Evaluating unconventional water resources for sustainable water supply: Advantages, limitations and implementation strategies
Subject Areas : Unconventional water extraction systemsFarida Iraji 1 * , Payam Najafi 2
1 - Water Studies Research Center, Isf.C., Islamic Azad University, Isfahan, Iran.
2 - Water Studies Research Center, Isf.C., Islamic Azad University, Isfahan, Iran.
Keywords: Unconventional water resources, Sustainable water management, Desalination, Treated wastewater, Climate change, Water security,
Abstract :
Global population growth, industrial expansion, and climate change have led to significant declines in freshwater resources across many regions. Unconventional Water Resources (UWRs) have consequently gained strategic importance as a solution to water scarcity. Through systematic review and qualitative content analysis, this study examines 12 UWRs categorized into four main groups (atmospheric water, processed water, transferred water, and unconventional groundwater), along with key research in the field. Findings reveal that optimal UWR selection depends on sustainability, cost, environmental considerations, and geographical factors. Renewable and low-cost options like rainwater, greywater, and dew water demonstrate higher sustainability, whereas advanced technologies such as desalination and fossil water extraction require substantial investment. Primary implementation challenges include technical constraints, high costs, social resistance, and governance barriers—though these can be mitigated through technological innovation, evidence-based policymaking, and community participation. Case studies from Iran highlight successful applications of treated wastewater, atmospheric moisture harvesting, and saline aquaculture, underscoring the potential of these resources. The study concludes by advocating integrated management of conventional and unconventional water resources through adaptive, context-specific approaches to ensure long-term water security.
Adewumi, J. R., Ilemobade, A. A., & van Zyl, J. E. (2010). Treated wastewater reuse in South Africa: Overview, potential, and challenges. Resources, Conservation and Recycling, 55(2), 221-231. https://doi.org/10.1016/j.resconrec.2010.09.012
Ajaloyan, S., Najafi, P., Nazem, Z., & Tabatabaei, S. H. (2019). Effect of applying silicate filter with subsurface drip irrigation using treated wastewater on soil chemical parameters. Iranian Water Research Journal, 13 (1), 59-68. Allan, J. A. (1998). Virtual water: A strategic resource. Ground Water, 36(4), 545-546.
Almanaseer, N., Hindiyeh, M., & Al-Assaf, R. (2020). Hydrological and environmental impact of wastewater treatment and reuse on Zarqa River Basin in Jordan. Environments, 7(2), 14. https://doi.org/10.3390/environments7020014
Angelakis, A. N., Zafeirakou, A., Kourgialas, N. N., & Voudouris, K. (2025). The evolution of unconventional water resources in the Hellenic world. Sustainability, 17(6), 2388. https://doi.org/10.3390/su17062388
Baawain, M. S., Al-Mamun, A., Omidvarborna, H., Al-Sabti, A., & Choudri, B. S. (2020). Public perceptions of reusing treated wastewater for urban and industrial applications: challenges and opportunities. Environment, Development and Sustainability, 22, 1859-1871. https://doi.org/10.1007/s10668-018-0266-0
Barnes, J. (2014). Mixing waters: The reuse of agricultural drainage water in Egypt. Geoforum, 57, 181-191. https://doi.org/10.1016/j.geoforum.2012.11.019
Beigi, N., & Hosseinzadeh, M. (2021). Introduction and economic evaluation of various methods proposed for unconventional water desalination considering current and future challenges for sustainable water supply [Conference presentation]. International Conference on Sustainable Development and Urban Development, Iran. https://sid.ir/paper/901791/en
Beysens, D. (2006). Dew nucleation and growth. Comptes Rendus Physique, 7(9-10), 1082-1100. https://doi.org/10.1016/j.crhy.2006.10.020
Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Fiore, S., Demichelis, F., ... & Revelli, R. (2020). A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of The Total Environment, 711, 134731. https://doi.org/10.1016/j.scitotenv.2019.134731
Bouwer, H. (2002). Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeology Journal, 10(1), 121-142. https://doi.org/10.1007/s10040-001-0182-4
Buchholz, M. (2008). A scenario for the future development of the agricultural and water sector in arid and hyper arid areas. Overcoming Drought, The Cycler Support Implementation Guide.
