


Transactions on Fuzzy Sets and Systems

EDITOR-IN-CHIEF

T. Allahviranloo, Istinye Universoty,
Istanbul, Turkey.
Email: tofigh.allahviranloo@istinye.edu.tr

EDITOR-IN-CHIEF(2022-April 2024)
A. Borumand Saeid, Shahid Bahonar
University of Kerman, Kerman, Iran.
Email: arsham@uk.ac.ir

DIRECTOR-IN-CHARGE &
MANAGING EDITOR & WEB-
SITE MANAGER

S. Motamed, Islamic Azad University
of Bandar Abbas, Bandar Abbas, Iran.
Email: somayeh.motamed@iauba.ac.ir

EDITORIAL BOARD

T. Allahviranloo, Istinye Universoty,
Istanbul, Turkey.
Email: tofigh.allahviranloo@istinye.edu.tr

A. Borumand Saeid, Shahid Bahonar
University of Kerman, Kerman, Iran.
Email: arsham@uk.ac.ir

A. Di Nola, University of Salerno,
Salerno, Italy.
Email: adinola@unisa.it

A. Dvurecenskij, Slovak Academy of
Sciences, Bratislava, Slovakia.
Email: dvurecen@mat.savba.sk

A. Ebrahimnejad, Islamic Azad Uni-
versity of Qaemshahr, Qaemshahr, Iran.
Email: a.ebrahimnejad@qaemiau.ac.ir

G. Georgescu, Bucharest University,
Bucharest, Romania.
Email: georgescu@funinf.cs.unibuc.ro

W. Homenda, Warsaw University of
Technology, ul. Koszykowa, Warsaw,
Poland.
Email: homenda@mini.pw.edu.pl

T-Pei. Hong, National University of
Kaohsiung, Kaohsiung, Taiwan.
Email: tphong@nuk.edu.tw

E. Kerre, Gent university, Gent, Bel-
gium.
Email: etienne.kerre@ugent.be

L. T. Koczy, University of Technology
and Economics, Budapest, Hungary.
Email: koczy@tmit.bme.hu

M. Kuchaki Rafsanjani, Shahid Ba-
honar University of Kerman, Kerman,
Iran.
Email: kuchaki@uk.ac.ir

P. Liu, Shandong University of Finance

and Economics, Shandong, China.
Email: peide.liu@gmail.com

H. Nezamabadi-pour, Shahid Bahonar
University of Kerman, Kerman, Iran.
Email: nezam@uk.ac.ir

W. Pedrycz, University of Alberta,
Edmonton AB Canada, Canada.
Email: wpedrycz@ualberta.ca

D. Ralescu, University of Cincinnati,
Cincinnati, USA.
Email: dan.ralescu@uc.edu

Sh. Rezapour, Azarbaijan Shahid
Madani University, Azarbaijan, Iran.
Email: h.rezapour@azaruniv.ac.ir

A. Tepavcevic, University of Novi Sad,
Novi Sad, Serbia.
Email: andrej@admi.uns.ac.rs

L. Torkzadeh, Islamic Azad university
of Kerman, kerman, Iran.
Email: ltorkzadeh@yahoo.com

R. Viertl, Vienna University of Tech-
nology, Vienna, Austria.
Email: r.viertl@tuwien.ac.at

M. Zeydan, stanbul Medeniyet Univer-
sity, Kayseri, Turkey.
Email: mithat.zeydan@medeniyet.edu.tr

ADVISORY BOARD

M. Akram, University of the Punjab,
Lahore.
Email: m.akram@pucit.edu.pk

B. Bedregal, Federal University of Rio
Grande do Norte, Brazil-Natal.
Email: bedregal@dimap.ufrn.br

C. Kahraman, Istanbul Technical Uni-
versity, Istanbul.
Email: kahramanc@itu.edu.tr

H. S. Kim, Hanyang university , Seoul,
Korea.
Email: heekim@hanyang.ac.kr

V. Kreinovich, University of Texas at
El Paso, Texas, USA.
Email: vladik@utep.edu

R. Krishankumar, Information Tech-
nology Systems and Analytics Area,
Indian Institute of Management Bodh
Gaya, Bodh Gaya 824234, Bihar, India.
Email: krishankumar@sastra.ac.in

R. Mesiar, Slovak University of Tech-
nology in Bratislava, Slovakia.
Email: mesiar@math.sk

H. M. Srivastava, University of Victo-
ria, Victoria, British Columbia, Canada.

Email: harimsri@uvic.ca

J. N. Mordeson, Creighton University,
Omaha, USA.
Email: mordes@creighton.edu

V. N. Mishra, Lalpur, Amarkantak,
Anuppur, Madhya Pradesh 484 887, In-
dia.
Email: vnm@igntu.ac.in

V. Novák, University of Ostrava,
IRAFM, Czech Republic-Ostrava.
Email: vilem.novak@osu.cz

T-Chih. T. Chen, National Yang Ming
Chiao Tung University, Taiwan-Hsinchu.
Email: tolychen@ms37.hinet.net

J. L. Verdegay, Universidad de
Granada (Spain), Spain - Granada.
Email: verdegay@ugr.es

Z. Xu, Sichuan University, Chengdu.
Email: xuzeshui@263.net

TECHNICAL EDITOR

A. Parsapour, Islamic Azad University
of Bandar Abbas, Bandar Abbas, Iran.
Email: a.parsapour2000@yahoo.com

TECHNICAL MANAGER

S. Lotfi, Islamic Azad University of Ban-
dar Abbas, Bandar Abbas, Iran.
Email: lsomayeh@gmail.com

ENGLISH TEXT EDITOR

N. Asadi Piran, Islamic Azad Uni-
versity of Bandar Abbas, Bandar Abbas,
Iran.
Email: noushin_asadi2000@yahoo.com

B. Khozaei, Islamic Azad University of
Kerman, Kerman, Iran.
Email: bahareh_khozaie@yahoo.com

TECHNICAL OFFICE MEM-
BERS

M. H. Asadian, Department of Mathe-
matics, Islamic Azad University of Ban-
dar Abbas, Bandar Abbas, Iran.
Email: mhasadian72@gmail.com

M. Hasannejad, Payame Noor Univer-
sity of Shahr e Kord, Shahr e Kord, Iran.
Email: hasannejadmasoomeh@gmail.com

H. Moghaderi, Amirkabir University of
Technology, Tehran, Iran.
Email: hmoghaderi@yahoo.com

tofigh.allahviranloo@istinye.edu.tr
arsham@uk.ac.ir
somayeh.motamed@iauba.ac.ir
tofigh.allahviranloo@istinye.edu.tr 
arsham@uk.ac.ir
 adinola@unisa.it 
 dvurecen@mat.savba.sk 
 a.ebrahimnejad@qaemiau.ac.ir 
 georgescu@funinf.cs.unibuc.ro 
 homenda@mini.pw.edu.pl 
 tphong@nuk.edu.tw 
 etienne.kerre@ugent.be 
 koczy@tmit.bme.hu 
 kuchaki@uk.ac.ir 
peide.liu@gmail.com 
 nezam@uk.ac.ir 
wpedrycz@ualberta.ca 
dan.ralescu@uc.edu 
 h.rezapour@azaruniv.ac.ir
 andreja@dmi.uns.ac.rs 
 ltorkzadeh@yahoo.com 
 r.viertl@tuwien.ac.at 
mithat.zeydan@medeniyet.edu.tr 
 m.akram@pucit.edu.pk 
 bedregal@dimap.ufrn.br 
 kahramanc@itu.edu.tr
 heekim@hanyang.ac.kr 
 vladik@utep.edu 
krishankumar@sastra.ac.in 
mesiar@math.sk 
 harimsri@uvic.ca 
 mordes@creighton.edu 
 vnm@igntu.ac.in 
 vilem.novak@osu.cz 
 tolychen@ms37.hinet.net 
 verdegay@ugr.es 
 xuzeshui@263.net 
a.parsapour2000@yahoo.com
lsomayeh@gmail.com
noushin_asadi2000@yahoo.com
bahareh_khozaie@yahoo.com
mhasadian72@gmail.com
hasannejadmasoomeh@gmail.com
hmoghaderi@yahoo.com


Transactions on Fuzzy Sets and Systems

About Journal

Transactions on Fuzzy Sets and Systems (TFSS) is an open access international scholarly journal. TFSS publishes new applied and pure
articles related to fuzzy sets and systems as the semiannual journal and there is no charge for publishing an article in TFSS. All articles will
be peer-review before publication. Manuscripts submitted to TFSS must be original and unpublished and not currently being considered
for publication elsewhere.

The articles will be deposited immediately into the online repository, after the completion of the review processes. TFSS aims linking
the ideas and techniques of fuzzy sets and systems with other disciplines to provide an international forum for refereed original research
works in the theory and applications in all fields related to fuzzy science. Transactions on Fuzzy Sets and Systems (TFSS) is a semiannual
international academic journal founded in 2022.

