Non-uniform interaction effect of flow and rigid submerged vegetation on turbulent flow characteristics
Mohammad Hadi Fattahi
1
(
Associate Professor of civil Engineering Department, Islamic Azad University, Marvdasht Branch, , Iran
)
Mohammadhadi mohammadi
2
(
PhD student in civil engineering majoring in water resources engineering and management, Faculty of Civil Engineering, Islamic Azad University, Marvdasht Branch, Shiraz, Iran
)
Amin Rostami Ravari
3
(
Assistant Professor of Water Engineering Department, Islamic Azad University, Marvdasht Branch, , Iran
)
Keywords: Rigid Vegetated elements, Acceleration and decelerating flows, 3D pools, Padena Marbor River,
Abstract :
The shear instability causes the exchange of mass and momentum between the inner and upper layers of the vegetation. The experiments of this research were carried out in a straight rectangular channel with a length of 14 meters, a width of 90 cm and a depth of 60 cm under a constant flow rate of 31.7 liters per second. A three-dimensional sandy well with a submerged rigid plant flow slope with a height of 12 cm and a diameter of 10 cm with a constant surface density of 0.004 on a decelerating 10.75 degree and an accelerating flow slope of 7.96 degrees was constructed with a sand bed and shaped elements. The substrate is irregularly distributed.
The findings of the research showed that the maximum flow speed occurred at y/h=0.52 for the decelerating flow and at y/h=0.47 for the accelerating flow. Therefore, it seems that the validity depth of the logarithmic law was a function of the measurement position of the velocity profile and the non-uniform distribution of submerged solid plant elements on the three-dimensional shape of the sandy well bed. Examining the speed reduction law has indicated that the Kells rise function in the decelerating and accelerating flow sections in the test conditions have values of Π=-2.8 and Π=-5. In any case, sections of decelerating and accelerating currents in a three-dimensional sand pit in the presence of submerged rigid plant elements can act as an obstacle in the flow and cause the water to bend and rotate around them.
Water Resources Engineering Journal Winter 2024. Vol 12. Issue 46
Research Paper | |||||||
| |||||||
| Vegetation patches in riverbeds create shear instability, leading to the transfer of mass and momentum between different layers of vegetation. The presence of vegetation reduces flow velocity, narrows the river width, increases sedimentation in the riverbed, and consequently decreases discharge. The study conducted experiments in a straight rectangular channel measuring 14 meters in length, 90 cm in width, and 60 cm in depth, with a constant flow rate of 31.7 L/s. A 3D pool was constructed with a gravel bed and rigid submerged vegetated elements of 12 cm height and 10 cm diameter, with a fixed area density of 0.004 irregularly distributed on the bedform. Velocity fluctuations were measured at 13 cross-sections from the decelerating flow region to the accelerating flow region with a spatial interval of 20 cm using a downward-looking ADV device with a sampling frequency of 200 Hz over a 90-second period. The research revealed that the maximum flow speed occurred at y/h=0.52 for decelerating flow and at y/h=0.47 for accelerating flow. However, the depth of validity of the logarithmic law appeared to depend on the velocity profile measurement location and the non-uniform distribution of submerged rigid vegetated elements on the 3D bedform. Analysis of the velocity defect law showed wake strength coefficients of Π=-2.8 and Π=-5 in the decelerating and accelerating flow sections respectively. These sections, in the presence of submerged rigid vegetated elements, can impede flow, causing water to swirl and bend around them, leading to increased vorticity generation and the formation of complex flow patterns with rotating vortices. Turbulent intensities in the accelerating flow section, both in the flow direction and perpendicular to it, were consistently higher than those in the decelerating flow section. This suggests that the flow in these areas is significantly influenced by the presence of submerged rigid vegetation, in addition to the effects of increased flow velocity and favorable pressure gradient. Eddy patterns influenced by the 3D pool and submerged rigid vegetation can have ecological implications, creating micro-habitats with varying current velocities and turbidity levels, impacting the distribution of aquatic organisms and overall ecosystem health. Understanding these implications is crucial for applications such as river restoration, habitat enhancement, and water resource management. | ||||||
Use your device to scan and read the article online
DOI: ………………….. | |||||||
Keywords: Rigid Vegetated elements, Acceleration and decelerating flows, 3D pools, Padena Marbor River
| |||||||
Citation: ……… | |||||||
*Corresponding author Address: Tell: + |
Extended Abstract
Introduction