Dixon, A., Butler, D., & Fewkes, A. (1999). Water saving potential of domestic water reuse systems using greywater and rainwater in combination. Water Science and Technology, 39(5), 25-32. https://doi.org/10.1016/S0273-1223(99)00083-9
Dolnicar, S., & Schäfer, A. I. (2009). Desalinated versus recycled water: Public perceptions and profiles of the accepters. Journal of Environmental Management, 90(2), 888-900. https://doi.org/10.1016/j.jenvman.2008.02.003
Echchelh, A., Hutchison, J. M., Randtke, S. J., & Peltier, E. (2024). Treated water from oil and gas extraction as an unconventional water resource for agriculture in the Anadarko Basin. Science of The Total Environment, 912, 168820. https://doi.org/10.1016/j.scitotenv.2023.168820
Elimelech, M., & Phillip, W. A. (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333(6043), 712-717. https://doi.org/10.1126/science.1200488
Elkiran, G., Aslanova, F., & Hiziroglu, S. (2019). Effluent water reuse possibilities in Northern Cyprus. Water, 11(2), 191. https://doi.org/10.3390/w11020191
Fakhri, S. A., Nasri, M., & Nasri, A. (2016). Application of gray water to reduce drinking water consumption in residential homes [Conference presentation]. Iranian Congress of Water and Wastewater Science and Engineering, Iran. https://sid.ir/paper/875982/en
Farhadi Maboud, F., Shahnazari, A., Ziatbar Ahmadi, M. K., & Aghajani, G. (2013). Investigating the effect of different concentrations of Caspian Sea water on yield and yield components of oil sunflower [Conference presentation]. National Conference on Drainage and Sustainable Agriculture, Iran.
Fessehaye, M., Abdul-Wahab, S. A., Savage, M. J., Kohler, T., Gherezghiher, T., & Hurni, H. (2014). Fog-water collection for community use. Renewable and Sustainable Energy Reviews, 29, 52-62. https://doi.org/10.1016/j.rser.2013.08.063
Foster, S., & Loucks, D. P. (2006). Non-renewable groundwater resources: A guidebook on socially sustainable management for water-policy makers (IHP-VI Series on Groundwater No. 10). UNESCO.
Gale, I. N., Williams, A. T., Gaus, I., & Jones, H. K. (2002). ASR-UK: elucidating the hydrogeological issues associated with Aquifer Storage and Recovery in the UK.
Ghafoor, A., Ahmed, T., Munir, A., Arslan, C., & Ahmad, S. A. (2020). Techno-economic feasibility of solar based desalination through reverse osmosis. Desalination, 485, 114464. https://doi.org/10.1016/j.desal.2020.114464
Ghorbani Minaee, L., Zakerinia, M., Rezaei Asl, A., & Mirkarimi, H. R. (2021). Investigating the effect of irrigation management with magnetized urban wastewater on rice growth indices. Iranian Journal of Irrigation and Water Engineering, 12(1), 226-240. https://doi.org/10.22125/iwe.2021.138337
Gleick, P. H. (1998). Water in crisis: Paths to sustainable water use. Ecological Applications, 8(3), 571-579. https://doi.org/10.1890/1051-0761(1998)008[0571:WICPTS]2.0.CO;2
Gosling, S. N., & Arnell, N. W. (2016). A global assessment of the impact of climate change on water scarcity. Climatic Change, 134(3), 371-385. https://doi.org/10.1007/s10584-013-0853-x
Grant, S. B., Saphores, J. D., Feldman, D. L., Hamilton, A. J., Fletcher, T. D., Cook, P. L., ... & Marusic, I. (2012). Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability. Science, 337(6095), 681-686. https://doi.org/10.1126/science.1216852
Gude, V. G. (2017). Desalination and water reuse to address global water scarcity. Reviews in Environmental Science and Bio/Technology, 16(4), 591-609. https://doi.org/10.1007/s11157-017-9449-7
Haddad, M., & Mizyed, N. (2004). Non-conventional options for water supply augmentation in the Middle East: A case study. Water International, 29(2), 232-242. https://doi.org/10.1080/02508060408691773
Holder, C. D. (2004). Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management, 190(2-3), 373-384. https://doi.org/10.1016/j.foreco.2003.11.004
Horlemann, L., & Neubert, S. (2007). Virtual water trade: A realistic concept for resolving the water crisis?. 25. DEU, p. 139.