TFSS is an open access and free of charge and it follows the COPE publication ethics, also it follows the CC BY creative commons
copyright license. TFSS aims to publish high-quality original articles that make a significant contribution to the research areas of both
theoretical and applied mathematics in the field of fuzzy and all papers will be peer-review before publication.

Manuscripts submitted to the TFSS must be original and unpublished work and not currently being considered for publication elsewhere.
TFSS aims to reflect the latest developments in fuzzy sets and systems and promote international academic exchanges. TFSS publishes 2
issues each year.

Aims and Scopes

TFSS aim is to present the development and new applications of fuzzy sets and systems to increase knowledge and help to publish the
results of studies in the field of fuzzy logic, intelligent systems and other related topics. The scope of the journal includes fuzzy theory and
its applications in every branch of science and technology. Also, TFSS publishes papers that use fuzzy in other fields, such as computer
science and mathematics.

Instructions to Authors

The language of the journal is English. All accepted papers should also be prepared in LaTeX style and should be typed according
to the style given in the journal homepage: https://sanad.iau.ir/Journal/tfss. Access to articles from this site is free: TFSS allows the
author(s) to hold the copyright without restrictions.

We recommend that all authors review the "Authors Guide" on the TFSS’s website.

Submission of Manuscripts

All papers should be prepared in LaTeX and the pdf file of the paper should be sent to the editorial office only through the electronic
submission via "https://sanad.iau.ir/Journal/tfss". Manuscripts under consideration for the journal should not be published or submitted
for publication elsewhere. TFSS doesn’t have any submission and article processing charges.

We kindly recommend to all authors especially young ones to review publication ethics. There are many good sources for reminding
publication ethics e.g., visit COPE.

Reviewers

Peer review and reviewers are at the heart of the academic publishing process. We would like to express our deepest gratitude for
volunteering your time and expertise as a reviewer. Providing a voluntary service, such as peer review, under challenging circumstances is
truly a dedication to your community and the advancement of research in your field. It is an honor for us to acknowledge your commitment
by saying "thank you". On behalf of all our journal editorial members, we are indebted to the time you voluntarily dedicate to supporting
our journal.

Cooperation with TFSS

Qualified specialists in various fields of Fuzzy Science issues who are willing to cooperate with the TFSS Journal as peer reviewers are
welcomed and invited to send their CV along with their field(s) of interest to the Journal email address: tfssiauba@gmail.com.

Publication Office: Islamic Azad University, Bandar Abbas Branch, Bandar Abbas, Iran. Tel/fax: +98-76-3367-0243
Website: https://sanad.iau.ir/Journal/tfss, E-mails: tfssiauba@gmail.com; tfssiauba@yahoo.com, Online ISSN: 2821-0131



Transactions on Fuzzy Sets and Systems
(Vol.3, No.1, May 2024)

Tabasam Rashid; Aamir Mehboob; Ismat Beg

A Novel Technique for Solving the Uncertainty under the Environment of Neutrosophic Theory of Choice 1

Mazdak Khodadadi-Karimvand; Hadi Shirouyehzad; Farhad Hosseinzadeh Lotfi

Proposing a Conceptual Model of Critical Success Factors in Lean Production Using Interpretive Structural

Modeling and Fuzzy MICMAC Analysis 15

Mehmet Sengonul

Shannon Entropy Analysis of Serum C-Terminal Agrin Fragment as a Biomarker for Kidney Function: Reference

Ranges, Healing Sequences and Insights 29

Emile Djomgoue Nana; Ariane GABRIEL Tallee Kakeu; Blaise Bleriot Koguep Njionou; Celestin Lele

Triangle Algebras and Relative Co-annihilators 43

John Mordeson; Sunil Mathew; Aswathi Prabhath

Fuzzy Implication Operators Applied to Country Health Preparation 57

Huliane Silva; Benjamn Ren Callejas Bedregal; Anne Canuto; Thiago Batista; Ronildo Moura

A New Approach to Define the Number of Clusters for Partitional Clustering Algorithms 67

Hamza Iftikhar; Faisal Mehmood

Enhancing Big Data Governance Framework Implementation Using Novel Fuzzy Frank Operators: An Application

to MADM Process 88

Ardavan Najafi

New elements in Hilbert algebras 126

Michael Gr. Voskoglou

A Journey from Traditional to Fuzzy Methods of Decision-Making 136

Ariane GABRIEL Tallee Kakeu; Luc E. Diekouam; Blaise Bleriot Koguep N.; Celestin Lele; Daniel Akume

Stable Topology on Ideals for Residuated Lattices 151

Mithat Zeydan; Murat Güngör; Burak Urazel

A TOPSIS-Based Improved Weighting Approach With Evolutionary Computation 171

John Mordeson; Sunil Mathew

Families of Fuzzy Sets and Lattice Isomorphisms Preparation 184



Transactions on Fuzzy Sets and Systems

Transactions on Fuzzy Sets and Systems

ISSN: 2821-0131

https://sanad.iau.ir/journal/tfss/

A Novel Technique for Solving the Uncertainty under the Environment
of Neutrosophic Theory of Choice

2024; 3(1): 1-14. DOI: http://doi.org/10.30495/tfss.2023.1995175.1084

Author(s):

Tabasam Rashid, Department of Mathematics, University of Management & Technology, Lahore, Pakistan.
E-mail: tabasam.rashid@gmail.com
Aamir Mahboob, Department of Mathematics, University of Veterinary & Animal Sciences, Lahore, Pak-
istan. E-mail: aamiralimirza@yahoo.com
Ismat Beg, Department of Mathematics and Statistical Sciences, Lahore School of Economics, Lahore,
Pakistan. E-mail: ibeg@lahoreschool.edu.pk

https://sanad.iau.ir/journal/tfss/
http://doi.org/10.30495/tfss.2023.1995175.1084


Transactions on Fuzzy Sets and Systems (TFSS)

URL: https://sanad.iau.ir/Journal/tfss

Online ISSN: 2821-0131

Vol.3, No.1, (2024), 1-14

DOI: http://doi.org/10.30495/tfss.2023.1995175.1084

Article Type: Original Research Article

A Novel Technique for Solving the Uncertainty under the Environment
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Abstract. When it comes to solving dynamic programming challenges, it is essential to have a well-structured
decision theory. As a result, the decision-makers must operate in a dynamically complicated environment where
appropriate and rapid reaction in a cooperative way is the fundamental key to effectively completing the task. We
express a theory of decision modeling and axiomatizing a decision-making process. The payoffs and probabilities are
represented with simplified neutrosophic sets. We therefore, provide the theory of choice with the implementation
of simplified neutrosophic sets. By exploiting the idea of pure strategy, we introduce two steps: in the first step,
for each attractive point, some particular event is selected that can bring about a relatively neutrosophic upper
payoff with a relatively neutrosophic upper probability or a relatively neutrosophic lower payoff with a relatively
neutrosophic upper probability. A decision-maker selects the most favored attractive point in the second stage,
based on the focus on all attractive points. Neutrosophic focus theory has been introduced to improve overall
performance with more flexibility in complex decision-making. The approach suggested in this work has been
implemented in a real-life example to determine its effectiveness. The proposed method is shown to be the most
useful for ranking scenarios and addressing dynamic programming problems in decision-making.

AMS Subject Classification 2020: 03E72; 91A30; 91A86; 91B06
Keywords and Phrases: Fuzzy set, Neutrosophic set, Neutrosophic probability, Game theory, Focus theory.

1 Introduction

In various decision-oriented real-life problems, game theory plays a significant role. Nowadays, many such
problems are generally described by different uncertainties. Uncertainties occur because of decision-makers
the collection of information, perception, belief, opinion, actions, assessment, and finally, due to the problem
itself. The definition of fuzzy set [1] with a membership degree initialized the treatment of ambiguity, but
it was not sufficient. The concept of the intuitionistic fuzzy set was developed using membership and non-
membership grades but struggled to convey truth more accurately. Then, with a new degree of uncertainty,
say an indeterminacy degree, in addition to membership and non-membership degrees, neutrosophic logic
was developed.

Ambiguities of fact exist everywhere. To explain the uncertainties, fuzzy logic [1] has emerged as one of the
essential soft computing methods. From Zadeh to Atanassove [2], the fuzzy notion has been developed from
its membership components to an intuitionistic fuzzy notion with non-membership components. For example;
in the voting system, when we choose a candidate, one has the option to opt-out or remain independent, in
addition to an election or a choice. Intuitionistic characters can not manage such circumstances. In these
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situations, Smarandache [3] introduced and was effectively applied to the neutrosophic set concept. The
degree of indeterminacy still occurs in many cases, beyond the stages of acceptance and rejection. So many
developments of neutrosophic sets have also been suggested, such as the single-value neutrosophic set [4], the
neutrosophic interval set [5], the multi-value neutrosophic set [6], etc.

