Assessment of the Impact of Natural Ventilation on Thermal Comfort in Contemporary Residential Buildings in Tehran: A Case Study of District 4
Subject Areas : Urban Management Studies
Mahsa Behnam
1
,
Vahdaneh Fooladi
2
*
1 -
2 - Department of Architecture, SR.C, Islamic Azad University, Tehran, Iran
Keywords: Natural Ventilation, Vernacular Architecture, Thermal Comfort, Sustainability, Climate Responsive Design,
Abstract :
Introduction and Research Aim:With the increasing ambient temperatures and the growing reliance on mechanical cooling systems in Tehran,significant challenges have emerged in ensuring thermal comfort and managing energy consumption. While traditional vernacular architecture in Tehran provided more sustainable conditions through the use of natural ventilation and climate-responsive building organization, these capacities have largely been overlooked in contemporary designs. Accordingly, this study aims to evaluate the impact of natural ventilation on enhancing thermal comfort and reducing cooling loads in contemporary residential complexes in District 4 of Tehran.
Research Methodology: Firstly, climatic data for the region were analyzed using Climate Consultant software to extract annual thermal patterns. The selected residential complexes were then categorized based on architectural features and the organization of openings.Subsequently, energy simulations were performed using DesignBuilder. Field data on occupants’ thermal perceptions were collected via a Likert-scale questionnaire and analyzed with SPSS.
Findings:The results indicated that complexes with cross-ventilated layouts and north–south orientation experienced more favorable airflow,lower indoor temperatures,and a significant reduction in cooling loads. However, relying solely on natural ventilation in all units was insufficient to achieve optimal thermal comfort,and a combination with low-energy mechanical systems was deemed necessary.The analysis of field data also revealed a significant relationship between natural airflow and occupants’ thermal satisfaction.
Conclusion:The findings suggest that integrating natural ventilation strategies with vernacular climate-responsive design principles in contemporary architecture can serve as a sustainable and effective approach to improving indoor environmental quality and reducing energy consumption.
• دهناد، نازنین، کریمی، باقر، مهدوینژاد، جمالالدین. (1400)، بررسی تأثیر مورفولوژی مجتمعهای مسکونی بر آسایش حرارتی فضای باز. فصلنامه مطالعات مدیریت شهری، 13(46)، 21-33.
• رهسپارمنفرد، رضا، عظمتی، سعید. (1400)، تحلیل رفتار باد در تهویه طبیعی و کاهش مصرف انرژی در بنای مسکونی مبتنی بر معماری بومی (مورد مطالعاتی: تأثیر ابعاد و جانمایی بازشو بر تهویه طبیعی در شهر آمل). فصلنامه آرمانشهر معماری و شهرسازی، 14(35)، 103-114.
• ضیائی، شادی، محمودیزرندی، مهناز(1400)، تحلیلی بر نقش فضاهای نیمهباز در معماری بومی مسکونی شهر رشت جهت بهرهگیری از تهویه طبیعی. مطالعات برنامهریزی سکونتگاههای انسانی، 16(3)، 523-535.
• کریمی، میلاد، حیدری، شاهین، مفیدی شمیرانی، سیدمجید.(1400)،ارزیابی آسایش حرارتی بناهای نوساز ناحیه کوهستانی اقلیم معتدل و مرطوب در تابستان (نمونه موردی: علیآباد کتول). دوفصلنامه فضای زیست، 3(1)، 25-48.
• Ali, K., et al. (2020). The role of natural ventilation in energy saving. Energy and Buildings, 222, 110084.
• Aljohani, K., & Alotaibi, F. (2023). Natural ventilation performance and thermal comfort in residential buildings in hot and dry climates: A case study in Riyadh, Saudi Arabia. Building and Environment, 232, 107157.
• ASHRAE. (2020). ANSI/ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers.
• Aste, N., Butera, F. M., Adhikari, R. S., & Leonforte, F. (2020). Sustainable building design for tropical climates. In Innovative Models for Sustainable Development in Emerging African Countries (pp. 37–46). Springer International Publishing, Cham.
• Bokhari, A., & Khan, H. A. (2023). Adaptive thermal comfort models for residential buildings with natural ventilation in mixed climates. Sustainable Cities and Society, 81, 103759.
