Estimating base-flow to assess environmental flow in the rivers of arid and semi-arid regions (Case study: Shamkan river, Sabzevar)
Subject Areas : Article frome a thesisMahdi Zarei 1 * , Mahdi Boroughani 2 , Seyed Hassan alavinia 3
1 - Research group of Geographic sciences, Research Center of Social Studies & Geographical Sciences, Hakim Sabzevari University
2 - Research group of Geographic sciences, Research Center of Social Studies & Geographical Sciences, Hakim Sabzevari University
3 - Department of Watershed management, Natural resources and Earth sciences, University of Kashan, Kashan, Iran
Keywords: Base-flow, Eckhart, Base Flow Index, Local Minimum, Lyn & Hollick,
Abstract :
Base-flow is the percentage of river flow which is associated with groundwater discharge and demonstrator of the extent of groundwater participation in total runoff. Therefore, base-flow has an important role in hydrological and water resources researches such as quantitative and qualitative water resources assessment, hydrologic modelling, calibration and validation of these models and also evaluating the environmental water requirements in different regions. In present research the daily data of river flow for the period of 30 years is selected to evaluate base-flow in Shamkan River which is located in Sangerd catchment. The daily base-flow is calculated during the years of 1987 to 2016 using BFI, Lyn and Hollick, Eckhart and Local Minimum methods. Due to the lake of observation base-flow data, the BFI method is considered as the base method and the results of other methods were compared with the results of the mentioned method. The results indicated that the estimated base-flow by different methods is averaged between 71 to 81 percent of the river flow. The results of error criteria showed that Lyn and Hollick method with the filter parameter of 0.95 is the most suitable method to separate base-flow in the case study. While the Eckhart method with the filter parameters of 0.99 and 0.995 have had highest RMSE and MAE values and also had the lowest Nash-Sutcliff values.
1) تمسکنی، ا.، ذاکرینیا، م.، هزارجریبی، ا.، و دهقانی، ا. 1392. مقایسه روشهای جداسازی دبی پایه از هیدروگراف روزانه جریان (مطالعه موردی حوضه بالادست سد بوستان در استان گلستان). نشریه پژوهشهای حفاظت آب و خاک، 20(6):145-127.
2) تیموری، م.، قنبرپور، م.ر.، گنبد، م.ب.، ذوالفقاری، م.، و کاظمینیا، س. 1390. مقایسه شاخص جریان پایه در روشهای مختلف تجزیه هیدروگراف جریان در تعدادی از رودخانههای استان آذربایجان غربی. مجله علوم و فنون کشاورزی و منابع طبیعی، 15(57): 228-219.
3) حسنی، م.، ملکیان، ا.، رحیمی، م.، سمیعی، م.، و خاموشی، م. 1391. بررسی کارآیی برخی از روشهای جداسازی جریان پایه در رودخانههای مناطق خشک و نیمهخشک (مطالعه موردی: حوضه آبخیز حبله رود). دوفصلنامه علمی-پژوهشی خشک بوم، 2(2): 22-10.
4) دولتآبادی، ن.خ.، حسینی، ع.ر.، داوری، ک.، و مساعدی، ا. 1391. برآورد جریان پایه با استفاده از روشهای فیلتر دیجیتال بازگشتی و نرمافزار BFI_3.0 (مطالعه موردی: بخشی از حوضه آبخیز مهارلو-بختگان). سومین همایش ملی مدیریت جامع منابع آب، ساری.
5) سمیعی، م.، و ملکیان، ا. 1389. مقایسه روشهای جداسازی جریان پایه با استفاده از فیلتر عدد برگشتی و مدل PART. مجموعه مقالات ششمین همایش ملی علوم و مهندسی آبخیزداری و چهارمین همایش ملی فرسایش و رسوب، دانشگاه تربیت مدرس.
