایش انجمن زمین شناسی مهندسی و محیط زیست ایران، دانشگاه فردوسی مشهد.
5. حسینزاده س.ر. 1389. ارزیابی دقت مدلهای رقومی ارتفاع (DEMs) و الگوریتمهای GIS در تحلیلهای مورفومتری رودخانهای (نمونه مورد مطالعه: حوضه آبریز رباط قره بیل در خراسان شمالی)، جغرافیا و توسعه ناحیهای، دانشگاه فردوسی مشهد.
6. رکنی دیلمی، ب. 1386. ارزیابی دقت تهیة مدل رقومی ارتفاع با استفاده از تصاویر ASTER، همایش ژئوماتیک، تهران.
7. رمزجوئی، ن. 1391 بررسی پارهای از روابط تجربی در برآورد زمان تمرکز (مطالعه موردی: حوضه آبریز وردیج استان تهران).
8. سایت اطلاعات آب منطقهای استان همدان (www.hmrw.ir، 1391).
9. شیخ، ز. 1391. استخراج خصوصیات فیزیوگرافی حوضههای آبریز با استفاده از GIS (مطالعه موردی: حوضه آبریز تالار در استان مازندران)، سومین همایش ملی دانشجویی مرتع، آبخیز و بیابان، کرج.
10. صفوی، ح. 1390. هیدرولوژی مهندسی پیشرفته، دانشگاه صنعتی اصفهان، چاپ سوم.
11. علیزاده، ا. 1389. اصول هیدرولوژی کاربردی، انتشارات دانشگاه امام رضا (ع)، چاپ بیست و هشتم.
12. قدرتی، م. آموزش ArcGIS در مهندسی آب (هیدرولوژی و هیدروژئولوژی)، انتشارات سیمای دانش.
13. نوجوان، س. 1393. تعیین مشخصات فیزیوگرافی حوضه آبریز قزل اوزن استان زنجان، دانشگاه صنعتی خواجهنصیرالدین طوسی، دانشکده عمران.
14. وزارت جهاد کشاورزی، سازمان جنگلها و مراتع و آبخیزداری کشور، 1378. مطالعات توجیهی حوضه آبخیز قرنفوچای، گزارش فیزیوگرافی و توپوگرافی.
15.Ahmed, S.A., Chandrashekarappa, K.A., Raj, S.K., Nischitha, V., Kavitha, G. 2010. Evaluation of morphometric parameters derived from ASTER and SRTM DEM-A study on Bandihole sub-watershed basin in Karnataka, Journal of the Indian Society of Remote Sensing, 38: 227-238.
16. Anornu, G.K., Kabo-Bah, A., Kortatsi, B.K. 2012. Comparability studies of high and low Resolution digital elevation models for watershed delineation in the tropics: Case of Densu River Basin of Ghana, International Journal of Cooperative Studies.1:9-14
17. Bransby Williams, G. 1922. Flood discharge and the dimensions of spillways in india. The Engineer (London), 134: 321-322.
18. Bardossy, A., and Fridjof, S. 2002. GIS approach to scale issues of perimeter-based shape indices for drainage basins. Hydrological Sciences Journal 47: 931-942.
19. Bras, R. 1990. Hydrology. Addison-Wesley Publication Company, New York.
20. Carter, R. W. 1961. Magnitude and frequency of floods in suburban areas, Professional Paper 424-B B9-B11, U.S. Geological Survey, Reston, VA.
21. Chow, V. T., Maidment, D. R., and Mays, L.W. 1988. Applied hydrology, Mc Graw-Hill Book Co.,572 p.
22. Domenico, P. A., and Schwards, F. W. 1990. Physical and chemical hydrogeology. John Wiley & Sons, New York.
23. Elizabeth, S.H., Brown, C., McGrigal, K., Compton, B., and Jackson, S. 2013. Estimating hydrologic alteration from basin characteristics in Massachusetts. Journal of Hydrology 503: 196-208.
24. Farhan, Y., Anbar, A., Enaba, O., and Al-Shaikh, N. 2015. Quantitative analysis of geomorphometric
parameters of Wadi Kerak, Jordan, Using remote sensing and GIS. Journal of Water Resource and protection 7: 456-475.
25. Goitom, T.G., 1989. Evaluation of tc methods in a small rural watershed. Channel flow and catchment run off: Centennial of Manningsʼs Formula and Kuichlingʼs Rational formula B.C. Yen (Ed), University of Virginia, U.S. National Weather Service and University of Virginia.
26. Gravelius, H. 1914. Grundrifi der gesamten Gewcisserkunde, Band I: Flufikunde (Compendium of Hydrology, Vol. I. Rivers, in German). Goschen, Berlin.
27. Gupta, R.S. and 1989. Hydrology and hydraulic systems. Prentice-Hall, Englewood Cliffs, New Jersey.
28. Harold,R., Welch,R. 1999. Algorithm theoretical basis document for ASTER DEMs (Standard Product AST14).
29. Hathaway, G. A. 1945. Design of drainage facilities. Trans. Am. Soc. Civ. Eng., 110: 697–733.
30. Horton, R.E., 1932, Drainage Basin Characteristics, Transactions, American Geophysical Union, 13.
31. Ivanova, E., Nedkov, R.D., and Ivanova, I.B., Radeva, K.L. 2012. Morpho-hydrographic analyze of Black Sea Catchment Area in Bulgaria, Procedia Environmental Sciences 14: 143 – 153.
