The Application of Numerical Method and SKM Quasi-Two-Dimensional Model to Estimate the Shear Stress around a Cylindrical Pier with Submerged Vanes
Subject Areas : Article frome a thesisساجده حاجی عزیزی 1 * , داوود فرسادی زاده 2 , هادی ارونقی 3 , اکرم عباسپور 4
1 - دانشجوی دکتری سازه های آبی، دانشگاه تبریز، تبریز، ایران
2 - استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
3 - دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
4 - دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
Keywords: Bed shear stress, Bridge pier, submerged vanes, Shino and Knight quasi-two-dimensional model, 3D Numerical model,
Abstract :
Investigation of the shear stress to estimate the scour hole around bridge piers is of utmost importance, but a review of the literature shows that the study of this factor, around protected piers by various methods of scour control has not been studied by the researchers. In this research, a three dimensional numerical model has been used to study the variation shear stress on the bridge pier with submerged vanes. However, due to difficulty of calculating the amount of shear stress in the wild, researchers provided indirect ways to calculate these parameters that one of these methods, is the use of quasi-two-dimensional model Shino and Knight (SKM In this study, the pattern of shear stress distribution around the base with a different number of vanes (2, 4 & 6), with the two angle of the flow (20 and 30 degree) and in flow intensity 0.95 (critical flow intensity), with both methods were studied and compared. Both model results show that vanes placement has a great effect on reducing velocity of the passing flow and thus decreasing the bed shear stress around the pier. Also analysis of the counts and placement angles showed that 6 vanes rather to 2 and 4 vanes and also angle of 30 degree rather to angle of 20 degree performs better in action, so that the shear stress reduces the amount of 12-15 percent.
منابع
1) ارونقی، ه. 2010. بررسی کاهش آبشستگی اطراف پایه پل با طوق مستطیلی بهروش تجربی و با استفاده از شبیهسازی الگوی جریان در اطراف آن با مدلهای آشفتگی. پایان نامه دکتری تخصصی سازههای آبی. دانشکده کشاورزی. دانشگاه تبریز.
2) بشارتیگیوی، م.، و حکیمزاده، ح. 2010. بررسی عددی سهبعدی الگوی جریان و تنش برشی بستر اطراف پایههای مخروطی. نشریه مهندسی دریا. 6 (11): 63-70.
3) بهداد، ع.، فغفور مغربی، م.، و گیوهچی، م. 2011. تعیین توزیع سرعت متوسط عمقی و تنش برشی در کانال روباز مثلثی. پنجمین کنگره ملی مهندسی عمران. دانشگاه فردوسی مشهد.78-67.
4) حسن زاده، ی.، حکیم زاده، ح.، و عیاری، ش. 2012. بررسی اثر اشکال مختلف پایه پل بر الگوی جریان اطراف آن با استفاده از نرم افزار Fluent. تحقیقات منابع آب ایران. 7 (4):105-95.
5) شجاعی، پ.2010. تاثیر توام صفحات مستغرق و طوق در کاهش آبشستگی پایه استوانهای پلها. پایان نامه کارشناسی ارشد سازههای آبی. دانشکده کشاورزی. دانشگاه تبریز.
6) Abril, J.B., and Knight, D.W. 2004. Stage-discharge prediction for rives in flood applying a depth-averaged model, J. Hydr. Res., 42 (6): 616-629.
7) Aghaee, Y., and Hakimzadeh, H. 2010. Three dimensional numerical modeling of flow around bridge piers using LES and RANS. Proceedings of the International Conference on Fluvial Hydraulics. River Flow. Braunschweig, Germany. 9p.
8) Babaeyan-Koopaei, K., Ervine, D.A., and Pender, G. 2002. Field measurements and flow modeling of overbank flows in River Severn. U.K. J. Environ. Inf., 1 (1): 28-36.
9) Guo, J., and Julien, P.Y. 2005. Shear stress in smooth rectangular open channel flow. J. Hydr. Eng. ASCE, 131 (1): 30-37.
10) Kean, J.W., Kuhnle, R.A., Smith, J.D., Alonso, C.V., and Langendoen, E.J. 2009. Test of a method to calculate near-bank velocity and boundary shear stress. J. Hydr. Eng. ASCE, 135 (7): 588-601.
11) Khodashenas, S.R., and Paquier, A. 1999. A geometrical method for computing the distribution of boundary shear stress across irregular straight open channel. J. Hydr. Res., 37 (3): 381-388.
12) Knight, D.W., Demetriou, J.D., and Hamed, M.E. 1984. Boundary shear in smooth rectangular channels. Agric. Water Manage, 11 (4): 405-422.
13) Knight, D.W., Shiono, K., and Pirt, J. 1989. Prediction of depth mean velocity and discharge in natural rivers with overbank flow. International Conference on Hydraulics and Environmental Modeling of Coastal, Estuarine and River Waters, England. pp. 419-428.
14) Mohamad, H. 2013. Numerical simulation of flow and local scour at two submerged-emergent tandem cylindrical piers. Journal of Engineering Sciences, Assiut University, 41 (1): 273-289.