Game theory is a mathematical analysis in which there are the situation of two contrary ideas exist or
strategic decision making. Game theory related to decision-making problems in a mathematical way invented
by von Neumann [7]. The research on two-person zero-sum games quickly progressed following Neumann
and Morgenstern’s pioneering contributions, significantly influencing decision-making and strategic analysis
in various disciplines. For example; on nash equilibrium [8, 9] various mathematical models of game theory
[10] on decision making and so on. One game consists of multiple players, a set of tactics including a payoff
that displays the overall results from every game’s play in terms of the rewards won or lost by each based
strategy player. According to the probability method, a player who selects a pure strategy randomly selects
a row or a column that determines the opportunity for each pure strategy. For players, the probabilities are
said to be a mixed strategy. In terms of probability, the measured payoffs represent the probability of each
player to obtain and if the game is played a sufficiently large number of time, the player will eventually benefit
on average. Due to the ambiguity and vagueness components included as well as what happened throughout
the process, the strangeness of the prudence of gamers or decision-makers. We showed the characters of
indeterminacy and falsity in matrix form. First of all, for solving fuzzy matrix games, Campos [11] used
linear programming models. Later on, Li [12] used Attanasov’s intuitionistic fuzzy sets to solve matrix games
with different uncertainties. Nowadays, several writers [13, 14, 15, 16, 17] have examined some game models
using payoff and probability using maximin, maximax and minmax rules.

After that, the matrix game solution was extended using intuitionistic fuzzy triangular payoff by Bandy-
opadhyay [18, 19]. He proposes the intuitionistic fuzzy numbers and arithmetic operation of score functions
and introduces the matrix game using various strategies. Feng [12] gave the comprehensive idea of a matrix
game with the help of intuitionistic payoffs. He also explained trapezoidal intuitionistic fuzzy numbers and
interval-valued intuitionistic fuzzy sets and their properties.

Games with neutrosophy set the three contrasting collective grades to be compared: truth-membership,
indeterminacy-membership and falsity-membership, whereas intuitionistic games have membership and non-
membership degrees. Consequently, it is possible to apply the models and methods of intuitionistic fuzzy
games to neutrosophic games. Some authors [20, 21, 22, 23, 24] applied the neutrosophic theory of games in
our daily life.

Generally descriptive and normative theories, a decision-maker is believed to maintain a comprehensive
understanding while analyzing s lottery game using an aggregated multiplicative model, like that of the
SEU. Commonly, cumulative information found from studies using existing techniques makes clear that it is
impossible that a risky decision based on weighing and summing procedures is unlikely [25, 26, 27]. Many
research show that people assess a lottery by treating every result independently. Wedell [28] showed in his
paper that justification for single play decisions is inclined to depend on a single feature of the gamble in which
the amount that can be won or lost, the probability of doing so, or other variables are involved in a single
attribute. These four characteristics are min payoff, probability of min payoff, max payoff and probability of
max payoff suggested in [29]. Furthermore, numerous studies indicate that people judge a lottery based on
a specific event associated with this lottery. i.e, they perceive a payoff and its probability [30]. In view of
these theories, the Neutrosophic theory of choice claims that is rationally bounded and results with minimal
attention, therefore, instead of selecting of all events of a lottery, decision-maker study the event according
to the payoff and probability.

In section 2, on the game and neutrosophic set, we give some simple definitions and notations. In section
3, we explore how to pick positive attractive points and how to evaluate the optimal alternative using positive
attractive points. An application of neutrosophic set in decision making is discussed and a comprehensive
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comparison analysis is shown in section 4 to explore the validity and effectiveness. The concluding remarks
are given in section 5.

2 Preliminaries

In this section, we deliver concise analysis of neutrosophic set, simplified neutrosophic set, neutrosophic
probability, accuracy function and score function. The neutrosophic set allows one to introduce indeter-
minacy, hesitant or ambiguity irrespective of the knowledge regarding membership and non-membership
grades. Therefore, the notion of neutrosophic set is the generalization of fuzzy and intuitionistic fuzzy set.
The following definition for a neutrosophic set was given by Smarandache [3].

Definition 2.1. [3] Let X be universe of discourse. A neutrosophic set NS is defined by TA(x), IA(x),
FA(x), where TA(x) is the truth-membership function, IA(x) is the indeterminancey-membership function
and FA(x) is the falsity-membership function, all of these functions are subset of ]0−, 1+[ with condition 0−

≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+ for all x belongs to X.

Definition 2.2. [31] A subclass of neutrosophic set is called simplified neutrosophic set (SNS) and it is
defined as: A = {(x, TA(x), IA(x), FA(x)) | x ∈ X}, where T, I, F ∈ [0, 1]. For suitability, SNS can be
written as: (a, b, c).

In general, if IA(x) = 0, then the above set A can be reduced to intuitionistic fuzzy set, IFSA =
{(x, TA(x), FA(x))|x ∈ X} and if IA(x) = FA(x) = 0, then the set A ca be reduced to fuzzy set FSA =
{(x, TA(x)|x ∈}. The relation between fuzzy set, intuitionistic fuzzy set and neutrosophic fuzzy set are shown
in Figure 1.

Figure 1: The environment of neutrosophic set

Definition 2.3. [31] Let A be a SNS, then the complement of SNS is denoted by Ac and defined as:
Ac = {(x, FA(x), 1− IA(x), TA(x)) | x ∈ X} .

Definition 2.4. [31] Let A = (a1, b1, c1) and B = (a2, b2, c2) be the SNS, then A contained in B if and
only if a1 ≤ a2, b1 ≥ b2 and c1 ≥ c2 for every x in X.
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Definition 2.5. [32] Let A be the SNS, then the score function S of a simplified neutrosophic value is defined
as:

S(A) =
1 + a− 2b− c

2
(1)

where S(A) ∈ [−1, 1] .

Definition 2.6. Let A = (a1, b1, c1) and B = (a2, b2, c2) be two simplified neutrosophic sets and S(A)
and S(B) be their score functions, then
1) If S(A) < S(B), then A is lesser than B;
2) If S(A) > S(B), then A is greater than B;
3) If S(A) = S(B), then A and B are equal.

Definition 2.7. A matrix game S = {Player1, P layer2, M1, M2} is denoted as two-player game;

1). Player1 has countable game plan set M1 accompanied by p elements.
2). Player2 has countable game plan set M2 accompanied by q elements.
3). The functions v1(m1, m2) and v2(m1, m2) are the payoff functions of the player1 and player2

respectively and (m1, m2) ∈ M1 ×M2.
The matrix game will be as: player1 select m1 ∈ M1 at the certain time and player2 select m2 ∈

M2 at the same time. When each player does this then he/she receives the payoff vi(m1, m2). If M1 ={
m1

1,m
1
2, ...,m

1
p

}
, M2 =

{
m2

1,m
2
2, ...,m

2
q

}
are the game plan of player1 and player2 respectively and we

replace aij = v1

(
m1

i ,m
2
j

)
and bij = v2

(
m1

i ,m
2
j

)
, then the payoffs can be organize in the form of p × q

matrix.

Definition 2.8. Let S be the set of strategies of two player and M, N are the non-empty subset of set
S. A triplet (M, N, A) describes the strategies of two player for simplified neutrosophic set is defined as:
A = {⟨(m,n) , (TA(m,n), IA(m,n), FA(m,n))⟩ | (m,n) ∈ M ×N}, where player1 has M strategies, player2
has N strategies and B be the simplifies neutrosophic set over M ×N .

The explanation is as: Player1 choose them ∈ M and player2 choose n ∈ N at the same time and both of them
don’t know each other preference, at that point the payoff for player1 is represented by (TA(m,n), IA(m,n),
FA(m,n)). Results of player2 on the circumstance (m, n) is negation of result of player1. Therefore, the
neutrosophic payoffs can be organized in matrix from shown in Table 1

Table 1: Gamble matrix

B n1 . . . nq

m1 (TA(m1, n1), IA(m1, n1), FA(m1, n1)) . . . (TA(m1, nq), IA(m1, nq), FA(m1, nq))
m2 (TA(m2, n1), IA(m2, n1), FA(m2, n1)) (TA(m2, nq), IA(m2, nq), FA(m2, nq))
...

...
...

...
mp (TA(mp, n1), IA(mp, n1), FA(mp, n1)) . . . (TA(mp, nq), IA(mp, nq), FA(mp, nq))

For convenance, if we write aij = (TA(mi, nj), IA(mi, nj), FA(mi, nj)) then the above matrix A can be
written as:

A =


a11 a12 ... a1q
a21 a22 ... a2q
...

...
...