Indelicato, S., Tamburino, V., & Zimbone, S. M. (1993). Unconventional water resource use and management. Ressources en eau: developpement et gestion dans les pays mediterraneens.
Jaber, J. O., & Mohsen, M. S. (2001). Evaluation of non-conventional water resources supply in Jordan. Desalination, 136(1-3), 83-92. https://doi.org/10.1016/S0011-9164(01)00168-0
Jamali, S., Sharifan, H., & Sajadi, F. (2018). Utilization of unconventional water resources for irrigation of bell pepper (Capsicum annuum) under greenhouse conditions. Water and Soil Conservation Research (Agricultural Sciences and Natural Resources), 25 (1), 243-256. https://sid.ir/paper/156378/en
Jamali, S., & Sharifan, H. (2020). Investigating the effect of Zaytoonik on yield and yield components of quinoa (Chenopodium quinoa) under irrigation with unconventional water resources. Water and Soil Conservation Research, 27 (3), 229-244. https://doi.org/10.22069/jwsc.2020.14856.2999
Jensen, J. B., & Lee, S. (2008). Giant sea-salt aerosols and warm rain formation in marine stratocumulus. Journal of the Atmospheric Sciences, 65(12), 3678-3694. https://doi.org/10.1175/2008JAS2617.1
Ji, L., Wu, T., Xie, Y., Huang, G., & Sun, L. (2020). A novel two-stage fuzzy stochastic model for water supply management from a water-energy nexus perspective. Journal of Cleaner Production, 277, 123386. https://doi.org/10.1016/j.jclepro.2020.123386
Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V., & Kang, S. M. (2019). The state of desalination and brine production: A global outlook. Science of The Total Environment, 657, 1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076
Karimidastenaei, Z., Avellán, T., Sadegh, M., Kløve, B., & Haghighi, A. T. (2022). Unconventional water resources: Global opportunities and challenges. Science of the Total Environment, 827, 154429. http://dx.doi.org/10.1016/j.scitotenv.2022.154429
Kaseke, K. F., & Wang, L. (2018). Fog and dew as potable water resources: Maximizing harvesting potential and water quality concerns. GeoHealth, 2(10), 327-332. https://doi.org/10.1029/2018GH000171
Khalil, S. K., Rehman, S., Rehman, A., Wahab, S., Muhammad, F., Khan, A. Z., & Khan, A. (2014). Water harvesting through micro-watershed for improved production of wheat (Triticum aestivum L.) in semiarid region of Northwest, Pakistan. Soil and Tillage Research, 138, 85-89. https://doi.org/10.1016/j.still.2013.12.007
Koohi, S., Bahmanabadi, B., Partovi, Z., Safari, F., Khajevand Sas, M., Ramezani Etedali, H., et al. (2023). Evaluation of ERA5 reanalysis dataset for simulation of climatic variables and water harvesting from humidity (Case study: Qazvin Province). Journal of Water and Soil Science, 27 (4), 153–167. https://doi.org/10.47176/jwss.27.4.50623
Li, Z., Boyle, F., Reynolds, A., 2010. Rainwater harvesting and greywater treatment systems for domestic application in Ireland. Desalination 260 (1-3), 1–8. https://doi.org/10.1016/j.desal.2010.05.035
Lo, K. F. A., & Koralegedara, S. B. (2015). Effects of climate change on urban rainwater harvesting in Colombo city, SriLanka. Environments, 2(1), 105-124. https://doi.org/10.3390/environments2010105
Marchenko, A., & Eik, K. (2012). Iceberg towing in open water: Mathematical modeling and analysis of model tests. Cold Regions Science and Technology, 73, 12-31. https://doi.org/10.1016/j.coldregions.2011.11.008
Margat, J., Foster, S., & Droubi, A. (2006). Concept and importance of non-renewable resources. In Non-renewable groundwater resources (pp. 13-24). UNESCO.