The presence of vegetation in riverbeds and banks has a significant impact on the characteristics of water flow. It can enhance the roughness of the flow path, reduce the flow velocity, increase turbulence, reduce erosion, and deepen the flow. Vegetation is generally a key determinant of a river’s hydraulic characteristics and can influence the functioning of hydraulic structures along its path. It’s crucial to understand the interplay between the sediment in the river bed, the vegetation on the bedform, and the non-uniform flow for studying sediment transfer and friction coefficients. Despite being commonly observed, accelerating and decelerating currents in rivers are complex phenomena that are not yet fully comprehended. In the field of river geomorphology research, vegetation has a significant role. Numerous studies over the past decade have focused on velocity profiles and the characteristics of turbulent flow in vegetated channels. The phenomenon of maximum velocity occurring below the water surface, known as dip, and the nonlinear distribution of Reynolds stress are attributed to secondary currents and anisotropy in turbulence. Research findings indicate that negative values in the Reynolds stress distribution are found near the water surface, while zero shear stress is found below the water surface. Nezu and Nakagawa (1993) demonstrated that the negative Reynolds stress values near the water surface are consistent with the fact that du/dz is also negative in this region. These negative values are likely linked to the closeness to vegetation. Nosrati et al. (2021) conducted an investigation into the velocity profile at different intervals of a gravel bed river in the presence of three-dimensional bedforms, and scattered natural submerged vegetation patches. The presence of these patches causes the velocity profile to deviate from its classical trend. There has been less comparative research on flow turbulence components in decelerating and accelerating flow sections in the presence of submerged rigid vegetated elements that are irregularly and randomly distributed on the bed form. To address this, a three-dimensional pool with a grave bed has been used to simulate sections of decelerating and accelerating currents and rigid elements in a submerged condition with random and scattered distribution on the pool. Laboratory studies can provide valuable insights about turbulence components in gravel-bed rivers in the presence of vegetated elements and the three-dimensional pool. By recreating natural river conditions in laboratory flumes, researchers and hydraulic engineers can describe various parameters such as flow velocity, turbulence intensities, and sediment transport patterns. However, it’s important to note that while laboratory studies can yield valuable results, they may not fully replicate all aspects of natural river systems. Therefore, field studies are also necessary to validate laboratory findings and ensure their applicability to real-world conditions in natural rivers. The objective of this manuscript is to explore the effects of scattered and randomly distributed submerged rigid vegetated elements on turbulent flow characteristics, such as velocity distribution, turbulence intensities, and vorticity, in decelerating flow sections compared with accelerating flow sections in gravel channels.
Materials and Methods
The experiments were conducted in a straight, rectangular channel with glass walls. The channel, located in the hydraulic laboratory of Iran University of Science and Technology in Tehran, measures 14 meters in length, 90 cm in width, and 60 cm in depth. A vertical rectangular gate at the channel’s end was utilized to regulate the water level throughout the experiment. The flow depth was measured using a ruler with a 1 mm increment. The gravel used in the experiment had a mean diameter (d50) of 25 mm and a geometric standard deviation (σg) greater than 1.4, calculated as the square root of the ratio of the diameters of sediment particles smaller than 84% and 16% of the particle diameter. To simulate rigid submerged elements, plastic cylinders with a diameter of 10 cm and an average height of 12 cm were used. A total of 162 such elements were randomly distributed over an area of 2.4 x 0.6 square meters, equating to 112 elements per square meter. However, in this study, the area density of vegetation was kept constant at φ=0.004. A straight three-dimensional pool with inlet and outlet slopes of 10.75 and 7.96 degrees, respectively, was made to create a non-uniform decelerating and accelerating flow. These slopes were based on field observations in the Padena Marbor River. The 3D pool was placed more than 5 meters from the start of the experimental flume to ensure flow development and more than 2 meters from the end of the channel to prevent the end valve of the flume from affecting the velocity distribution. Velocity measurements began 20 cm above the 3D pool and continued in 20 cm increments to 20 cm from the pool’s end downstream. Thirteen velocity profiles were taken along the channel’s central line. Two cross-sections at X/L=0.36 and X/L=0.71 were used in the decelerating and accelerating flow sections, respectively, where X and L represent the distance from the pool’s start and the pool’s length. About 33 velocity measurement points were taken in each section, starting from 4 mm from the bed bottom and up to 5 cm below the water level. An Acoustic Doppler Velocimeter (ADV) was used to measure instantaneous velocities at a frequency of 200 Hz and a sampling time of 90 seconds. The Nortek vectrino, with a frequency of 10 MHz, an accuracy of ±1 mm/s, and a sampling volume with a height of 5.5 mm, was used. The data captured by the ADV were analyzed using WinADV package, a Windows-based preprocessor and viewing tool for ADV files. This package provides signal quality information in the form of a correlation coefficient (COR) and signal-to-noise ratio (SNR). As a general rule, instantaneous velocity data affected by acoustic noise, indicated by a COR not exceeding 70% and an SNR less than 5 dB, should be discarded. To avoid possible matching effects, data with an SNR less than 15 dB and a COR less than 70% were filtered. For each measurement point, 18,000 instantaneous velocity measurements were obtained over a 90-second data collection duration, with a sampling frequency of 200 Hz.