...
ap1 ap2 ... apq





A Novel Technique for Solving the Uncertainty
Under the Environment of Neutrosophic Theory of Choice. Trans. Fuzzy Sets Syst. 2024; 3(1) 5

Definition 2.9. Let A = {⟨(m,n) , (TA(m,n), IA(m,n), FA(m,n))⟩ | (m,n) ∈ M×N} be the neutrosophic
set of strategies of two person. It satisfied the following properties.

· max
{
TA(mi, nj), IA(mi, nj), FA(mi, nj)

}
=
(
TA(m,n), IA(m,n), FA(m,n)

)
· min

{
TA(mi, nj), IA(mi, nj), FA(mi, nj)

}
=
(
TA(m,n), IA(m,n), FA(m,n)

)
Example 2.10. Let M = {m1, m2, m3} and N = {n1, n2, n3} be the strategies for player1 and player2
respectively. The neutrosophic payoff is given as: (0.95, 0.2, 0.1) (0.86, 0.3, 0.2) (0.76, 0.3, 0.3) (1, 0, 0)

(0.63, 0.3, 0.3) (1, 0, 0) (0.92, 0.2, 0.1) (0.3, 0.4, 0.6)
(0.43, 0.4, 0.6) (0.38, 0.5, 0.6) (1, 0, 0) (0.98, 0.2, 0.2) (0.85, 0.3, 0.3)


let us consider the a11 = (0.95, 0.2, 0.1) and a12 = (0.86, 0.3, 0.2) , according to definition (2.4),

max (a11, a12) = max
(
(0.95, 0.2, 0.1) , (0.86, 0.3, 0.2)

)
= (0.95, 0.2, 0.1) = a11

min (a12, a13) = min
(
(0.86, 0.3, 0.2) , (0.76, 0.3, 0.3)

)
= (0.76, 0.3, 0.3) = a13

3 Neutrosophic Evaluation System

3.1 Neutrosophic Attractive Point

Let E be the set of mutually exclusive events and A = {A1, A2, ..., Ap} be the set of action. The neu-

trosophic probability is given as
(
P (T ), P (I), P (F )

)
. An occurrence can be therefore be defined by(

v(mi, nj), (P (T ), P (I), P (F ))
)
. An neutrosophic attractive point with events ni is described to as a

lottery {(v(m1, n1), (P (T1), P (I1), P (F1))), ..., (v(mpi, npi), (P (Tpi), P (Ipi), P (Fpi)))}.

Definition 3.1. Let E1, E2 ∈ E if p (SNS1) ≥ p (SNS2) and v (SNS1) ≥ v (SNS2) and at least p (SNS1) >
p (SNS2) or v (SNS1) > v (SNS2) at that point it is said to be E1 is neutrosophic dominate E2 for Ai.

Let us consider the following example to promote the comprehension of the above introduced definition
and ideas.

Example 3.2. Let A = {A1, A2, A3} be the set of neutrosophic action, N1 =
{
n1
1, n1

2, n1
3

}
and N2 ={

n2
1, n2

2, n2
3

}
be the strategies for player1 and player2 respectively. Then the neutrosophic payoff and their

against neutrosophic probability is given as in Table 2 and 3:

Table 2: Neutrosophic payoff (0.95, 0.2, 0.1) (0.86, 0.3, 0.2) (0.76, 0.3, 0.3) (1, 0, 0) (0, 0, 0)
(0.63, 0.3, 0.3) (1, 0, 0) (0.92, 0.2, 0.1) (0.3, 0.4, 0.6) (0, 0, 0)
(0.43, 0.4, 0.6) (0.38, 0.5, 0.6) (1, 0, 0) (0.98, 0.2, 0.2) (0.85, 0.3, 0.3)



Table 3: Neutrosophic probability (0.1, 0.4, 0.8) (0.4, 0.2, 0.6) (0.3, 0.5, 0.5) (0.2, 0.3, 0.5) (0, 0, 0)
(0.15, 0.2, 0.8) (0.15, 0.2, 0.8) (0.3, 0.5, 0.5) (0.4, 0.2, 0.6) (0, 0, 0)
(0.15, 0.2, 0.8) (0.24, 0.3, 0.7) (0.35, 0.2, 0.6) (0.13, 0.3, 0.8) (0.13, 0.3, 0.8)


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For A1, according to definition (2.9), Clearly n1
4 is neutrosophic dominate n1

1, because using the definition
(2.4) and equation (1), neutrosophic payoff of n1

4 is a14 = (1, 0, 0) greater than neutrosophic payoff n1
1 is

a11 = (0.95, 0.2, 0.1) and at their corresponding neutrosophic probabilities b14 = (0.2, 0.3, 0.5) is greater
than b11 = (0.1, 0.4, 0.8). Also we see that n1

2 is neutrosophic dominates n1
3, because neutrosophic payoff

a12 > a13 and neutrosophic probability b12 > b13. Therefore, {n2, n4} are the neutrosophic dominates for
A1.

For A2, the analysis shows that n2
2 is neutrosophic dominate n2

1, the reason is that a22 > a21 and
b22 = b21. Similarly, we can see that n2

3 is neutrosophic dominate n2
1, because neutrosophic payoff a13 > a21

and neutrosophic probability b23 > b21. Now it is clear that neutrosophic probability n2
4 is higher than the

other probabilities for A2. So, with the help of definition (3.1), n2
4 is neutrosophic dominated. Therefore, for

A2, the neutrosophic dominated vector is
{
n2
2, n2

3, n2
4

}
. For A3, it is clear that n

3
3 is neutrosophic dominated

because neutrosophic payoff and neutrosophic probability are higher than all the other values. Therefore,{
n3
3

}
is the only neutrosophic vector for A3.

A decision-maker can select the most appealing event from E for each Ai. Obviously, a decision-maker
choose the best attractive event from all the events against each activity. In the meantime, it means that
then most attractive event is not necessarily extracted from a paired comparison.

Let us suppose that an event using upper value of neutrosophic probability and upper value of neutrosophic
payoff would make the decision-maker more attractive. This is the naturally attractive way to characterize
the selection process as it employs a relationship superiority that is know as the most generally accepted
concept. This principle reflects an attitude of hope when analyzing events. These principles shows that the
most desirable case of an alternative Ai is satisfied by overall state of nature E and denoted as ci+(E). ci+(E)
is referred to describe the set of neutrosophic focus points of Ai over E in the event that there are several
neutrosophic focus points Ai exist. Let’s see how to recognize ci+(E).

Definition 3.3. Let X be a space of points (objects) and B =
(
P (T ), P (I), P (F )

)
be the neutrosophic

probability. A function π : X → [0, 1] is called the neutrosophic relatively likelihood function and it is defined

as: π(x) =
(

P i(T )
max
i∈X

P (T ) ,
P i(I)

max
i∈X

P (I) ,
P i(F )

max
i∈X

P (F )

)
, where 0 ≤ P (T )

max
i∈X

P (T ) +
P (I)

max
i∈X

P (I) +
P (F )

max
i∈X

P (F ) ≤ 3 for all x belongs to X.

Suppose that x1, x2 belongs to X, then

π(x1) > π(x2) ⇐⇒ s

(
P (T (x1))

max
i∈X

P (T (x1))
, P (I(x1))
max
i∈X

P (I(x1))
, P (F (x1))
max
i∈X

P (F (x1))

)
> s

(
P (T (x2))

max
i∈X

P (T (x2))
, P (I(x2))
max
i∈X

P (I(x2))
, P (F (x2))
max
i∈X

P (F (x2))

)
.

Definition 3.4. Let a mapping ηi from payoff function to a closed interval zero and one for all Ai is called a
satisfaction function and the satisfaction function is dependent to payoff function. i.e., ηi : Ui → [0, 1] where,
max η(ui) = 1 and if u1 > u2 then ηi(u1) > ηi(u2).

The above definition is the general form of satisfaction function. The relative position of satisfaction
function can be written as:

ηi(ui) =
(

U(T )
max
i∈X

U(T ) ,
U(I)

max
i∈X

U(I) ,
U(F )

max
i∈X

U(F )

)
, where 0 ≤ U(T )

max
i∈X

U(T ) +
U(I)

max
i∈X

U(I) +
U(F )

max
i∈X

U(F ) ≤ 3 for all x ∈ X.