Murad, A. A. (2010). An overview of conventional and non-conventional water resources in arid region: assessment and constrains of the United Arab Emirates (UAE). Journal of Water Resource and Protection, 2(2), 181-190. https://doi.org/10.4236/jwarp.2010.22020
Murty, A. S. R., Selvam, A. M., Devara, P. C. S., Krishna, K., Chatterjee, R. N., Mukherjee, B. K., & Jadhav, D. B. (2000). 11-year warm cloud seeding experiment in Maharashtra State, India. Journal of Weather Modification, 32(1), 10-20.
Nakhaei, N., & Takasi, M. V. (2013). Utilization of unconventional water resources (brackish water) for cold-water fish production [Conference presentation]. National Conference on Development and Breeding of Cold-Water Fishes, Iran. https://sid.ir/paper/871486/en
Nasr, F., & El-Shafai, S. A. (2022). Decentralized domestic wastewater management as unconventional water resource for agricultural purposes. Egyptian Journal of Chemistry, 65(5), 119-129. https://doi.org/10.21608/ejchem.2021.91991.4395
Negm, A. M., Bouderbala, A., Chenchouni, H., & Barcelo, D. (2018). Update, Conclusions, and Recommendations for the “Unconventional Water Resources and Agriculture in Egypt”. In: Negm, A. (eds) Unconventional Water Resources and Agriculture in Egypt. The Handbook of Environmental Chemistry, vol 75. Springer, Cham. pp. 509–532. https://doi.org/10.1007/698_2018_336
Ngigi, S. N. (2003). What is the limit of up-scaling rainwater harvesting in a river basin?. Physics and Chemistry of the Earth, Parts A/B/C, 28(20-27), 943-956. https://doi.org/10.1016/j.pce.2003.08.015
Niaghi, A. R., Jia, X., Steele, D. D., & Scherer, T. F. (2019). Drainage water management effects on energy flux partitioning, evapotranspiration, and crop coefficients of corn. Agricultural Water Management, 225, 105760. https://doi.org/10.1016/j.agwat.2019.105760
Odendaal, P.E., 2009. Unconventional sources of water supply. Water Health II, 88.
Oki, T., Agata, Y., Kanae, S., Saruhashi, T., & Musiake, K. (2003). Global water resources assessment under climatic change in 2050 using TRIP. International Association of Hydrological Sciences, Publication, 280, 124-133.
Patel, P., Muteen, A., & Mondal, P. (2020). Treatment of greywater using waste biomass derived activated carbons and integrated sand column. Science of the Total Environment, 711, 134586. https://doi.org/10.1016/j.scitotenv.2019.134586
Pereira, L. S., Cordery, I., & Iacovides, I. (2009). Coping with water scarcity: Addressing the challenges. Springer Science & Business Media.