Findings
Throughout the experiment, the flow rate remained steady at 31.7 liters per second. As per Table 1, the flow is sub-critical and entirely turbulent. The non-uniformity coefficient β, according to this table and the computed values, is mostly greater than -1 in decelerating flow sections and less than -1 in accelerating flow sections. However, in certain sections, such as (X/L=0.21) and (X/L=0.79), the non-uniformity coefficient β contradicts the findings of Graff and Altinakar (1998). It’s worth noting that their results were obtained without the presence of vegetative elements. Figures 3 and 4 show that the maximum flow velocity occurs at y/h=0.52 for decelerating flow and at y/h=0.47 for accelerating flow. This phenomenon, known as the dip phenomenon, is due to the impact of secondary currents. These currents, caused by turbulence anisotropy resulting from sparse area vegetation and a low aspect ratio, alter the position of uc in the velocity distribution. The Log-wake law investigation in this study indicates Π values of -2.8 and -5 in decelerating and accelerating flow sections, respectively. For the decelerating flow section with an aspect ratio B/h<5, the vorticity value decreases up to a relative water depth of y/h=0.09, then increases again until a relative depth of 0.52, and finally decreases nearly to the water level. In contrast, Figure 8 shows that for the accelerating flow section, the vorticity remains almost constant up to a relative water depth of y/h=0.44. Due to the irregular distribution of rigid vegetated elements, it sharply decreases to a relative depth of 0.52 and then rises again towards the water surface in a convex shape. However, decelerating and accelerating flow sections in a three-dimensional pool with submerged rigid vegetated elements can act as flow obstructions, causing the water to curve and rotate around them. This can lead to increased vorticity generation and more complex flow patterns with swirling vortices and turbulence. Moreover, the distribution of disturbance intensities in the flow direction and perpendicular to the flow in decelerating and accelerating flow sections with rigid submerged elements suggests a convex form in the flow direction and a concave form perpendicular to the flow. However, in the accelerating flow section, the intensity distribution has changed to a convex form in both directions. Consequently, it appears that the turbulent intensities in the accelerating flow section, both in the flow direction and perpendicular to it, are consistently higher than the corresponding values in the decelerating flow section.
Conclusion
This study aims to analyze the characteristics of turbulent flow, such as velocity distribution, the log-wake law, vorticity, and turbulence intensities in sections of decelerating and accelerating currents in the presence of rigid submerged vegetation. A three-dimensional pool with a gravel bed in a laboratory flume was utilized for this purpose. The findings of this research revealed that:
· The peak flow velocity was observed at y/h=0.52 for decelerating flow and at y/h=0.47 for accelerating flow. This suggests that the depth of validity of the logarithmic law is dependent on the measurement position of the velocity profile and the non-uniform distribution of rigid submerged vegetation in the three-dimensional pool.
· The log-wake law examination showed that the wake strength coefficient rise function in the decelerating and accelerating flow sections under experimental conditions had values of Π=-2.8 and Π=-5.
· Longitudinal vorticities are formed due to the transverse imbalance of turbulent stresses caused by positive and negative pressure gradients in the presence of an irregular distribution of rigid submerged elements. These vorticities are stretched and mixed in transverse directions, leading to the formation of large secondary currents. Sections of decelerating and accelerating currents in a three-dimensional pool with submerged rigid elements can obstruct the flow, causing the water to bend and rotate around them. This can result in increased vorticity generation and more complex flow patterns with rotating vortices and turbulence.
· Turbulence intensity in channels with rigid submerged vegetation is a measure of the flow velocity fluctuations caused by turbulence in these channels. It appears that the turbulence intensities in the section of the accelerating flow in the direction of the flow and perpendicular to the flow are consistently higher than the corresponding values in the section of the decelerating flow. However, vertical momentum exchange has been observed in the upper part of the rigid submerged vegetation in the section of the decelerating flow in the streamwise direction. It is possible that in these sections of the flow, the presence of rigid submerged vegetation is significantly influenced by the effect of increasing flow velocity and a favorable pressure gradient.