Let us consider the example 3.2, we rewrite the neutrosophic dominates for A1 are
{
n1
2, n1

4

}
, the neutro-

sophic dominated vector for A2 is
{
n2
2, n2

3, n2
4

}
and the neutrosophic dominated vector for A3 is

{
n3
3

}
.When

considering the neutrosophic dominates for A1 are
{
n1
2, n1

4

}
, then their neutrosophic payoff and neutrosophic

probabilities are as: {[(0.86, 0.3, 0.2) , (0.4, 0.2, 0.6)] [(1, 0, 0) , (0.2, 0.3, 0.5)]}, using definition 3.3,
{[(0.86, 0.3, 0.2), (1.0, 0.67, 1.0)] [(1, 0, 0), (0.5, 1.0, 0.83)]}.

we calculate the attractive point between
{
n1
2, n1

4

}
as: min (π(n2), η(n2)) = min [(0.86, 0.3, 0.2) , (1.0, 0.67, 1.0)] .

using equation 1, min [(0.86, 0.3, 0.2) , (1.0, 0.67, 1.0)] = (1.0, 0.67, 1.0), similarly, min (π(n4), η(n4)) =
min [(1, 0, 0) , (0.5, 1.0, 0.83)] = (0.5, 1.0, 0.83). As the attractive point between

{
n1
2, n1

4

}
is the upper

value between n2 and n4. Therefore, max
(
n1
2, n1

4

)
= max

(
(1.0, 0.67, 1.0), (0.5, 1.0, 0.83)

)
= n1

2.
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So, the neutrosophic attractive point is n1
2. It shows that c1+(A1) = n1

2. Similarly, the neutrosophic
payoff and neutrosophic probability for A2 is: {[(1, 0, 0) , (0.15, 0.2, 0.8)] [(0.92, 0.2, 0.1) , (0.3, 0.5, 0.5)]
[(0.3, 0.4, 0.6) , (0.4, 0.2, 0.6)]}.
Normalize the above vector using the definition 3.3, {[(1, 0, 0), (0.38, 0.4, 1.0)] [(0.92, 0.5, 0.1), (0.75, 1.0, 0.63)]
[(0.3, 1.0, 1.0), (1.0, 0.4, 0.75)]}.

Likewise, we obtain c2+(A2) = n2
2. Because, for A3, only the singleton set

{
n3
3

}
is the dominates vector,

therefore,
{
n3
3

}
is the attractive point for A3.

Therefore, the subsets of A1, A2 and A3 are: A1 −
{
n1
2

}
=
{
n1
1, n1

3, n1
4

}
, A2 −

{
n2
2

}
=
{
n2
1, n2

3, n2
4

}
,

A3 −
{
n3
3

}
=
{
n3
1, n3

2, n3
4, n3

5

}
.

Now the same process for the subsets have been done, and we have c1+(A1−{n1
2}) = {n1

4}, c2+(A2−{n2
2}) =

{n2
1}, c3+(A3 − {n3

3}) = {n3
4}.

3.2 Neutrosophic Ideal Alternatives

In the neutrosophic theory of choice, the first step is to calculate the neutrosophic attractive points and the
second step is to calculate the neutrosophic ideal alternatives, these neutrosophic ideal alternatives are based
on neutrosophic attractive points. In the problems of the neutrosophic theory of choice, a decision-maker
believes that the NS attractive points are the most suitable points. Therefore, the alternatives are chosen that
generate the ideal alternative after the selecting of NS attractive points. They are sum up of the following
definitions.

Definition 3.5. Let F ⊆
n
∪
j=1

Ej , and Q+ is the set of maximal elements of F , and NF (F,Q+) =

{t ∈ F, (t, e) /∈ Q+ | e ∈ F} .

C+ =
n
∪
j=1

cj+
(
Ej
)
is the collection of attractive points with relatively high neutrosophic probabilities

as well as relatively high neutrosophic payoffs. Suppose that G =
n
∪
j=1

Gj , where Gj ⊆ Ej , then D+ ={
ci+ ∈ NF (G,Q+) | ∀Ai ∈ A

}
is the neutrosophic set of action whose neutrosophic attractive points are in

NF (F,Q+).
Let us turn Example 3.2. c1+(A1) =

{
n1
2

}
, c2+(A2) = n2

2, c
3
+(A3) = n3

3, according to definition 3.4, C+ ={
n1
2, n2

2, n
3
3

}
= {[(0.86, 0.3, 0.2), (0.4, 0.2, 0.6)] [(1.0, 0, 0) , (0.15, 0.2, 0.8)] [(1.0, 0, 0), (0.35, 0.2, 0.6)]}.

It is clear that n3
3 > n1

2, and also n1
2 > n2

2. Hence NF (F,Q+) =
{
n1
2, n3

3

}
. Corresponding to these

actions, A1 and A3 are their respectively alternatives. Therefore, D+ = {A1, A3}. Now, {n1
2, n

3
3} =

{[(0.86, 0.3, 0.2) , (0.4, 0.2, 0.6)] [(1, 0, 0) , (0.35, 0.2, 0.6)]}.
using definition 3.3 and 3.4, {n1

2, n
3
3} = {[(0.86, 0.3, 0.2) , (1.0, 1.0, 1.0)] [(1, 0, 0) , (0.88, 1.0, 1.0)]}.

min
(
u
(
n1
2

)
, π
(
n1
2

))
= min [(0.86, 0.3, 0.2) , (1.0, 1.0, 1.0)] = (1.0, 1.0, 1.0)

min
(
u
(
n3
3

)
, π
(
n3
3

))
= min [(1, 0, 0) , (0.88, 1.0, 1.0)] = (1, 0, 0)

now the maximum value between the above is the optimal value, so the most attractive point is {n3
3} and

hence, A3 is the optimal alternative.

4 Application of Neutrosophic Set in Decision Making

4.1 Working Rule

In this section, a procedure for neutrosophic theory of choice is shown. The following steps show the algorithm
of game problems.
Step 1: Calculate the score values of each neutrosophic payoff and neutrosophic probability.
Step 2: Calculate the neutrosophic dominate points according to definition 2.9 and deleting all other vectors.
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Step 3: Apply the definition 3.1 and 3.3 for dominate vectors.
Step 4: Calculate all the neutrosophic attractive points using max(min (η(ui), π(xi))) .
Step 5: Collect the neutrosophic set of action for attractive points using definition 3.5.
Step 6: Obtained the optimal strategies from all the neutrosophic attractive points.
The conceptualization of the suggested strategy is shown in figure 2.

Figure 2: Algorithm of the proposed strategies under the environment of neutrosophic sets

4.2 Case Study

Let’s take a real-life example to make the conceptual understanding easy, a person who wants to buy a new
mobile phone. He, as decision-maker starts his research. Mainly he evaluates and analysis among the three
most popular brands, i.e. Apple, Samsung and LG Mobiles. He compares the five major characteristics of a
mobile phone which are the following: 1. camera pixels, 2. Battery power/ timing, 3. processor capacity, 4.
mobile RAM & memory capacity, 5. screen resolution & size. The decision-maker collects the information
given by the companies and online consumer views on these products. His satisfaction level about each of the
characteristic is dependent on the customer’s opinions on them. Suppose most of Apple customers are not
satisfied with its battery timing, so Apple’s probability in this regard is not good, leading to dissatisfaction.
However, customers’ views about Apple’s screen resolution are exceptional, leading to high satisfaction to
decision-makers. The neutrosophic satisfaction level for each alternative corresponding to their neutrosophic
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probabilities are as follows:

Suppose that {A1, A2, A3} be the set of neutrosophic action collaborated with the disjoint set of events N i,
where superscript i represents mathematical symbols for the action Ai. Suppose N1 = {n1

1, n
1
2, n

1
3, n

1
4, n

1
5},

N2 = {n2
1, n

2
2, n

2
3, n

2
4, n

2
5}, N3 = {n3

1, n
3
2, n

3
3, n

3
4, n

3
5}. The strategies of neutrosophic payoffs and their corre-

sponding neutrosophic probability associated to each state shown in Table 4 and 5:

Table 4: Strategies of neutrosophic payoff for player. (0.95, 0.2, 0.1) (0.86, 0.3, 0.2) (0.76, 0.3, 0.3) (1, 0, 0) (0, 0, 0)
(0.63, 0.3, 0.3) (1, 0, 0) (0.92, 0.2, 0.1) (0.3, 0.4, 0.6) (0, 0, 0)
(0.43, 0.4, 0.6) (0.38, 0.5, 0.6) (1, 0, 0) (0.98, 0.2, 0.2) (0.85, 0.3, 0.3)



Table 5: Strategies of neutrosophic probability for player (0.1, 0.4, 0.8) (0.4, 0.2, 0.6) (0.3, 0.5, 0.5) (0.2, 0.3, 0.5) (0, 0, 0)
(0.15, 0.2, 0.8) (0.15, 0.2, 0.8) (0.3, 0.5, 0.5) (0.4, 0.2, 0.6) (0, 0, 0)
(0.15, 0.2, 0.8) (0.24, 0.3, 0.7) (0.35, 0.2, 0.6) (0.13, 0.3, 0.8) (0.13, 0.3, 0.8)


The neutrosophic dominates vectors for A1, A2, and A3 are {n1

1, n
1
2, n

1
3, n

1
4}, {n2

2, n
2
5} and {n3

1, n
3
4} respectively.