Prabhu, M. V., & Venkateswaran, S. (2015). Delineation of artificial recharge zones using geospatial techniques in Sarabanga Sub Basin Cauvery River, Tamil Nadu. Aquatic Procedia, 4, 1265-1274. https://doi.org/10.1016/j.aqpro.2015.02.165
Prathapar, S. A., Jamrah, A., Ahmed, M., Al Adawi, S., Al Sidairi, S., & Al Harassi, A. (2005). Overcoming constraints in treated greywater reuse in Oman. Desalination, 186(1-3), 177-186. https://doi.org/10.1016/j.desal.2005.01.018
Qadir, M., Sharma, B. R., Bruggeman, A., Choukr-Allah, R., & Karajeh, F. (2007). Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agricultural Water Management, 87(1), 2-22. https://doi.org/10.1016/j.agwat.2006.03.018
Qadir, M., Smakhtin, V., Koo-Oshima, S., & Guenther, E. (2022). Global water scarcity and unconventional water resources. In M. Qadir, V. Smakhtin, S. Koo-Oshima, & E. Guenther (Eds.), Unconventional Water Resources (pp. 3-17). Springer. https://doi.org/10.1007/978-3-030-90146-2_1
Rahaman, M. F., Jahan, C. S., & Mazumder, Q. H. (2019). Rainwater harvesting: practiced potential for integrated water resource management in drought-prone Barind tract, Bangladesh. Groundwater for Sustainable Development, 9, 100267. https://doi.org/10.1016/j.gsd.2019.100267
Ramezani Etedali, H., Koohi, S., & Partovi, Z. (2023). Evaluation of multi-model climate development methods based on CMIP5 for assessing atmospheric water harvesting potential. Iranian Journal of Soil and Water Research, 54 (11), 1609-1625. https://doi.org/10.22059/ijswr.2023.364087.669553
Raveesh, G., Goyal, R., & Tyagi, S. K. (2021). Advances in atmospheric water generation technologies. Energy Conversion and Management, 239, 114226. https://doi.org/10.1016/j.enconman.2021.114226
Salameh, E. (2004). Exploitation of Fossil Aquifers and Future Water Supplies in the Middle East. In: Zereini, F., Jaeschke, W. (eds) Water in the Middle East and in North Africa. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10866-6_2
Schemenauer, R. S., & Cereceda, P. (1991). Fog-water collection in arid coastal locations. Ambio, 20(7), 303-308. http://www.jstor.org/stable/4313850
Senanayake, I. P., Dissanayake, D. M. D. O. K., Mayadunna, B. B., & Weerasekera, W. L. (2016). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7(1), 115-124. https://doi.org/10.1016/j.gsf.2015.03.002
Shamabadi, N., Bakhtiari, H., Kochakian, N., & Farahani, M. (2015). The investigation and designing of an onsite grey water treatment systems at Hazrat-e-Masoumeh University, Qom, IRAN. Energy Procedia, 74, 1337-1346. https://doi.org/10.1016/j.egypro.2015.07.780
Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301-310. https://doi.org/10.1038/nature06599
Shirzad, S. (2016). Evaluation of irrigation water supply potential and fertilizer value of urban wastewater treatment plant effluent: Case study of Birjand city treatment plant [Conference presentation]. 9th Congress of Pioneers of Progress, Iran.
Smith, R. C., & Stammerjohn, S. E. (2001). Variations of surface air temperature and sea-ice extent in the western Antarctic Peninsula region. Annals of Glaciology, 33, 493-500. https://doi.org/10.3189/172756401781818662
Sprenger, C., Hartog, N., Hernández, M., Vilanova, E., Grützmacher, G., Scheibler, F., & Hannappel, S. (2017). Inventory of managed aquifer recharge sites in Europe: Historical development, current situation and perspectives. Hydrogeology Journal, 25(6), 1909-1922. https://doi.org/10.1007/s10040-017-1554-8
Taheri, S. M., Banejhad, H., & Karimi Miyandoab, H. (2023). Investigating the possibility of using treated wastewater for irrigation considering its environmental effects (Case study: Chaharbakht local treatment plant effluent). Iranian Journal of Irrigation and Drainage, 17 (6), 1035-1052.
