Allocation of Fire Stations by Hybrid Method (Case Study: Mashhad)
Subject Areas : Urban Management StudiesHamed Kharaghani 1 , Hossein Etemadfard 2 , Ahmad Salem Rafush 3
1 - Civil Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad
2 - Civil Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad (FUM)
3 - Civil Engineering Department-Engineering Faculty-Ferdowsi University of Mashhad
Keywords: GIS, AHP, Genetic algorithm, PSO, Urban Management,
Abstract :
Introduction & Objective of the research: One of the service centers that play an important role in the safety of the city is the fire stations. Prompt and timely access from these stations to the scene of the accident requires the optimal distribution of fire stations throughout the city. The study's purpose is to investigate the proper location of fire stations in the city of Mashhad using hybrid methods. Research Method: This research is an applied goal and is descriptive-analytical in type. Layers of information The criteria for distance from existing fire stations, medical centers, roads, administrative centers and training centers in the spatial information system environment are prepared and weighted using the Analytic Hierarchy Process (AHP). Then, the overlap map of these criteria was classified into five classes and the first 20 points in the most suitable classes for the construction of the fire station were selected. Then, using genetic algorithms (GA) and particle swarm (PSO) and using the criteria of distance from sports centers, religious centers, gas stations and gas stations, cultural, historical and commercial centers, these 20 selected points were compared with each other and The optimal point for the construction of a fire station has been proposed. Results: GA and PSO have proposed the same point with a fit function of 4.98 as the best place for the construction of a fire station in Mashhad. Conclusion: The performance results of the two meta-heuristic algorithms show that according to the defined parameters for each of the algorithms, PSO reaches the optimal answer in less time than GA.
اجزاء شکوهی، محمد. شایان، حمید. و درودی، محمدهادی. (1393). «مکانیابی بهینه ایستگاههای آتشنشانی در شهر مشهد». جغرافیا و مخاطرات محیطی؛ 3(3): 107-128.
بلوری، سمیرا. وفایینژاد، علیرضا. (1392). «استفاده از الگوریتم شبیهسازی حرارتی برای بهینهسازی مسئله مکانیابی ـ تخصیص چندهدفه در محیط سیستم اطلاعات مکانی (مطالعه موردی: ایستگاههای آتشنشانی منطقه 11 شهر تهران) ». مطالعات مدیریت شهری, 5(شماره 4 (پیاپی 16)), 38-50.
پوررمضان، عیسی. جوان، فرهاد. (1395). تحلیل محدودیتهای ایمنی و مکانیابی بهینه ایستگاههای آتشنشانی با بهرهگیری از سیستم اطلاعات جغرافیایی (مطالعه موردی: شهر رشت) ». جغرافیایی سرزمین. 13(50): 1-16.
پیاده کوهسار، جواد. مازندرانیزاده، حامد. صدر، سیدمحمدکاظم. (1398). «ارزیابی الگوریتمهای بهینهسازی GA و PSO در بهرهبرداری از سیستمهای چندمخزنه مطالعه موردی: سدهای حوضه گرگان رود». مجله پژوهشهای حفاظت آب و خاک، 26(2): 239-250.
تقی زاده فانید، ابوالقاسم. سالکی ملکی، محمدعلی. رنجبرنیا، بهزاد. قاسمی خوئی، معصومه. (1394). «ارائه الگویی برای استقرار منطقی ایستگاههای آتشنشانی (نمونه موردی: شهر تبریز) ». امداد و نجات. 7(2). 81-92.
جلالی، ریحانه. اعتمادفرد، حسین. خرقانی، حامد. شاد، روزبه. و صادقی، وحید. (1400). «مدل اولویتبندی و تخصیص واکسن کرونا در محلات شهر مشهد با استفاده از AHP و منطق فازی». طلوع بهداشت. ۲۰ (۴) :۷۸-۶۳.
حسین پورکوهشاهی، بهرام. مهدوی نجفآبادی، رسول. و حلی ساز، ارشک. (1397). «مکان گزینی ایستگاههای آتشنشانی با منطق فازی و تحلیل سلسله مراتبی (AHP) (مطالعه موردی: منطقه یک شهری بندرعباس)». جغرافیا و توسعه فضای شهری. 145-163.
دهقانی، مصطفی. و چمی، مهدی. (1398). «نقش مکانیابی بهینه ایستگاههای آتشنشانی با رویکرد مدیریت بحران». ششمین کنفرانس ملی فناوریهای نوین در مهندسی عمران، معماری و شهرسازی، تهران.
رهنما، محمدرحیم. و آفتاب، احمد. (1393). «مکانیابی ایستگاههای آتشنشانی شهر ارومیه با استفاده از GIS و AHP». جغرافیا و توسعه. (35)12: 153-165.
زیاری، یوسفعلی. و یزدان پناه، سمانه. (1390). «مکانیابی ایستگاههای آتشنشانی با استفاده از مدل AHP در محیط GIS (مطالعه موردی: شهر آمل) ». مطالعات برنامهریزی سکونتگاههای انسانی (چشمانداز جغرافیایی). (14)6: 74-87.
شفیعی، مهدی. و قنبرزاده لک، مهدی. (1397). «مدلسازی فرآیند مکانیابی مناطق مستعد تغذیه مصنوعی آبهای زیرزمینی جهت پخش سیلاب مبتنی بر تکنیک GIS و روش AHP (مطالعه موردی: آبخوان دشت خوی) ». تحقیقات منابع آب ایران. (5)14: 219-236.
