Optimal placement of smart sensors for RCC dams structural health monitoring using Monte- Carlo
Subject Areas : Article frome a thesisAli Shamsai 1 * , Mohsen Ghaemian 2 , Hamid Reza Vosoughifar 3
1 - Assistant Professor of the Department of Civil Engineering, West Tehran branch, Islamic Azad University, Tehran, Iran.
2 - Professor of the Civil Engineering Department, Sharif University of Technology, Tehran, Iran.
3 - Professor of the Department of water Engineering, South of Tehran branch, Islamic Azad University, Tehran, Iran.
Keywords: Genetic Algorithm, Key Words: Artificial neural network, Monte-Carlo, Abaqus,
Abstract :
Building RCC dams involves pouring and compacting concrete in small layers (30 cm), one on top of another, creating a joint between each layer. This joint could potentially become the “ideal” joint depending on the temperature and lag time between each layer. To check the concrete s temperature using smart sensor is undeniable. Furthermore we use these sensors for RCC dam’s structural health monitoring.
The objective of this paper is to introduce a novel model for arranging the smart sensors for RCC dam’s structural health monitoring .The authors suggest a flow chart and prove it with a real case study. This is useful for RCC dams all around the world.
The case study is Zirdan RCC dam (located in Iran), and the verification is upon Kinta RCC dam (raised in Malaysia). Step 1, the Zirdan dam is modeled in Abaqus . The program outputs give the actual temperature, the thermal stresses of each node. Step 2,The ANN (Artificial neural network) converts discontinuous results in a continuous estate. Step 2, we use the Monte Carlo to achieve a point in each layer, representative of others. the chosen coordinates are fed into GA (genetic algorithm). Next, we define the parameter of importance coefficient as the temperature arrived from the site divided by the model temperature. finally, assimilating it with cost function will allow for having fewer sensors and sensors being placed further apart. All of the above result in the optimum placement of the thermal sensors in RCC dams.
1) نورزاد، ع. جلال، م. (١٣٨٧). فناوریهای نوین در مانیتورینگ سدها. دومین کنفرانس ملی نیروگاههای آبی کشور
2) مددی، ع.، اجتهادی ر. و همکاران. (١٣٩٠). مقایسه نحوه عملکرد پیزومترهای تار مرتعش و فیبر نوری و مزیت های پیزومتر فیبر نوری در پایشسدها. اولین کنفرانس بین المللی و سومین کنفرانس ملی سد و نیروگاه های برقابی. تهران.
3) وثوقی فر، ح. ر. شکوهی، ک. س. (١٣٩٠). مصالح هوشمند در مهندسی عمران و معماری. تهران: سماء قلم
4) J.Noorzaie, K.H.Bayagoob, W.A.Thanoon, M.S.Jaafar. (2006). “Thermal andstress analysis of Kinta RCC dam”. Elsevier science Ltd.
5) Nima Nilipour. (2005). “Study of arch concrete dams constructed by RCCmethod. Thermo-mechanical comparison of RCC and conventional methods appliedin construction of arch dams”.
6) Y.L. Chen, C.J. Wang, S.Y. Li, and L.J. Chen. (2003). “The effect of constructiondesigns on temperature field of a roller compacted concrete dam — a simulationanalysis by a finite element method”. Published on the NRC Research Press.
7) M.S. Jaafar , K.H. Bayagoob , J. Noorzaei ,*, Waleed A.M. Thanoon (2007).Development of finite element computer code for thermal analysis of roller compacted concrete damsAdvances in Engineering Software 38 (2007)p. 886–895
8) Sergerlind LJ.( 1984).Applied finite element analysis. New York: JohnWiley and Sons
9) Hinton E, Owen DRJ. (1981) An introduction to finite element computations.UK: Swansea: Pineridge Press Limited;
10) Wouwer A V, Point N, Porteman S and Remy M (2000) Anapproach to the selection of optimal sensor locations indistributed parameter systems J. Process Control 291–300
11) Eckhardt , R . ( 1987 ) . Stan Ulam, John von Neumann, and the Monte Carlo Method . Los Alamos Science . Special Issue (15) , pp. 131 – 137.