• Brager, G. S., & De Dear, R. J. (1998). Thermal adaptation in the built environment. Energy and Buildings, 27(1), 83–96.
• Chen, H., Ding, X., Li, R., Gong, S., Liu, B., Li, Q., & Gao, W. (2024). An experimental case study of natural ventilation effects on the residential thermal environment and predicted thermal comfort in Kunming. Case Studies in Thermal Engineering, 56, 104198.
• Chen, Q. (2017). Ventilation performance prediction for buildings. Springer.
• Elnaklah, R., Alnuaimi, A., Alotaibi, B. S., Topriska, E., Walker, I., & Natarajan, S. (2021). Thermal comfort standards in the Middle East: Current and future challenges. Building and Environment, 200, 107899.
• Fanger, P. O. (1970). Thermal comfort: Analysis and applications in environmental engineering. McGraw-Hill.
• Ghali, M. A., & Al-Sharif, A. (2023). Integration of natural ventilation and evaporative cooling systems in residential buildings: A study in arid climates. Journal of Building Performance, 14(1), 65–78.
• Grygierek, K., & Sarna, I. (2020). Impact of passive cooling on thermal comfort in a single-family building for current and future climate conditions. Energies, 13(20), 5332.
• Hassan, A., et al. (2022). Effects of physical activity and health status on thermal comfort. Building and Environment, 221, 108225.
• Heidari, S., Poshtiri, A. H., & Gilvaei, Z. M. (2024). Enhancing thermal comfort and natural ventilation in residential buildings: A design and assessment of an integrated system with horizontal windcatcher and evaporative cooling channels. Energy, 289, 130040.
• Hoof, J. V. (2010). Thermal comfort: Research and practice. Frontiers in Bioscience, 15(1), 765.
• Leo Samuel, D. G., Dharmasastha, K., Shiva Nagendra, S. M., & Maiya, M. P. (2017). Thermal comfort in traditional buildings composed of local and modern construction materials. International Journal of Sustainable Built Environment, 6(2), 463–475.
• López, A., et al. (2021). Energy-saving strategies using natural ventilation for hot climates. Energy Reports, 7, 234–243.
• Moir, S., & Fischer, D. (2000). Stack and wind-driven ventilation. Building and Environment, 35(4), 313–320.
• Nejat, P., Ferwati, M. S., Calautit, J., Ghahramani, A., & Sheikhshahrokhdehkordi, M. (2021). Passive cooling and natural ventilation by the windcatcher (Badgir): An experimental and simulation study of indoor air quality, thermal comfort and passive cooling power. Journal of Building Engineering, 41, 102436.
• Norberg-Schulz, C. (1980). Genius loci: Towards a phenomenology of architecture. Academy Editions.
• Ogunjimi, L. O., et al. (2020). Hybrid ventilation systems in warm climates: A review. Energy and Buildings, 211, 109819. • Pourtangestani, M., Izadyar, N., Jamei, E., & Vrcelj, Z. (2025). Integrating occupant behavior into window design: A dynamic simulation study for enhancing natural ventilation in residential buildings. Buildings, 15(13), 2193.
• Sharif, M. F., & Zubair, M. A. (2025). Adaptive strategies for natural ventilation control in residential buildings: A case study in Karachi. Energy Reports, 11, 455–468.
• Srinivasan, R., et al. (2023). Impact of humidity and temperature on thermal comfort in residential buildings. Journal of Building Performance, 14(2), 235–245.
• Yadeta, A., Assefa, A., & Mengistu, M. (2023). Thermal comfort and human adaptation in naturally ventilated residential buildings in Jimma, Ethiopia: An investigation of clothing adaptation and biomass energy use. Energy and Buildings, 246, 111135.
• Yao, L., et al. (2022). Natural ventilation in residential buildings: Impact on indoor air quality and energy consumption. Building and Environment, 226, 109710.
• Zhang, H., et al. (2023). A study on thermal comfort in naturally ventilated buildings. Building and Environment, 235, 110123.
• Zoure, A. N., & Genovese, P. V. (2023). Implementing natural ventilation and daylighting strategies for thermal comfort and energy efficiency in office buildings in Burkina Faso. Energy Reports, 9, 3319–3342.