عادلی، محسن. (1390). «مکانیابی ایستگاههای آتشنشانی شهر گرگان با استفاده از سیستمهای اطلاعات جغرافیایی.» مجله آمایش جغرافیایی فضا. 1(2): 89-128.
عفتی، میثم. کارگرخوش طبع، علی. و نسیمی، عمادالدین. (1396). «بهینهسازی مکانی سفرهای درونشهری با الهام از مسئله فروشنده دورهگرد و الگوریتمهای فرا ابتکاری». همایش ملی ژئوماتیک، دوره 24، تهران.
نظریان، اصغر. و کریمی، ببراز. (1388). «ارزیابی توزیع فضایی و مکانیابی ایستگاههای آتشنشانی شهر شیراز با استفاده از GIS». فصلنامه جغرافیایی چشمانداز زاگرس، 1(2): 5-19.
نظریان، اصغر. یاری، پروانه. و کرمی نژاد، طیبه. (1394). «مکانیابی بهینه ایستگاههای آتشنشانی با استفاده از سیستم اطلاعات جغرافیایی GIS (مطالعه موردی: شهرکرمانشاه) ». امداد و نجات. (2)7: 26-37.
هادیانی، زهره. کاظمی زاد، شمس اله. (1389 ). «مکانیابی ایستگاههای آتشنشانی با استفاده از روش تحلیل شبکه و مدل AHP در محیط GIS مطالعه موردی: شهر قم». جغرافیا و توسعه. (17)8: 99-112.
یوسفی، حسین، و [دیگران]. (1399). «مکانیابی پخش سیلاب با تلفیق مدلهای AHP و Fuzzy با استفاده از روش WLC در GIS (مطالعهی موردی: حوضهی آبخیز خرمآباد) ». اکوهیدرولوژی. (1)7: 251-261.
_||_Aktaş, E., Özaydın, Ö., Bozkaya, B., Ülengin, F., & Önsel, Ş. (2013). Optimizing fire station locations for the Istanbul metropolitan municipality. Interfaces, 43(3), 240-255.
Bui, D. T., Pradhan, B., Nampak, H., Bui, Q. T., Tran, Q. A., & Nguyen, Q. P. (2016). Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540, 317-330.
Chaudhary, P., Chhetri, S. K., Joshi, K. M., Shrestha, B. M., & Kayastha, P. (2016). Application of an Analytic Hierarchy Process (AHP) in the GIS interface for suitable fire site selection: A case study from Kathmandu Metropolitan City, Nepal. Socio-economic planning sciences, 53, 60-71.
Chen, W., Panahi, M., & Pourghasemi, H. R. (2017). Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena, 157, 310-324.
Dasgupta, D., & Michalewicz, Z. (1997). Evolutionary algorithms in engineering applications. Springer Science & Business Media.
Erden, T., & Coşkun, M. Z. (2010). Multi-criteria site selection for fire services: the interaction with analytic hierarchy process and geographic information systems. Natural Hazards and Earth System Sciences, 10(10), 2127-2134.
Habibi, K., Lotfi, S., & Koohsari, M. J. (2008). Spatial analysis of urban fire station locations by integrating AHP model and IO logic using GIS (a case study of zone 6 of Tehran). Journal of Applied Sciences, 8(19), 3302-3315.
Hajipour, V., Fattahi, P., Bagheri, H., & Babaei Morad, S. (2022). Dynamic maximal covering location problem for fire stations under uncertainty: soft-computing approaches. International Journal of System Assurance Engineering and Management, 13(1), 90-112.
Helly,W. (1975). Urban Systems Models; Academic Press: Cambridge, MA, USA.
Hogg, J. (1968). The siting of fire stations. J. Oper. Res. Soc. 19, 275–287.
Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
Kazemi, M., Kunt, M. M., Aghayan, I., & Larijani, R. J. (2013). Optimization model for fire station location based on GIS and Python: a case study in North Cyprus. In Applied Mechanics and Materials (Vol. 330, pp. 1059-1064). Trans Tech Publications Ltd.
Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE.
Liu, N., Huang, B., & Chandramouli, M. (2006). Optimal siting of fire stations using GIS and ANT algorithm. Journal of computing in civil engineering, 20(5), 361-369.
Martín-Fernández, S., Martínez-Falero, E., Peribáñez, J. R., & Ezquerra, A. (2021). GIS-Based Simulated Annealing Algorithm for the Optimum Location of Fire Stations in the Madrid Region, Spain: Monitoring the Collapse Index. Applied Sciences, 11(18), 8414.
Nyimbili, P. H., & Erden, T. (2020). GIS-based fuzzy multi-criteria approach for optimal site selection of fire stations in Istanbul, Turkey. Socio-Economic Planning Sciences, 71, 100860.
Plane, D. R., & Hendrick, T. E. (1977). Mathematical programming and the location of fire companies for the Denver fire department. Operations Research, 25(4), 563-578.
Reilly, J. M., & Mirchandani, P. B. (1985). Development and application of a fire station placement model. Fire technology, 21(3), 181-198.
Saaty, T. L. (1980). The analytic hierarchy process McGraw-Hill. New York, 324.
Şen, A., İsmail, Ö., Gökgöz, T., & Şen, C. (2011). A GIS approach to fire station location selection.
Zhang, W., & Jiang, J. C. (2012). Research on the location of fire station based on GIS and GA. In Applied Mechanics and Materials (Vol. 130, pp. 377-380). Trans Tech Publications Ltd.