Assessing Land-Use Change Induced by the Karkhe Dam Using Satellite Images and Maximum Likelihood Classification Method
Subject Areas : Article frome a thesisBehnam Balouchi 1 , Maryam Dehghani 2 , Mohammad Reza Nikoo 3
1 - دانشجوی دکتری عمران-آب، بخش مهندسی راه، ساختمان و محیط زیست، دانشکده مهندسی، دانشگاه شیراز
2 - استادیار بخش مهندسی راه، ساختمان و محیط زیست، دانشکده مهندسی، دانشگاه شیراز
3 - استادیار بخش مهندسی راه، ساختمان و محیط زیست، دانشکده مهندسی، دانشگاه شیراز.
Keywords: Landsat, Karkhe Basin, supervised maximum likelihood classification, change detection,
Abstract :
The Karkhe River is one of the most important rivers in Iran and is the third largest river in terms of the discharge volume. In its wild state. the river usually left many damage its wake. In order to reduce these detrimental out comes, the Karkhe Dam was built, which is one of the most important and also the largest dams in Iran and the Middle East. This dam has instigated an economic reforminits basin, such as changes in the land-use, amount of water, vegetation and the urban areas. Some of the major changes occurred ofter the dam construction have been evaluated: The Using Landsat satellite images spanning between 1352 and 1392, maximum likelihood classification identifying 7 classes was conducted on the pre-processed images. The results showed the barren soil decrease of 0.2 percent; the residential area, vegetation and water supply have increased by 2.36, 1.4 and 2.5 percent, respectively. In spite of the logical trend of these results, the accuracy assessment was as an added measure to confirmed the previous results. The evaluation showed a high accuracy almost in all of the classification results. The overall accuracy and the Kappa coefficient estimated from the accuracy assessment are higher than 90% and 0.9, respectively, while the user and producer accuracies are more than 80%. This demonstrates the high performance of the maximum likelihood classification.
- باقر زاده کریمی، م. و ف. فتحی سقزچی. 1388. بررسی اثر بالا آمدن آب دریای خزر بر اراضی کشاورزی اطراف تالاب انزلی با استفاده از سنجش از راه دور. مجله علمی تخصصی تالاب- دانشگاه آزاد اسلامی واحد اهواز.1: 105-118.
- سلاجقه، ع. س. رضوی زاده، ن. خراسانی، م. حمیدیفر، و س. سلاجقه. 1390. تغییرات کاربری اراضی و آثار آن بر کیفیت آب رودخانه (مطالعة موردی: حوزة آبخیز کرخه). مجله محیط شناسی. 37(58): 81-86.
- گودرزی، م. و م. فرحپور. 1386. بررسی امکان جداسازی دیمزارها از مراتع با استفاده از سنجش از راه دور (مطالعه موردی منطقه تهم استان زنجان). فصلنامه علمی پژوهشی تحقیقات مرتع و بیابان ایران. 14 : 432-446.
- نعیمی نظام آبادی، ع. م. قهرودی تالی، و م. ر. ثروتی، 1389. پایش تغییرات خط ساحلی و لندفرمهای ژئومورفولوژیکی خلیج فارس با استفاده از روش سنجش از راه دور و سیستم اطلاعات جغرافیایی (مطالعه موردی: منطقه ساحلی عسلویه). مجله علمی پژوهشی فضای جغرافیایی. 10(30): 45-61.
- El-Asmar, H. M. and M. E. Hereher, 2010. Change detection of the coastal zone east of the Nile Delta using remote sensing. Environ. Earth Sci j.
- Huang X. and Friedl M. A. 2014. Distance metric-based forest cover change detection using MODIS time series. Int. J. Appl. Earth Observ. Geoinfor. 29: 78–92.
- Nasierding, N., and Y. Zhang, 2009. Change detection of sandy land areas in Minfeng oasis of Xinjiang, China. Environ Monit. Assess. J. 151:189–196.
- Richards, J. A. 2013. Remote sensing digital image analysis. Fifth edition. Springer Heidelberg, New York, Dordrecht, London.
- Singh, S. K. D. Sharma, N. Singh, and D. N. Bohra. 1988. Temporal change detection in river courses and flood plains in an arid enviromenta through satellite remote sensing. J. Ind. Soc. Remote Sens. 16: 53-58.
- Yuan, F. K. E. Sawaya, B. C. Loeffelholz, and M. E. Bauer. 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sens, Environ. Journal. 98: 317– 328.
- Zhou, Q. B. Li, and Y. Chen. 2011. Remote sensing change detection and process analysis of long-term land use change and human impacts. Ambio J. 40: 807-818.