12) Tongpadungrod P, Rhys T D L and Brett P N (2003) An approach to optimise the critical sensor locations in one-dimensional novel distributive tactile surface to maximize performance Sensors ActuatorsGaspar , F. Lopez-Caballero , A. Modaressi-Farahmand-Razavi , A. Gomes-Correia(2014). Methodology for a probabilistic analysis of an RCC gravity dam construction. Modeling of temperature, hydration degree and ageing degree fields. Engineering Structures 65 (2014)p 99–110
13) Monte Carlo Method ( 2005 ). [Online]. [1 December 2005]. Available from World Wide ,Web :http://www.riskglossary.com/link/monte_carlo_method.htm
14) Abdullah M, Richardson A and Hanif J (2001) Placement of sensor/actuators on civil structures using genetic algorithms Earthq. Eng. Struct. Dyn. 30 1167–84
15) Jafarbegloo , M.R. Hajialikhani, Results of Mix Designs in Zirdan RCC Dam Proceedings of the 6th International symposium on Roller compacted concrete dams
16) M.R. Sadri,H.R. Araghian (2009).Laboratory Studies for Selection of a SuitableChemical Admixture in Zirdan RCCDam.Proceedings of the 1st International Conference on Concrete Technology, Tabriz, Iran, 6-7 November 2009
17) L. Yao, W.A. Sethares, D.C. Kammer, Sensor placement for on-orbit modal identification via a genetic algorithm, AIAA Journal 31 (10)(1993) 1922–1928.
18) M.M. Abdullah, A. Richardson, H. Jameel, Placement of sensors/ actuators on civil structures using genetic algorithm, Earthquake Engineering and Structural Dynamics 30 (8) (2001) 1167–1184.
19) W.P. Huang, J. Liu, H.J. Li, Optimal sensor placement based on genetic algorithms, Engineering Mechanics 22 (1) (2005) 113 -117.
20) H. Gao, J.L. Rose, Sensor placement optimization in structural health monitoring using genetic and evolutionary algorithms, Proceedings of SPIE 6174 (2006) 1–12.
21) Ted Warren(2012) .ROLLER COMPACTED CONCRETE FOR DAM CONSTRUCTION ,Volume 22, Issue 2, 01 June 2012 , pages 87 –90
22) Brian A. Forbes.(2003).Using Sloped Layers to Improve RCC Dam Construction. HRW, July 2003 - © HCI Publications,
23) Bai JC, Chang HY, Yang Y.A partheno-genetic algorithm for multidimensional knapsack problem. Proceedings of the 4th International Conference on Machine Learning and Cybernetics. Guangzhou,China: 2005. p. 2962–2965.
24) H YGuo, L Zhang, L L Zhang and J X Zhou(2004) Optimal placement of sensors for structural health monitoring using improved genetic algorithms. Smart Mater. Struct. 13 (2004) 528–534.
25) M. Meo, G. Zumpano, On the optimal sensor placement techniques for a bridge structure, Engineering Structures 27 (10) (2005) 1488–1497.
26) [27] Young Hoon wKa k a and L isa Ingal (2007) EXPLORING MONTE CARLO SIMULATION APPLICATIONS FOR PROJECT MANAGEMENT, Risk Management 2007, 9, (44–57)
27) Fei Kang, Jun-jie Li, Qing Xu(2007) Virus coevolution partheno-genetic algorithms for optimal sensor placement. Advanced Engineering Informatics 22 (2008) 362–370
28) Xiaosu Yi, Jia Liu, Xiangyu Ye, Song Lin(2013) An optimal placement of FBG sensor network based on probability model. Optik 124 (2013) 1045– 1048.
29) Ting-Hua YI, H.-N. L. (2011). Optimal sensor placement for health monitoring of high-rise structure based on genetic algorithm. Mathematical Problems in Engineering.
30) Ting-Hua YI, Hong-Nan LI1, & Ming GU2. (2011). Optimal sensor placement for health monitoring of high-rise structure based on genetic algorithm. Mathematical Problems in Engineering.
31) Binbin, L., Jinping, O., Xuefeng, Z., & Dongsheng, L. (2011). Optimal Sensor placement in health monitoring sustem of Xinghai Bay bridge. The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology. Dalian, China.
32) Li, D. (2011). Sensor Placement Methods and Evaluation Criteria in Structural Health Monitoring. Universität Siegen.
_||_