Evaluation of biosorption ability of Aspergillus niger’s modified cells to remove copper from industrial wastewater
Subject Areas : Environmental issues related to water systemsMahin Moradi 1 , Soroor Sadeghi 2 * , Sara Sharifi 3
1 - Department of Chemical Engineering, Engineering Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
2 - Department of Chemistry, Basic Sciences Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
3 - Department of Biology, Basic Sciences Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
Keywords: Biosorption, Chemical cell modification, Copper, Industrial wastewater treatment, Aspergillus niger, Metal plating industry ,
Abstract :
The removal of heavy metal pollution existing in industrial wastewater is one of the major challenges in preserving water resources. Copper is one of the metals that is present in the effluent of many industries, especially metal plating industries with high concentrations, and the absorption of this metal by renewable and available bio-sorbents has received much attention. The present study was conducted to investigate the biosorption ability of Aspergillus niger fungus cells in removing copper ions from industrial wastewater and determining the parameters affecting it. Aspergillus niger fungus cells were pre-treated with sodium hydroxide before the biosorption process to reach the maximum biological absorption capacity. A certain weight of dry biomass was placed in contact with 25 ml of copper solution at 25°C, and after a specific contact time, the biomass was filtered by centrifugation, and copper concentration was measured using the spectroscopy method at a wavelength of 324 nm. According to the results, the best efficiency of active biosorption in optimal conditions using 0.1 g of active fungus cells was 81.15% at a pH of 7 in a copper metal solution with a concentration of 200 mg.L-1, after 5 minutes of contact time at 25°C. Optimum conditions were applied to real wastewater samples from the electroplating industry and after 60 minutes of contact time, the removal efficiency was 99.94%. The biological absorption process follows the Langmuir isotherm model and kinetic studies showed that the biological absorption processes follow the pseudo-second-order kinetic equation, which shows the involvement of the chemical absorption process in determining the rate of copper biosorption by Aspergillus niger fungus cells. Also, bio-sorbent regeneration and copper recycling have been investigated. This study showed that Aspergillus niger can be used as a renewable, effective, low-cost, and environmentally friendly bio-sorbent for the removal and recovery of copper from metal plating industry wastewater.
Abdullahi, M., & Ibrahim, A.D. (2018). Bioaccumulation of lead (Pb), chromium (Cr) and cadmium (Cd) by Aspergillus flavus and Fusarium oxysporum isolated from tannery wastewater. J. Environ. Toxicol. Public Heal, 3, 18-24. https://doi.org/10.5281/ZENODO.1317538
Bertram, M., Graedel, T. E., Rechberger, H., & Spatari, S. (2002). The contemporary European copper cycle: waste management subsystem. Ecological Economics, 42(1-2), 43-57. https://doi.org/10.1016/S0921-8009(02)00100-3
Cárdenas González, J. F., Rodríguez Pérez, A. S., Vargas Morales, J. M., Martínez Juárez, V. M., Rodríguez, I. A., Cuello, C. M., ... & Muñoz Morales, A. (2019). Bioremoval of cobalt (II) from aqueous solution by three different and resistant fungal biomasses. Bioinorganic Chemistry and Applications, 2019(1), 8757149. https://doi.org/10.1155/2019/8757149
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
Harboul, K., Alouiz, I., Hammani, K., & El-Karkouri, A. (2022). Isotherm and kinetics modeling of biosorption and bioreduction of the Cr (VI) by Brachybacterium paraconglomeratum ER41. Extremophiles, 26(3), 30. https://doi.org/10.1007/s00792-022-01278-9
Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
Hu, J., Song, Z., Chen, L., Yang, H., Li, J., & Richards, R. (2010). Adsorption properties of MgO (111) nanoplates for the dye pollutants from wastewater. Journal of Chemical & Engineering Data, 55(9), 3742-3748. https://doi.org/10.1021/je100274e
Ismail, B. S., Farihah, K., & Khairiah, J. (2005). Bioaccumulation of heavy metals in vegetables from selected agricultural areas. Bulletin of Environmental Contamination & Toxicology, 74(2), 320-327. https://doi.org/10.1007/s00128-004-0587-6
Kapoor, A., & Viraraghavan, T. (1997). Heavy metal biosorption sites in Aspergillus niger. Bioresource Technology, 61(3), 221-227. https://doi.org/10.1016/S0960-8524(97)00055-2
Kapoor, A., & Viraraghavan, T. (1998). Biosorption of heavy metals on Aspergillus niger: effect of pretreatment. Bioresource Technology, 63(2), 109-113. https://doi.org/10.1016/S0960-8524(97)00118-1
Kapoor, A., Viraraghavan, T., & Cullimore, D. R. (1999). Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology, 70(1), 95-104. https://doi.org/10.1016/S0960-8524(98)00192-8
Lawrence, K., Wang, J.T., Stephen, T.T, & Yung-Tse, H. (2010). Handbook of environmental engineering, environmental bioengineering, Springer, New York Dordrecht Heidelberg London.
