Mean Flow Velocity Prediction of Lateral Intakes by Using Computational Fluid Dynamic , Artificial Neural Network and the Flowmeter Measurements
Subject Areas : Article frome a thesissohrab karimi 1 , hojat karami 2 * , kh حسینی 3
1 - دانشکده مهندسی عمران دانشگاه سمنان
2 - دانشکده مهندسی عمران دانشگاه سمنان
3 - دانشکده مهندسی عمران دانشگاه سمنان
Keywords: Velocity profile, Artificial neural network, Lateral intake, Computational fluid dynamic, Flowmeter,
Abstract :
Lateral intakes are one of the most common structures of dividing the flow in irrigation and drainage systems. Due to complexity of the velocity profile in divide zone, measurement of mean flow velocity is become very difficult. In this paper the velocity profile of lateral intakes were calculated whit high accuracy by using of artificial neural network. To do this, the following steps have been taken: (1) Computational fluid dynamic model of lateral intakes in various wide ratios were modeled and validated with a published experimental study. The results shown that the numerical model has high accuracy in modeling the flow of lateral intakes. (2) By using the computational fluid dynamic model, the velocity that measured with a hypothetical flowmeter that placed at the middle of the cross section were extracted. (3) A multilayer perceptron model were designed to predicting the mean flow velocity by using of the flowmeter measured velocity, width ratio and longitudinal coordinate. The results shown that using of combination of flowmeter measurement and artificial neural network could predict the accurate mean flow velocity in lateral intakes.
منابع مورد استفاده
1) احمدی م و بنکداری ح، 1391. ضریب کالیبراسیون اندازه گیری سرعت در انحراف مسیر نهر های باز. نهمین سمینار بینالمللی مهندسی رودخانه. بهمن ماه، دانشگاه شهید چمران، اهواز.
2) احمدی م، بنکداری ح و اختری ع، 1392. تاثیر عمق آب بر اندازه گیری سرعت پس از انحراف مسیر نهر به وسیله دستگاه حساسهای التراسونیک داپلر. دوازدهمین کنفرانس هیدرولیک ایران. آبان ماه، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج.
3) 3. Baghalian, S., Bonakdari, H., Nazari, F., and Fazli, M. 2012. Closed-form solution for flow field in curved channels in comparison with experimental and numerical analyses and Artificial Neural Network. Eng Appl Comput Fluid Mech 6: 514-526.
4) 4. Bilhan, O., Emiroglu, M.E., and Kisi, O. 2011. Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels. Adv Eng Software 42: 208-214.
5) 5. Bonakdari, H., and Zinatizadeh, A.A. 2008. How can computational fluid dynamics improve measuring in real sewers? Pp. 29-32. 6th International Symposium on ultrasonic doppler methods for fluid mechanics and fluid engineering. 9-11 septembre, technical university, prague, czech republic.
6) 6. Bonakdari, H., and Zinatizadeh, A.A. 2011. Influence of position and type of doppler flow meters on flow-rate measurement in sewers using computational fluid dynamic. Flow Meas Instrum 22: 225-234.
7) 7. Bonakdari, H., Baghalian, S., Nazari, F., and Fazli, M. 2011. numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm. eng appl comput fluid mech 5: 384-396.
8) 8. Ebtehaj, I., and Bonakdari, H. 2013. Evaluation of Sediment Transport in Sewer using Artificial Neural Network. Eng Appl Comput Fluid Mech 7: 382-392.
9) 9. Huang, J., Weber, L.J., and Lai, Y.G. 2002. Three-dimensional numerical study of flows in open-channel junctions. J Hydraul Eng 128: 268-280.
10) 10. Hughes, A.W., Longair, I.M., Ashley, R.M., and Kirby, K. 1996. Using an array of ultrasonic velocity transducers to improve the accuracy of large sewer mean velocity measurements. Water Sci Technol 33: 1-12.
11) 11. Kim, B., Lee, S.E., Song, M.Y., Choi, J.H., Ahn, S.M., Lee, K.S., and Koh, S.C. 2008. Implementation of artificial neural networks (ANNs) to analysis of inter-taxa communities of benthic microorganisms and macro invertebrates in a polluted stream. Sci Total Environ 390:262-274.
12) 12. Kisi, O. 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol Sci J 50: 683-696.
13) 13. Melesse, A.M., Ahmad, S., McClain, M.E., Wang, X. and Lim, Y.H. 2011. Suspended sediment load prediction of river systems: An artificial neural network approach. Agr Water Manage 98: 855-866.
14) 14. Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivire, N., and Bertrand-Krajewski, J.L. 2012. experiments and 3D simulations of flow structures in junctions and their influence on location of flowmeters. Water Sci Technol 66: 1325-1332.
15) 15. Olsen, N.B.R. 2006. A three-dimensional numerical model for simulation of sediment movements in Water Intakes with moltiblock option, department of hydraulic and environmental engineering, The norwegian university of science and technology.
16) 16. Ramamurthy, A., Qu, J., and Vo, D. 2007. Numerical and experimental study of dividing open-channel flows. J Hydraul Eng 133: 1135-1144.
17) 17. Shakibainia, A., Tabatabai, M.R.M., and Zarrati, A.R. 2010. Three-dimensional numerical study of flow structure in channel confluences. Can J Civil Eng 37: 772-781.
18) 18. Smith, M. 1993. Neural networks for statistical modeling. Thomson Learning.
19) 19. Wilcox, D.C. 2000. Turbulence modeling for CFD. 2nd Ed, DCW Industries, Inc.