Ethical Considerations compliance with ethical guidelines
The cooperation of the participants in the present study was voluntary and accompanied by their consent.
Funding
No funding.
Authors' contributions
Design and conceptualization:
Methodology and data analysis
Supervision and final writing:
| |||||||||||
اثر متقابل غیریکنواختی جریان و پوشش گیاهی صلب مستغرق بر خصوصیات جریان آشفته
| |||||||||||
| |||||||||||
| چکیده: ناپایداری برشی ناشی از حضور پوشش گیاهي در بستر رودخانهها باعث تبادل جرم و مومنتوم بین لایههای داخل و فوقانی پوشش گیاهي میشود. حضور پوشش گیاهی باعث کاهش سرعت جریان، کاهش عرض رودخانه، افزایش رسوبگذاری در بستر رودخانه و در نتیجه کاهش دبي جریان عبوری رودخانه میشود. آزمایشات این پژوهش در یک کانال مستطیلی مستقیم به طول 14 متر، عرض 90 سانتی متر و عمق 60 سانتی متر تحت دبی ثابت 7/31 لیتر بر ثانیه انجام پذیرفته است. یک گودآب سهبعدی شنی با شیب جریان گیاهی صلب مستغرق با ارتفاع 12 سانتی متر و قطر 10 سانتی متر با تراکم ثابت سطحی 004/0 بر روی کندشونده 75/10 درجه و شیب جریان تندشونده 96/7 درجه با بستر شنی احداث شده و المانهای شکل بستر به صورت نامنظم توزیع شده است. مولفههای نوسانی سرعت در 13 مقطع عرضی از مقطع جریان کندشونده تا مقطع جریان تندشونده با گام مکانی 20 سانتی متر توسط دستگاه سرعت سنج صوتی پاییننگر با فرکانس نمونهبرداری 200 هرتز و زمان 90 ثانیهای برداشت شده است. یافتههای پژوهش نشان داد حداکثر سرعت جریان در برای جریان کندشونده و در برای جریان تندشونده حادث شده است. بنابراین به نظر میرسد عمق اعتبار قانون لگارتیمی تابعی از موقعیت اندازهگیری پروفیل سرعت و توزیع غیریکنواخت المانهای گیاهی صلب مستغرق بر روی شکل بستر سهبعدی گودآب شنی بوده است. بررسی قانون نقصان سرعت حاکی از آن بوده است که تابع برخاستگی کلز در مقاطع جریان کندشونده و تندشونده در شرایط آزمایش دارای مقادیر و هستند. در هر صورت، مقاطع جریانهای کندشونده و تندشونده در یک گودآب شنی سهبعدی در حضور المانهای گیاهی صلب مستغرق میتوانند به عنوان مانعی در جریان عمل کنند و باعث خم شدن و چرخش آب در اطراف آنها شوند. این میتواند منجر به افزایش تولید گردابه، ایجاد الگوهای جریان پیچیدهتر با گردابهای چرخشی و آشفتگی شود. نتایج حاکی از آن است که شدتهای آشفتگی در مقطع جریان تندشونده در راستای جریان و در راستای عمود بر جریان همواره بیشتر از مقادیر مشابه در مقطع جریان کندشونده هستند چونکه در این مقاطع جریان به شدت تحت تاثیر حضور المانهای گیاهی صلب مستغرق، مازاد بر تاثیر افزایش سرعت جریان و گرادیان فشار مطلوب قرار گرفته است. الگوهای گردابی تحت تأثیر گودآبهای سهبعدی و پوشش گیاهی صلب مستغرق میتوانند پیامدهای اکولوژیکی داشته باشند، زیستگاههای کوچکی با سرعت جریان و سطوح تلاطم متفاوت ایجاد کنند و بر توزیع موجودات آبزی و سلامت کلی اکوسیستم تأثیر بگذارد. درک اثرات این موضوع برای کاربردهای مختلف از جمله احیای رودخانه، بهبود زیستگاه و مدیریت منابع آب بسیار مهم است.
| ||||||||||
از دستگاه خود برای اسکن و خواندن مقاله به صورت آنلاین استفاده کنید
DOI: ............................................... | |||||||||||
واژههای کلیدی: پوشش گیاهی مستغرق صلب، جریانهای کندشونده و تندشونده، شکل بستر سهبعدی گودآب، رودخانه ماربر پادنا.