15) Shiono, K., and Knight, D.W. 1988. Two dimensional analytical solution for a compound channel. 3rd International Symposium on Refined Flow Modeling and Turbulence Measurements. Japan. pp. 503-510.
16) Shiono, K., and Knight, D.W. 1991. Turbulent open channel flows with variable depth across the channel. J. Fluid Mech. 222: 617-646.
17) Yang, S.Q., and Lim, S.Y. 2002. A geometrical method for computing the distribution of boundary shear stress across irregular straight open channels. J. Hydr. Res. 40 (3): 535-542.
18) Yen, C.L., Lai, J.S., and Chang, W.Y. 2001. Modeling 3D flow and scouring around circular piers. Proc. Nati. Sci. Counc. ROC (A), 25 (1): 17-26
_||_منابع
1) ارونقی، ه. 2010. بررسی کاهش آبشستگی اطراف پایه پل با طوق مستطیلی بهروش تجربی و با استفاده از شبیهسازی الگوی جریان در اطراف آن با مدلهای آشفتگی. پایان نامه دکتری تخصصی سازههای آبی. دانشکده کشاورزی. دانشگاه تبریز.
2) بشارتیگیوی، م.، و حکیمزاده، ح. 2010. بررسی عددی سهبعدی الگوی جریان و تنش برشی بستر اطراف پایههای مخروطی. نشریه مهندسی دریا. 6 (11): 63-70.
3) بهداد، ع.، فغفور مغربی، م.، و گیوهچی، م. 2011. تعیین توزیع سرعت متوسط عمقی و تنش برشی در کانال روباز مثلثی. پنجمین کنگره ملی مهندسی عمران. دانشگاه فردوسی مشهد.78-67.
4) حسن زاده، ی.، حکیم زاده، ح.، و عیاری، ش. 2012. بررسی اثر اشکال مختلف پایه پل بر الگوی جریان اطراف آن با استفاده از نرم افزار Fluent. تحقیقات منابع آب ایران. 7 (4):105-95.
5) شجاعی، پ.2010. تاثیر توام صفحات مستغرق و طوق در کاهش آبشستگی پایه استوانهای پلها. پایان نامه کارشناسی ارشد سازههای آبی. دانشکده کشاورزی. دانشگاه تبریز.
6) Abril, J.B., and Knight, D.W. 2004. Stage-discharge prediction for rives in flood applying a depth-averaged model, J. Hydr. Res., 42 (6): 616-629.
7) Aghaee, Y., and Hakimzadeh, H. 2010. Three dimensional numerical modeling of flow around bridge piers using LES and RANS. Proceedings of the International Conference on Fluvial Hydraulics. River Flow. Braunschweig, Germany. 9p.
8) Babaeyan-Koopaei, K., Ervine, D.A., and Pender, G. 2002. Field measurements and flow modeling of overbank flows in River Severn. U.K. J. Environ. Inf., 1 (1): 28-36.
9) Guo, J., and Julien, P.Y. 2005. Shear stress in smooth rectangular open channel flow. J. Hydr. Eng. ASCE, 131 (1): 30-37.
10) Kean, J.W., Kuhnle, R.A., Smith, J.D., Alonso, C.V., and Langendoen, E.J. 2009. Test of a method to calculate near-bank velocity and boundary shear stress. J. Hydr. Eng. ASCE, 135 (7): 588-601.
11) Khodashenas, S.R., and Paquier, A. 1999. A geometrical method for computing the distribution of boundary shear stress across irregular straight open channel. J. Hydr. Res., 37 (3): 381-388.
12) Knight, D.W., Demetriou, J.D., and Hamed, M.E. 1984. Boundary shear in smooth rectangular channels. Agric. Water Manage, 11 (4): 405-422.
13) Knight, D.W., Shiono, K., and Pirt, J. 1989. Prediction of depth mean velocity and discharge in natural rivers with overbank flow. International Conference on Hydraulics and Environmental Modeling of Coastal, Estuarine and River Waters, England. pp. 419-428.
14) Mohamad, H. 2013. Numerical simulation of flow and local scour at two submerged-emergent tandem cylindrical piers. Journal of Engineering Sciences, Assiut University, 41 (1): 273-289.
15) Shiono, K., and Knight, D.W. 1988. Two dimensional analytical solution for a compound channel. 3rd International Symposium on Refined Flow Modeling and Turbulence Measurements. Japan. pp. 503-510.
16) Shiono, K., and Knight, D.W. 1991. Turbulent open channel flows with variable depth across the channel. J. Fluid Mech. 222: 617-646.
17) Yang, S.Q., and Lim, S.Y. 2002. A geometrical method for computing the distribution of boundary shear stress across irregular straight open channels. J. Hydr. Res. 40 (3): 535-542.
18) Yen, C.L., Lai, J.S., and Chang, W.Y. 2001. Modeling 3D flow and scouring around circular piers. Proc. Nati. Sci. Counc. ROC (A), 25 (1): 17-26.