For {n1
1, n

1
2, n

1
3, n

1
4}, the payoff and their corresponding probabilities are:(

(1, 0, 0) (0.6, 0.3, 0.3) (0.5, 0.6, 0.2) (0.4, 0.6, 0.4)
(0.1, 0.2, 0.4) (0.4, 0.3, 0.1) (0.3, 0.1, 0.1) (0.1, 0.2, 0.2)

)
The neutrosophic satisfaction function and neutrosophic relatively likehood functions of above matrix can be
written as: (

(1, 0, 0) (0.6, 0.5, 0.75) (0.5, 1.0, 0.5) (0.4, 1.0, 1.0)
(0.25, 0.67, 1.0) (1, 1, 0.25) (0.75, 0.33, 0.25) (0.25, 0.67, 0.5)

)
The optimal action point in neutrosophic theory of choice is; max(min

(
v(n1

i ), π(n
1
i )
)
) = max((0.25, 0.67, 1),

(1, 1, 0.25), (0.5, 1, 0.5), (0.4, 1, 1)) = n1
2. Therefore, c

1
+ (A1) = n1

2. Similarly, c2+(A2) = n2
2 and c3+(A3) = n3

4.

So, C+ =
n∪

j=1
cj+(Aj) = {n1

2, n
2
2, n

3
4}. Now the second step is to calculate the ideal alternative, for this, we write

the neutrosophic payoff and their corresponding probabilities from Table (4) and (5) for the neutrosophic
attractive points.

n1
2 n2

2 n3
4(

(0.6, 0.3, 0.3) (1, 0, 0) (1, 0, 0)
(0.4, 0.3, 0.1) (0.2, 0.4, 0.7) (0.35, 0.4, 0.7)

)
Neutrosophic attractive points

According to definition 3.4, NF (F,Q+) = {n1
2, n

3
4} and ND+ = {A1, A3}. Now we calculate the level of

attractive for the alternatives A1 and A3 with the help of max(min
(
v(n1

1, A1), π(n
1
2)
)
,
(
v(n3

4, A3), π(n
3
4)
)
).

Therefore, the optimal action is A3. Hence, A3 > A1 > A2.

The graphical representation of the optimal point is shown in Figure 3. The points A,A′, B,B′ and C,C ′

shows the strategies of payoff and their corresponding strategies of probabilities, respectively. These points
are the attractive points of the given decision matrix. Moreover, n1

2,n
1
2′ and n3

4, n
3
4′ represents the relative

position of neutrosophic payoff and probabilities, respectively, of the points A,A′ B,B′ and C,C ′.

4.3 Comparison Analysis

A comparative study between the proposed neutrosophic theory of choice and other methods like TOPSIS
is discussed and analysis shows that the TOPSIS evaluates each alternative using the weighted of all the
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Figure 3: Neutrosophic optimal point

outcomes and then selecting the alternative with maximum relative closeness. Similarly, if we consider
the subjective expected utility (SEU), this theory is also based on the weighted average. In, SEU, each
alternative is selected by maximum average based on weight. These theories are related to the risk factor. A
decision-maker avoids the risk, takes the risk or is neutral, the graph of utility is concave, convex and linear
respectively. But the neutrosophic theory of choice, consists of two steps; the first step is to select the event
of attractive points and 2nd step is the relationship trade of neutrosophic payoff and neutrosophic relative
likelihood probability function. There is no risk factor for the decision-maker. Because in the proposed
theory, the satisfaction function is the relative position of payoff, as well as the relative likelihood function,
are used to make the decision, which shows the attitude of a decision-maker in uncertain situations. It means
when a decision-maker chooses the attractive points. Decision-maker mark the same weight on probability
and payoff, or when he tried to obtain an attractive point, the payoff and probability are equal degrees of
importance. It shows that the neutrosophic theory of choice is most straight forward and more comfortable
than other approaches. Neutrosophic theory of choice deals with totally different ways to select the scenario.
SEU and other approaches use the weighted function to deal with the uncertainty, which is not the actual
solution of the uncertainty problems. Suppose some alternative is repeated a large number of times. In
that case, the obtained result is confidently reaching the maximum value. In contrast, the proposed theory
shows a clear solution because of using neutrosophic payoff and relative likelihood function, and psychological
evidence clearly supports them. Nowadays, many researchers [25, 26] give evidence gathered from studies
using scanpath and different strategies suggesting that it is impossible that a risky decision would be made
on a system of weighting and summing. Zhou et al.[27] proved that the proportion task of the information
process sequence tends to be more compatible with the summing and weighting method. Therefore, we
believe that our outcomes indicate the best results as compared to the weighting and summing process. So,
the proposed technique would be an immense addition to decision-making problems.
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5 Conclusion

The most generalization of intuitionistic fuzzy sets is the neutrosophic sets, in which ambiguity is introduced
through an extra indeterminacy degree. In this research, we have implied neutrosophic frameworks. We chose
game theories using neutrosophic logic. We have considered a neutrosophic payoff and probability approach
to solving our constructed game phenomena. In this analysis, we have observed an indeterminacy function
assuming neutrosophic sets with membership and falsity characteristics. Moreover, in focused recommenda-
tion systems, we have declared our proposed game model and have achieved some desirable outcomes. We
have found that some have solved the problems in crisp data sets, while we have presented neutrosophic data
sets that are more closely linked to the expressions of real-life problems. This can be seen as a limitation of
our study’s generalization. Some theoretical constructs can, however, be explored in various situations and
other real-life issues with different levels of additional measures. In the future, research in multiple fields, such
as medical diagnosis, business management optimization, aerospace engineering, space design management,
manufacturing industry management, weapons, laboratory research management, wastewater management,
optimization of renewable energy sources, supply chain management, can be carried out in game theory un-
der different uncertainties. Game theories neutrosophic attributes can be comprehended utilizing different
techniques from neuroscience, mechanical technology, artificial intelligence, humanitarian operations and so
on. The neutrosophic focus theory of choice consists of two obligatory portions, from an external source,
neutrosophic probability and payoff are given. For the selecting of the neutrosophic attractive points, we can’t
straightforward allocate the probabilities. Therefore, we use a two-level process to evaluate the probabilities.
There are two types of theories for modeling rationality [33], which is substantively rational theory and the
second is rational procedural theory. According to many researchers, the second model is more relaxed and
latest logical approach. The fundamental principle of all these types of theories is to substitute or ease the
portion of the expected utility theory or the expected subjective utility theory axioms. This paper contributes
to a basic theory, including some logically satisfying axioms for the rationality procedural and deals with
decision-making risk or uncertainty or ignorance. The key point of Neutrosophic theory of choice is that
the most relevant occurrence leads to the most favoured attractive point. The Neutrosophic theory of choice
dispose of two stages, one is to select an attractive event for each step and then the most occurrence event is
chosen from all the attractive points. We have found many cognitive proofs in serval papers [31, 34] that all
the evidence consists of the basic principles of the neutrosophic theory of choice. These theories used concave
and convex functions to show the gain and loss; these functions are associated with risky situations. Whereas,
in the proposed approach, the neutrosophic payoff function has no relation to risk situations. Decision-making
models are categorized by Shafir et al.[35] into two groups; one is value-based and the second is reason-based.
A value-based model is associated with a numerical value to every option and chooses the maximum value
alternative on the other hand reason-based problems describes different goals and reasons that are expected
to determine and affect and describes choices in terms of reasons for and against the various alternatives. But,
there is no analysis of how these theories related to lottery base decisions. However, we imply the neutro-
sophic theory of choice that the reason for the alternative is the identify the attractive points of the optimal
attractive. It is also possible that sometimes, a decision-maker often does not understand a particular factor
when evaluating an ideal alternative [36]. Our proposed neutrosophic theory of choice can be implemented
for complicated decisions and real-world problems where some existing approaches may be difficult to solve.
In management fields, the proposed theory provides a comprehensive, structured framework for modeling
rational thoughts. While it is well-known that behavioral variables are very significant in the study of re-
search, however, it is complicated to integrate the characteristics and qualities of players into mathematical
models because of the absence of proper theories. The proposed approach gives a conceptual framework for
the development of behavioral models. This study has many limitations, while many recognized irregularities
have been announced by this proposed theory, different axioms are proved using the logical procedure.
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Abstract. Since companies are inclined to implement lean production, researchers have proposed a number of
fundamental success factors to facilitate the implementation of this production approach. This study analyzes the
critical success factors (CSFs) in lean production extracted from 14 review studies. The interpretive structural
modeling approach is utilized to analyze the impact of these critical success factors on one another. The aim is to
enhance insights into lean production and facilitate informed decision-making. In this article, a seven-tiered model
is presented. According to the conceptual model of success factors in lean production, leadership is positioned at
the base of the model and serves as the origin for other factors. It should be regarded as the foremost critical
success factor in lean production. When establishing lean production systems, organizations and senior managers
should focus on higher levels and critical success factors that underlie the model. Subsequently, nonfuzzy and fuzzy
driving and dependence power analyses were conducted that the fuzzy matrix cross-reference multiplication applied
to a classification (MICMAC) analysis provides deeper insights into the analysis of driving and dependence power.
The fuzzy matrix cross-reference multiplication applied to a classification analysis helped identify some key factors
that are highly effective for successfully implementing lean manufacturing.
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MAC analysis.