| |||||||||||
* نویسنده مسئول: نشانی: تلفن: پست الکترونیکی:
|
(الف) |
شکل 9- توزیع شدتهای آَشفتگی در مقطع جریان کندشونده الف) در راستای جریان ب) در راستای عمود بر جریان
شکل 10- توزیع شدتهای آشفتگی در مقطع جریان تندشونده الف) در راستای جریان ب) در راستای عمود بر جریان
نمودارهای اشکال (9) و (10) به ترتیب نشاندهنده توزیع شدتهای آشفتگی در راستای جریان ()-الف و در راستای عمود بر جریان ()-ب در مقاطع کندشونده و تندشونده جریان در حضور المانهای گیاهی مستغرق صلب است. مطابق شکل (9)، در مقطع جریان کندشونده، شدتهای آشفتگی همواره بیشتر از است. به نظر میرسد که توزیع شدتهای آشفتگی در راستای جریان دارای شکل محدب و در راستای عمود بر جریان دارای شکل مقعر است. در مقابل در شکل (10) در مقطع جریان تندشونده، بر جریان بیشتر از است. در هر صورت در مقطع جریان تندشونده توزیع شدتها در هر دو راستا به صورت محدب تغییر کرده است. به عنوان یک نتیجه به نظر میرسد که شدتهای آشفتگی در مقطع جریان تندشونده در راستای جریان و در راستای عمود بر جریان همواره بیشتر از مقادیر مشابه در مقطع جریان کندشونده هستند. در هر صورت تبادل مونتوم عمودی در قسمت فوقانی المانهای گیاهی در مقطع جریان کندشونده در راستای مشاهد شده است. احتمالا در این مقاطع جریان به شدت تحت تاثیر حضور المانهای گیاهی صلب مستغرق مازاد بر تاثیر افزایش سرعت جریان و گرادیان فشار مطلوب قرار گرفته است.
بحث و نتیجهگیری
هدف از این مطالعه مقایسه مولفههای جریان آشفته از قبیل؛ توزیع سرعت، بررسی قانون نقصان سرعت، ورتیسیتی و شدتهای آشفتگی در مقاطع جریانهای کندشونده و تندشونده در حضور المانهای گیاهی صلب مستغرق است. برای نیل به این هدف از یک شکل بستر گودآب سهبعدی با بستر شنی در یک کانال آزمایشگاهی استفاده شده است. نتایج حاصل از بررسیهای این پژوهش حاکی از این بوده است که؛
پیوست1:
Non-uniform flow | distance (cm) | Q(lit/s) | X/L | d50 (mm) | h(cm) | U* cm/s | u cm/s | S0 | Fr | Re | b |
Decelerating flow | 40 | 31.7 | 0.14 | 25 | 28 | 1.55 | 14.64 | 0.1854 | 0.09 | 40987.44 | 167.8 |
60 | 31.7 | 0.21 | 25 | 32 | 1.13 | 11.73 | 0.1854 | 0.07 | 37541.19 | -864.4 | |
80 | 31.7 | 0.29 | 25 | 35 | 1.12 | 10.96 | 0.1854 | 0.06 | 38347.07 | 402.1 | |
100 | 31.7 | 0.36 | 25 | 39 | 1.13 | 12.16 | 0.1854 | 0.06 | 47433.65 | 434.5 | |
120 | 31.7 | 0.43 | 25 | 43 | 1.18 | 11.24 | 0.1854 | 0.05 | 48313.75 | -1075.8 | |
Pool center | 140 | 31.7 | 0.50 | 25 | 46 | 1.26 | 11.06 | 0.0002 | 0.05 | 50882.16 | -2845.9 |
Accelerating flow | 160 | 31.7 | 0.57 | 25 | 44 | 1.23 | 12.13 | -0.1380 | 0.06 | 53373.76 | -341.1 |
180 | 31.7 | 0.64 | 25 | 41 | 1.25 | 12.48 | -0.1380 | 0.06 | 51157.78 | -308.5 | |
200 | 31.7 | 0.71 | 25 | 38 | 1.35 | 13.06 | -0.1380 | 0.07 | 49631.96 | -246.4 | |
220 | 31.7 | 0.79 | 25 | 35 | 1.66 | 13.90 | -0.1380 | 0.07 | 48638.30 | 473.2 | |
240 | 31.7 | 0.86 | 25 | 33 | 1.60 | 14.80 | -0.1380 | 0.08 | 48841.63 | 480.2 |
جدول 1- خلاصه پارامترهای هیدرولیکی جریان
Related articles
-
Study on time development of horse-shoe vortex diameter and shear stress at bridge pier
Print Date : 2020-04-20
The rights to this website are owned by the Raimag Press Management System.
Copyright © 2021-2024