Malamis, S., Katsou, E., & Haralambous, K. J. (2011). Study of Ni (II), Cu (II), Pb (II), and Zn (II) removal using sludge and minerals followed by MF/UF. Water, Air, & Soil Pollution, 218, 81-92. https://doi.org/10.1007/s11270-010-0625-4
Mukhopadhyay, M., Noronha, S.B., & Suraishkumar, G.K. (2007). Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresource Technology, 98(9), 1781-1787. https://doi.org/10.1016/j.biortech.2006.06.025
Mukhopadhyay, M., Noronha, S. B., & Suraishkumar, G. K. (2008). Copper biosorption in a column of pretreated Aspergillus niger biomass. Chemical Engineering Journal, 144(3), 386-390. https://doi.org/10.1016/j.cej.2008.02.007
Noormohamadi, H. R., Fat’hi, M. R., Ghaedi, M., & Ghezelbash, G. R. (2019). Potentiality of white-rot fungi in biosorption of nickel and cadmium: modeling optimization and kinetics study. Chemosphere 216, 124–130. https://doi.org/10.1016/j.chemosphere.2018.10.113
Papandreou, A., Stournaras, C. J., & Panias, D. (2007). Copper and cadmium adsorption on pellets made from fired coal fly ash. Journal of Hazardous Materials, 148(3), 538-547. https://doi.org/10.1016/j.jhazmat.2007.03.020
Rafiq, Z., Nazir, R., Shah, M. R., & Ali, S. (2014). Utilization of magnesium and zinc oxide nano-adsorbents as potential materials for treatment of copper electroplating industry wastewater. Journal of Environmental Chemical Engineering, 2(1), 642-651. https://doi.org/10.1016/j.jece.2013.11.004
Rengaraj, S., Kim, Y., Joo, C. K., Choi, K., & Yi, J. (2004). Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resins: 1200H and IRN97H. Korean Journal of Chemical Engineering, 21, 187-194. https://doi.org/10.1007/BF02705397
Roșca, M., Silva, B., Tavares, T., & Gavrilescu, M. (2023). Biosorption of hexavalent chromium by Bacillus megaterium and Rhodotorula sp. Inactivated Biomass. Processes, 11(1), 179. https://doi.org/10.3390/pr11010179
Shah, S. S., Palmieri, M. C., Sponchiado, S. R. P., & Bevilaqua, D. (2020). Enhanced bio-recovery of aluminum from low-grade bauxite using adapted fungal strains. Brazilian Journal of Microbiology, 51, 1909-1918. https://doi.org/10.1007/s42770-020-00342-w
Tsekova, K., Todorova, D., Dencheva, V., & Ganeva, S. (2010). Biosorption of copper (II) and cadmium (II) from aqueous solutions by free and immobilized biomass of Aspergillus niger. Bioresource Technology, 101(6), 1727-1731. https://doi.org/10.1016/j.biortech.2009.10.012
Virolainen, S., Holopainen, O., Maliarik, M., & Sainio, T. (2019). Ion exchange purification of a silver nitrate electrolyte. Minerals Engineering, 132, 175-182. https://doi.org/10.1016/j.mineng.2018.12.020
Wang, J. Y., Cui, H., Cui, C. W., & Xing, D. F. (2016). Biosorption of copper (II) from aqueous solutions by Aspergillus niger-treated rice straw. Ecological Engineering, 95, 793-799. https://doi.org/10.1016/j.ecoleng.2016.07.019
Wang, J. Y., & Cui, C. W. (2017). Characterization of the biosorption properties of dormant spores of Aspergillus niger: a potential breakthrough agent for removing Cu 2+ from contaminated water. RSC advances, 7(23), 14069-14077. https://doi.org/10.1039/c6ra28694a
Zhen, Y., Wang, M., Gu, Y., Yu, X., Shahzad, K., Xu, J., ... & Loor, J. J. (2021). Biosorption of copper in swine manure using Aspergillus and yeast: characterization and its microbial diversity study. Frontiers in Microbiology, 12, 687533. https://doi.org/10.3389/fmicb.2021.687533