6) قنبرپور، م.ر.، تیموری، م.، و غلامی، ش.ع. 1387. مقایسه روشهای برآورد دبی پایه بر اساس تفکیک هیدروگراف جریان (مطالعه موردی: حوزه آبخیز کارون). مجله علوم و فنون کشاورزی و منابع طبیعی، 12(44): 10-1.
7) زارع بیدکی، ر.، مهدیان فرد، م.، هنربخش، ا.، و زینیوند، ح. 1394. برآورد جریان پایه رودخانه تیره لتان به منطور ارزیابی جریان زیستمحیطی. اکوهیدرولوژی، 2(3): 287-275.
8) باقریان کلات، ع.، لشکریپور، غ.، غفوری، م.، و عباسی، ع.ا. 1397. بررسی تأثیر نوع لیتولوژی بر فرسایش و رسوبدهی خاک در حوزه آبخیز سنگرد. نشریه علمی-پژوهشی مهندسی و مدیریت آبخیز، 10(4): 685-671.
9) کاظمی، ر.، و شریفی، ف. 1396. بررسی و ارائه روابط منطقهای شاخص جریان پایه در حوضههای همگن استان کرمان. مهندسی و مدیریت آبخیز. 9(1): 107-97.
10) زارع بیدکی، ر.، قرهی، ن.، و مهدیان فرد، م. 1398. مقایسه روشهای جداسازی آب پایه از رواناب مستقیم در حوزهی آبخیز دورود. مجله محیط زیست و مهندسی آب. 5 (3): 212-200.
11) Aksoy, H., Kurt, I., amd Eris, E. 2009. Filtered Smoothed Minima base flow separation method. Journal of Hydrology. 372: 94–101.
12) Bruskova, V. 2008. Assessment of the Base Flow in the Upper Part of Torysa River Catchment, Slovak. Journal of Civil Engineering, 2: 8-14.
13) Eckhardt, K. 2005. How to construct recursive digital filters for base flow separation. Hydrology Process, 19(2): 507-515.
14) Echhardt, K. 2008. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology. 352: 168-173.
15) Li, Q., Xing, Z., Danielescu, S., Li, S., Jiang, Y., and Meng, F. 2014. Data requirements for using combined conductivity mass balance and recursive digital filter method to estimate groundwater recharge in a small watershed, New Brunswick, Canada. Journal of Hydrology, 511: 658–664.
16) Nathan, R.J., and McMahon, T.A. 1990. Evaluation of Automated Techniques for Base Flow and Recession Analysis. Water Resources Research, 26(7):1465-1473.
17) Brien, R.J., Misstear, B.D., Gill, L.W., Deakin, J.L., and Flynn, R. 2013. Developing an integrated hydrograph separation and lumped modeling approach to quantifying hydrological pathways in Irish river catchments,Journal of Hydrology, 486: 259-270.
18) Smakhtin, V.U., and Watkins, D.A. 1997. Low flow estimation in South Africa. WRC Report no 494/1/97.
19) Smakhtin, V.U. 2001. Estimating continuous monthly base flow time series and their possible applications in the context of the ecological reserve, ISSN 0378-4738., Water SA, 27( 2): April 2001.
20) Hughes, D. A., Pauline, H., and Watkins, D. 2003. Continuous base flow separation from time series of daily and monthly stream flow data. Water SA, 29(1): 43-48.
21) Lyne, V.D., and Hollick, M. 1979. Stochastic time-variable rainfall runoff modeling. Hydrology and Water Resources Symposium, Institution of Engineering, Australia, Perth, pp: 89–92.
22) Arnold, J.G. and Allen, P. M. 1999. Automated methods for estimating base flow and ground water recharge from stream flow records. Journal of American Water Resources Association, 35(2): 411-424.
23) Rutledge, A.T. and Daniel, C.C. 1994. Testing an automated method to estimate ground-water recharge from stream flow records. Groundwater. 32(2): 180-189.
24) Newman, B. D., Wilcox, B. P., Archer, S.R., Breshears, D. D., Dahm, C. N., and Duffy, C. J. 2006. Eco-hydrology of water-limited environments: A scientific vision. Water Resources Research, 42, W0 6302. doi:10.1029/2005WR004141.