1 Introduction

Lean thinking received considerable attention in the 1990s [1]. The notion was introduced to assist manu-
facturers in improving the performance of their manufacturing system by eliminating unnecessary activities
[2]. Lean thinking helps organizations to identify types of waste, such as overproduction in mass production
systems. When these wastes are reduced, and the production flow is streamlined, fewer resources would be
required to perform operations. Consequently, waste reduction can result in improved performance, primar-
ily characterized by lower costs, shorter lead times, and more stable quality. Additionally, it can lead to
lesser work in progress, lower inventory levels, and higher product diversity. Subsequently, implementing lean
concepts can lead to greater customer satisfaction and increased market competitiveness [3].

In recent years, there has been a renewed emphasis on lean production [4, 5]. The global economic
recession has compelled companies operating in today’s open global economy to raise productivity and lower
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costs. Accordingly, lean production has gained popularity as a strategy to enhance the competitiveness of
industrial companies [6, 1].

Despite their best efforts, most companies are unable to successfully implement lean manufacturing pro-
grams [7, 4, 8]. Researchers and consultants have proposed a set of critical success factors (CSFs) to assist
businesses in implementing lean manufacturing and avoiding costly failures. CSFs refer to factors that must
go well to ensure the success of a manager or organization. These factors are directly associated with specific
areas of management or the company that require consistent attention to achieve optimal performance [9].

There are several lists of CSFs for lean production implementation as well as improvement models,
including total quality management, just-in-time production, Six Sigma, and total productive maintenance.
On the whole, there is a strong theoretical consensus among studies as to what the CSFs are.

Interpretive structural modeling (ISM) is a useful approach for analyzing subjects that involve interrelated
qualitative variables of varying importance [10]. ISM aids in identifying the internal relationships between
variables and is an appropriate technique for analyzing the effect of one variable on others [11]. Additionally,
ISM can rank and sort out system components, which greatly aids managers in implementing the intended
model [12].

This study categorizes and evaluates 24 CFSs in the context of lean production. These CFSs are extracted
by Netland from a review of 14 articles in this field and cited in ”Critical Success Factors for Implementing
Lean Production: The Effect of Contingencies” [13]. Here, in the current paper, they are partitioned into
levels using the ISM method and categorized into four groups based on fuzzy driving and dependence power
analyses.

2 Literature Review

CSFs are characteristics, conditions, or variables with a significant impact on the success of an organization
in specific domains [14] if used and managed properly. Rungasamy, Antony, and Ghosh [15] argue that
organizations can gain a competitive advantage by identifying and achieving favorable outcomes in CSFs. If
an organization’s objectives conflict with the CSFs in a particular domain, it may experience significant failure
in that domain. Conversely, an organization’s upper hand in one or more CSFs compared to competitors
presents an exceptional opportunity for it to attain a competitive advantage.

Quality leaders such as Deming (1986), Crosby (1979), and Joran (1988), as well as advocates of lean
manufacturing, such as Laker (2004) and Womack and Jones [2], have compiled comprehensive lists of CSFs
(cited in Netland [13]).

The identification and proposal of CSFs for lean production, total quality management, just-in-time
production, Six Sigma, and total productive maintenance, along with other methods, have consistently been
the focus of scholarly articles and research in the field of operations management. Numerous explanations
have been provided. Several researchers, including Achanga, Shehab, Roy, and Nelder [16], Cotte, Farber,
Merchant, Paranikas, and Sirkin [17], Losonci, Demeter, and Jenei [18], and Vinodh and Joy [19], have
produced lists of CSFs for lean manufacturing.

Many academic sources have synthesized a wealth of scientific literature on CSF for improvement pro-
grams. The articles concur that ”Corporate management commitment”, ”Education”, and ”Employee in-
volvement and support” are three of the key success factors. Refer, for example, to Sila and Ebrahimpour’s
review of 76 articles on total quality management [20], Nitin et al.’s review of success factors among 10
companies winning the National Quality Award [21], Brady and Allen’s review of 201 published articles
on Six Sigma [22], and Marodin and Saurin’s review of 102 published studies on lean production [4]. The
findings suggest that managers should play an active role in leading and supporting the implementation of
lean production. This is important to ensure that all employees have a clear understanding of lean produc-
tion and know how to effectively implement it. Organizations should educate employees and support them
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in implementing the designated changes. Scientific sources emphasize aligning improvement programs with
business strategy, creating long-term plans, managing cultural changes, and involving supply chain partners
as key factors.

Netland [13] extracted 22 CSFs from 14 structured review articles on total quality management, Six
Sigma, total productive maintenance, just-in-time production, and lean production in his research work
titled ”Critical Success Factors for Implementing Lean Production: The Effect of Contingencies”. These
CSFs are summarized in Table 1.

Table 1: Critical success factors for implementing lean production programs [13]

Critical Success Factors

1 Lead actively 9 Commit corporate management 17 Focus on areas and prioritize activities

2 Participate personally 10 Integrate lean in every day business 18 Invest time and money

3 Educate employees 11 Develop a vision and roadmap 19 Benchmark others

4 Educate managers 12 Use rewards and recognition 20 Emphasize team concept

5 Communicate, inform, and discuss 13 Monitor and audit implementation 21 Use external experts

6 Set and follow-up targets 14 Standardize and manage discipline 22 Hold regular implementation meetings

7 Involve and support employees 15 Find and share best practices 23 Emphasize safety and job attractiveness

8 Dedicate human resources 16 Stepwise approach 24 Use lean tools and methods

3 Methodology

The ISM is a systems design method initially proposed in 1973 by Warfield, a systems scientist at George
Mason University in the United States. This approach was initially introduced and subsequently developed
to facilitate the design of economic and social systems [23].

The ISM approach is an efficient methodology for addressing issues associated with interacting qualitative
variables with varying degrees of importance [10]. It is a useful technique for analyzing the relationships
between variables and assessing the influence of one variable on others [11]. ISM enables managers to
prioritize and assess the importance of system elements, thereby facilitating the effective implementation of
the model [12]. In order to apply the ISM technique and determine the internal relationships and priorities
of system elements, the subsequent steps should be followed [24].

A- Identifying the variables to be used in the model

B- Developing the structural self-interaction matrix (SSIM) of the variables

C- Developing the reachability matrix

D- Checking the matrix for transitivity

E- Partitioning of the reachability matrix into different levels

F- Drawing the ISM

G- Analyzing the driving and dependence power using the MICMAC2 diagram

2Matrix Cross-reference Multiplication Applied to a Classification (MICMAC)
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4 The ISM of CSFs in Lean Production

4.1 Identifying the Variables to Be Used in the Model

The initial step in the ISM involves identifying variables relevant to the topic in question [25]. Here, the
desired variables are the CSFs in lean production.

4.2 Developing the SSIM of the Variables

After identifying the variables, they need to be placed in the SSIM. The matrix in question has dimensions
corresponding to the variables specified in its first row and column [26]. In order to determine the type
of binary interaction between the variables, a questionnaire was developed, and experts were consulted.
Ultimately, experts decided on the type of interaction. The experts in this study were selected from a pool
of industry managers, professionals, and university professors.

4.3 Developing the Reachability Matrix

The reachability matrix is obtained by transforming the symbols of the SSIM relations into 0 and 1 [27].
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Table 2: Aggregate initial binary reachability matrix
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# Critical Success Factors 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 Lead actively 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 Participate personally 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1

3 Educate employees 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1

4 Educate managers 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

5 Communicate. inform and discuss 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1

6 Set and follow-up targets 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0

7 Involve and support employees 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0

8 Dedicate human resources 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0

9 Commit corporate management 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1

10 Integrate lean in everyday business 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1

11 Develop vision and roadmap 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1

12 Use rewards and recognition 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 1

13 Monitor and audit implementation 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

14 Standardize and manage discipline 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0

15 Find and share best practices 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1

16 Stepwise approach 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

17 Focus on areas and prioritize activities 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

18 Invest time and money 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

19 Benchmark others 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0

20 Emphasize team concept 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

21 Use external experts 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0

22 Hold regular implementation meetings 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

23 Emphasize safety and job attractiveness 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0

24 Use lean tools and methods 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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4.4 Checking the Matrix for Transitivity

Once the initial reachability matrix is generated, its internal consistency must be established. For instance,
if variable 1 leads to variable 2 and variable 2 leads to variable 3, variable 1 should also lead to variable
3. If the reachability matrix does not meet the condition, it should be revised by replacing the missing
relationships. Multiple techniques exist for assessing the transitivity of a matrix. This article employs
mathematical principles to establish consistency in the reachability matrix. Specifically, the reachability
matrix is raised to the power of K+1, where K is a positive integer greater than or equal to 1. Notably, the
exponentiation operation must adhere to the rules of Boolean algebra [27].