Talabi, A., & Pourmohammadi, S. (2016). Principles of cloud seeding (Feasibility, implementation, and evaluation). Yazd University Press. (In Persian)
Teymouri, F., & Sharifan, H. (2013). Investigating the effect of monovalent salts on water absorption by superabsorbent hydrogels [Conference presentation]. National Conference on Drainage and Sustainable Agriculture, Iran. https://sid.ir/paper/872682/en
Toosi, A. S., Tousi, E. G., Ghassemi, S. A., Cheshomi, A., & Alaghmand, S. (2020). A multi-criteria decision analysis approach towards efficient rainwater harvesting. Journal of Hydrology, 582, 124501. https://doi.org/10.1016/j.jhydrol.2019.124501
UN-Water. (2021). Summary Progress Update 2021: SDG 6 — water and sanitation for all. United Nations. Vuollekoski, H., Vogt, M., Sinclair, V. A., Duplissy, J., Järvinen, H., Kyrö, E. M., ... & Kulmala, M. (2014). Estimates of global dew collection potential. Hydrol. Earth Syst. Sci. Discuss, 11(8), 9519-9549. 9519–9549. https://doi.org/10.5194/hessd-11-9519-2014
Wang, R., Wu, F., Ji, Y., & Feng, C. (2024). Nonlinear impact of unconventional water use on water resource sustainability in China: A perspective on water poverty. Ecological Indicators, 162, 112065. https://doi.org/10.1016/j.ecolind.2024.112065
Wang, D., Li, K., Li, H., Zhang, Y., Fu, T., Sun, L., Wang, Y., & Zhang, J. (2025). Water resource utilization and future supply-demand scenarios in energy cities of semi-arid regions. Scientific Reports, 15(1), 5005. https://doi.org/10.1038/s41598-025-85458-5
Werber, J. R., Osuji, C. O., & Elimelech, M. (2016). Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 1(5), 1-15. https://doi.org/10.1038/natrevmats.2016.18
Wichelns, D. (2010). Virtual water: A helpful perspective, but not a sufficient policy criterion. Water Resources Management, 24, 2203-2219. https://doi.org/10.1007/s11269-009-9547-6
Wiek, A., & Larson, K. L. (2012). Water, people, and sustainability—A systems framework for analyzing and assessing water governance regimes. Water Resources Management, 26(11), 3153-3171. https://doi.org/10.1007/s11269-012-0065-6
Winpenny, J., Heinz, I., Koo-Oshima, S., Salgot, M., Collado, J., Hernandez, F., & Torricelli, R. (2010). The Wealth of Waste. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/4/i1629e/i1629e.pdf
Wu, X., Wen, Q., Hu, L., & Liu, M. (2020). Evaluation of unconventional water resources based on knowledge granularity. E3S Web of Conferences, 144, 01004. https://doi.org/10.1051/e3sconf/202014401004
Yazdandoost, F., Noruzi, M. M., & Yazdani, S. A. (2021). Sustainability assessment approaches based on water-energy Nexus: Fictions and nonfictions about non-conventional water resources. Science of the Total Environment, 758, 143703. https://doi.org/10.1016/j.scitotenv.2020.143703
Yulmetov, R., & Løset, S. (2017). Validation of a numerical model for iceberg towing in broken ice. Cold Regions Science and Technology, 138, 36-45. https://doi.org/10.1016/j.coldregions.2017.03.002
Zhang, Y., Zhang, Y., Shi, K., & Yao, X. (2020). Research development, current hotspots, and future directions of water science in China. Water, 12(1), 136. https://doi.org/10.1007/s11356-017-9107-1
Zhao, Y., He, G., Wang, J., Gao, X., Li, H., Zhu, Y., & Jiang, S. (2020). Water stress assessment integrated with virtual water trade and physical transfer water: A case study of Beijing, China. Science of the Total Environment, 708, 134578. https://doi.org/10.1016/j.scitotenv.2019.134578