25) Chapman, T. G, and Maxwell, A. I. 1996. Base flow separation–comparison of numerical methods with tracer experiments. Institute Engineers Australia National Conference. Publ. 96/05, 539-545.
26) Zhang, Y.K., and Schilling, K.E. 2006. Increasing streamflow and base flow in Mississippi River since the 1940s: Effect of land use change. Journal of Hydrology. 324(1–4): 412–422.
27) Hall, F. 1968. Base flow recessions – a review. Water Resources Research, 4(5): 973-983.
28) Jaime, P. A. and Oxtobee, K.N. 2002. A field investigation of groundwater/surface water interaction in a fractured bedrock environment. Journal of Hydrology. 269(3–4): 169–193.
29) Szilagyi, J. 2004. Heuristic continuous baseflow separation. J. Hydrol. Eng. ASCE. 9(4): 311-318.
30) Mau, D.P. and Winter, T.C. 1997. Estimating ground-water recharge from stream flow hydrographs for a small mountain watershed in a temperate humid climate, New Hampshire, USA. Groundwater. 35(2): 291-304.
31) Lott, D.A. and Stewart, M.T. 2016. Base flow separation: A comparison of analytical and mass balance methods. Journal of Hydrology 535: 525-533.
32) Price, K. 2011. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Prog. Phys. Geogr. Earth Environ. 35, 465–492.
33) Miller, M.P., Buto, S.G., Susong, D.D., Rumsey, C.A. 2016. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin. Water Resources. Research. 52, 3547–3562.
34) Somers, K.A., Bernhardt, E.S., McGlynn, B.L., and Urban, D.L. 2016. Downstream Dissipation of Storm Flow Heat Pulses: A Case Study and its Landscape-Level Implications. J. Am. Water Resour. Assoc. 52, 281–297.
35) Regan, R.S., Markstrom, S.L., Hay, L.E., Viger, R.J., Norton, P.A., Driscoll, J.M., and LaFontaine, J.H. 2018. Description of the National Hydrologic Model for Use with the Precipitation-Runo_ Modeling System (PRMS); U.S. Geological Survey Techniques and Methods 6-B9; USGS: Reston, VA, USA, 2018; p. 38.
36) Regan, R.S., Juracek, K.E., Hay, L.E., Markstrom, S.L., Viger, R.J., Driscoll, J.M., LaFontaine, J.H., and Norton, P.A. 2019. The US Geological Survey National Hydrologic Model infrastructure: Rationale, description, and application of a watershed-scale model for the conterminous United States. Environ. Model. Softw. 111, 192–203.
37) Santhi, C., Allen, P.M., Muttiah, R.S., Arnold, J.G., Tuppad, P. 2008. Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. J. Hydrol. 351, 139–153.
38) Trauth, N., Musol, A., Knöller, K., Kaden, U.S., Keller, T., Werban, U., and Fleckenstein, J.H. 2018. River water infiltration enhances denitrification e_ciency in riparian groundwater. Water Res.130, 185–199.
39) Kouanda, B., Coulibaly, P., Niang, D., Fowe, T., Karambiri, H., Emmanuel Paturel, J. 2018. Analysis of the Performance of Base Flow Separation Methods Using Chemistry and Statistics in Sudano-Sahelian Watershed, Burkina Faso. Hydrol Current Res 9: 300. doi:10.4172/2157-7587.1000300
40) Foks, S.S., Ra_ensperger, J.P., Penn, C.A., and Driscoll, J.M. 2019. Estimation of Base Flow by Optimal Hydrograph Separation for the Conterminous United States and Implications for National-Extent Hydrologic Models. Water. 11, 1629. doi:10.3390/w11081629
Stoelzle, M., Schuets, T., Weiler, M., Stahl, K., and Tallaksen, L.M. 2019. Beyond binary baseflow separation: delayed flow index as a fresh perspective on streamflow contributions. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-2019-236
_||_