32. Jing, C., Shortridge, A., Lin, S. and Wu, J. 2013. Comparison and validation of SRTM and ASTER GDEM for a subtropical landscape in Southeastern China. International Journal of Digital Earth.
33. Kerby, W. S. 1959. Time of concentration for overland flow. Civ. Eng. 26: 60.34. Kirpich, Z. P. 1940. Time of concentration of small agricultural watersheds, Civil Eng. 10: 362–368.
35. Li, P., Shi, C., Li, Z., Muller, J.P., Drummond, J., Li, X., Li, T., Li, Y., and Liu, J. 2013. Evaluation
of ASTER GDEM using GPS benchmarks and SRTM in China. International Journal of Remote Sensing 34:1744-1771.
36. Lin, W.T., Chou, W.C., Lin, C.Y., Haung, P.H., andTsai, J.S. 2006. Automated suitable drainage network extraction from digital elevation models in Taiwan’s upstream watersheds. Hydrological Process. 20: 289.
37. Lin, Z., and Oguchi, T. 2006. DEM Analysis on longitudinal and transverse profile of steep mountainous watersheds. Geomorphology. 78.
38. Linsley, R.K., Kohler, M.A., and Paulhus, J.L.H. 1989. Hydrology for engineers. 3rd edition. McGraw-Hill Book Company, London.
39. Ludwig, R., and Scheneider, P. 2006. Validation of digital elevation models from SRTM XSAR for applications in hydrologic modeling. ISPRS J. of Photogrammetry and Remote Sensing 60: 339.
40. Magesh, N.S., Jitheshlal, K.V., Chandrasekar, N., and Jini, K.V. 2013. Geographical information system-based morphometric analysis of Bharathapuzha River Basin, Kerala, India. Applied Water Science 3:467-477.
41. Martin, P.H. et all. 2005. Interfacing GIS with water resource models. A state-of-the-art review. Journal of American Water Resources Association.
42. Mata-Lima, H., Vargas, H., Carvalho, J., Goncalves, M., Caetano, H., Marques, A., and Raminhos, C. 2007. Comportamento hidrológico de bacias hidrográficas: integração de métodos e aplicação a um estudo de caso. Rev Esc (In Portuguese). Minas 60: 525-536.
43. McCuen, R.et.al. 1984. Eestimating urban time of concentration. Journal of Hydraulic Engineering ASCE, 100: 633-638.
44. Miller, V.C. 1953. A Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain Area, New York. Columbia University, Virginia and Tennessee, Proj. NR, Technical Report,: 389-402.
45. Mukherjee, S. et alp 2013. Evaluation of vertical accuracy of open source digital elevation model (DEM). International Journal of Applied Earth Observation and Geoinformation 21:205-217.
46. Pareta, K., and Pareta, U. 2011. Quantitative morphometric analysis of a watershed of Yamuna Basin, India using ASTER (DEM) Data and GIS. International Journal of Geomatics and Geosciences 2 :248-269.
47. Pilgrim, D.H. 1989. Rational methods for estimation of design floods for small to medium sized drainage basins in Australia. IAHS Publ, New direction for surface Water Modeling. Proceedings of the Baltimore Symposium, Australia p. :247-259.
48. Robert, A.N., and Lawrence, W.M. 2003. Topographic parameterization in continental Hydrology: A Study in Scale. hydrological Processes 17 : 3763.
49. Rohidas Chavan, S., and Srinivas, V.V. 2015. Effect of DEM source on equivalent Horton–Strahler ratio based GIUH for catchments in two Indian river basins., Journal of Hydrology. 528: 463-489.
50. Schumm, S.A. 1956. The evolution of drainage system and slopes in Badlands at Perth Amboy, New Jersey. Bulletin of Geological Society of America 67: 214-236.
51. Sefercik.U.G. 2012. Performance estimation of Aster Global DEM depending upon the terrain Inclination, J indian Society of Remote Sensing, 40:565-576.
52. Seibert, J., and McGlynn, B.L. 2007. A New triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resour. Res. 43. W04501.
53. Sener, m. 2011. Determination of basin characteristics by using Geographical Information Systems (GIS). Journal of Environmental Protection and Ecology 12:1941-1947.
54. Sheridan, j. 1994. Hydrograph time parameters for flatland watersheds. Trans. ASAE, 37: 103-113.
55. Shinde, V.M., Deshpande, P.K., and Kumthekar, M.B. 2013. Application of ASTER DEM in watershed management as flood zonation mapping in Koyana River of the Western Ghats. International Journal of Scientific & Engineering Research 4:297-301.
56. Strahler, N. 1957. Quantitative analysis of watershed geomorphology. American Geophysical Union, 38: 913-920.
57. Tarboton, D. 2003. Terrain analysis using digital elevation models in hydrology. 23rd ESRI International Users Conference, San Diego, California, July 7-11.
58. Thomas, J., Joseph, S., Thrivikramji, K.P., and Arunkumar, K.S. 2014. Sensitivity of digital elevation models: The scenario from two tropical mountain river basins of the Western Ghats, India. Geoscience Frontiers 5:893-909.
59. USGS, 2012, Global data explorer, http://gdex.cr.usgs.gov/.
60. Zhang,W.H., Montgomery,D.R. 1994. Digital elevation model grid size, landscape representation & hydrologic simulations".Water Resources Research 30:1019-1028.