Table 3: Final (binary) reachability matrix (after transitivity check)
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# Critical Success Factors 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 Lead actively 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 24

2 Participate personally 1 1 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 12

3 Educate employees 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 11

4 Educate managers 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 21

5 Communicate. inform and discuss 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 17

6 Set and follow-up targets 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 16

7 Involve and support employees 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 10

8 Dedicate human resources 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 6

9 Commit corporate management 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 17

10 Integrate lean in everyday business 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 9

11 Develop vision and roadmap 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 17

12 Use rewards and recognition 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 1 14

13 Monitor and audit implementation 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 17

14 Standardize and manage discipline 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 6

15 Find and share best practices 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 14

16 Stepwise approach 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 6

17 Focus on areas and prioritize activities 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3

18 Invest time and money 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 9

19 Benchmark others 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 16

20 Emphasize team concept 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 6

21 Use external experts 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 14

22 Hold regular implementation meetings 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5

23 Emphasize safety and job attractiveness 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 13

24 Use lean tools and methods 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21

Dependence Power 18 18 13 8 18 12 6 14 12 15 17 8 8 18 19 10 9 15 8 12 10 13 12 11
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4.5 Partitioning of the Reachability Matrix into Different Levels

In order to rank the variables, each variable’s reachability set and antecedent set must be specified [20]. The
reachability set for each variable includes the variables that can be reached through the variable of interest,
and the antecedent set includes the variables through which the variable of interest can be reached. The level
of each variable is determined after these sets and the shared elements are specified [25].

Table 4: Level partitioning

Levels CSFs Row No.

1 10

2 15,18,19,24

3 13,14,16,17,21,22

4 7,12,20,23

5 2,3,4,8

6 5,6,9,115

7 1

4.6 Drawing the ISM

After determining the relationships and the level of the variables, they are translated into a model [11]. For
this purpose, we first arrange the variables according to their level. In this research, the variables are placed
in 7 levels, as illustrated in Figure 1.

Figure 1: Interpretive structural model
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4.7 Analyzing the Driving and Dependence Power Using the MICMAC Diagram

The MICMAC matrix is employed to analyze the reciprocal influence between variables and their categoriza-
tion [28]. This analysis categorizes variables into four groups based on their driving and dependence power.
The first category includes autonomous variables with weak driving and power dependence. These variables
exhibit limited and weak connections to the system. No variables fell in this category in the current research,
suggesting a substantial connection between variables in the developed model. Dependent variables are the
second category, with weak driving but a strong dependence. These variables primarily consist of specific
results that are the product of certain factors. Rarely can these variables serve as the basis for other variables.
The third category, known as linkage, includes variables with strong driving and dependence. The variables
are non-static, as changes to them can affect the whole system. The fourth category consists of variables with
strong driving but weak dependence. This group serves as the fundamental basis of the model and should be
given primary emphasis when initiating the system [11]. Figure 3 depicts the positions of each CSF.

Next, with the assistance of experts, these binary numbers from Table 3 are replaced with appropriate
fuzzy values using Table 5, and a fuzzy direct reachability matrix (FDRM) is developed following Table 6. In
fuzzy ISM, experts are free to consider the degree of relatedness when deciding whether to include or exclude
an element as related or unrelated to another. In this study, experts could consider even the weakest degree
of relation (0.1) as a relationship. In this FDRM, the sum of values between rows and columns indicates
the driving and dependence power of each of the variables, respectively. The results are then used for fuzzy
MICMAC analysis, as depicted in Figure 4 [29, 30, 31].

The selection of the fuzzy membership function for the seven linguistic variables is attributed to rank as
follows.

The set of values related to the linguistic variable = {N,NL,L,M,H, V H,F} = T (x) Variation range of
the reference set = [0, 1] = U

Figure 2: Membership function of linguistic variables (adopted from [32, 33])

The values presented in Table 3 are developed in the form of an FDRM using the values of Table 5,
the results of which are reported in Table 6. Finally, the FDRM provides the possibility of MICMAC fuzzy
analysis [30, 34].
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Table 5: Scheme for the degree of perceived dominance factor (Adopted from [32, 33])

Value on the Scale Fuzzy Triangular Numbers Grade Dominance of Interaction

0 (0,1,0) N No

0.1 (0,0.1,0.2) NL Very Low

0.3 (0.1,0.3,0.5) L Low

0.5 (0.3,0.5,0.7) M Medium

0.7 (0.5,0.7,0.9) H High

0.9 (0.8,0.9,1) VH Very high

1 (1,1,1) F Full

Table 6: Uzzy direct reachability matrix with driving and dependence power
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# Critical Success Factors 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 Lead actively 1 1 0.7 0.9 0.9 1 1 0.9 0.9 0.7 0.5 0.5 1 1 1 1 1 1 1 1 0.9 0.9 0.7 1 21.5

2 Participate personally 0.9 1 0.9 0 1 0.3 0 0 0.5 0.7 0.9 0 0 0 0 0 0 0 0 0.7 0 1 1 1 9.9

3 Educate employees 1 1 0.7 0 0.9 0 0 0 1 0.9 0.9 0 0 0 0 0 0 0 0 0.9 0 1 0.3 0.3 8.9

4 Educate managers 0.9 1 1 0 1 0.7 0 1 1 1 1 0.7 0 0.9 0.7 1 1 1 1 1 1 1 0.9 0.5 19.3

5 Communicate. inform and discuss 0.5 0.9 0.9 0.3 0.1 0.7 0.7 0 0 0.5 0 0 0 0.5 0.1 0 0 0.9 0.7 1 0.3 0.3 0.9 1 10.3

6 Set and follow-up targets 1 0 0 0 1 0.9 0.5 1 1 0.9 1 0 0 1 0.9 1 1 0.5 1 0 1 1 0 0 14.7

7 Involve and support employees 0 1 0 0 1 0 0 0 0 0.7 0 0 0.3 0.1 0.1 0 0.3 1 0 1 0 0 1 0 6.5

8 Dedicate human resources 0.7 0 0 0 0.9 0 0 0 0 0 0.7 0 0 0.3 0.3 0 1 0 0 0 0 0 0 0 3.9

9 Commit corporate management 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 17

10 Integrate lean in everyday business 1 0 0 0 0 0 0 0 0 0 0 0 0 0.9 1 0.7 0 1 0 0 0.7 0.7 1 1 8

11 Develop vision and roadmap 0.7 0.5 0 0 0 0.1 1 0.5 0 0 0.5 0.3 0.9 1 0.9 0.5 0 0.3 0 0.7 1 1 1 1 11.9

12 Use rewards and recognition 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0.7 0.3 0 1 0 0 0 0 1 0.9 12.9

13 Monitor and audit implementation 1 1 0.7 0 0 0 0 0.3 0 0 0.5 1 0.7 0.9 0.9 0.7 0.3 0.1 0.9 0.9 1 1 1 0 12.9

14 Standardize and manage discipline 0.7 0.9 0.9 0 0 0 0 0 0 0 1 0 0 0.5 0.7 0 0 0 0 0 0 0 0 0 4.7

15 Find and share best practices 1 0.5 0 1 1 1 0 0.1 0 1 1 0 1 1 0.9 0 0 0.9 0 0.7 0 0 0 1 12.1

16 Stepwise approach 0 0 0.7 0 0.5 0 0 0.7 1 0 1 0 0 0.9 0 0 0 0 0 0 0 0 0 0 4.8

17 Focus on areas and prioritize activities 0 0 0 0 0 0 0 1 1 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 2.9

18 Invest time and money 0.3 0.1 0.1 0.3 0.1 0.5 1 0 0 0 0 0 0 1 0.1 0 0 0 0 0 0 0 0 0 3.5

19 Benchmark others 0.9 0.9 0.5 1 0.7 1 0.1 0.3 0.9 1 1 0 0 0.9 1 0 1 0.9 0.9 0 0 0 0 0 13

20 Emphasize team concept 0 1 0 0 1 0 0 0 0.1 0 0 0 0 0 0.5 0.9 0 1 0 0 0 0 0 0 4.5

21 Use external experts 1 0.3 0 1 0 1 0 0.7 0 1 1 0 0 0.9 0.9 0 0 0.3 1 1 1 1 0 0 12.1

22 Hold regular implementation meetings 0 0 1 0 0.9 0 0 0.9 0 0.5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4.3

23 Emphasize safety and job attractiveness 0.7 1 0 0 0.7 0 0 0 0.5 0.5 1 1 1 0.7 0.3 0 0 0 0 0 1 1 1 0 10.4

24 Use lean tools and methods 1 0.9 0 1 0.9 1 0 0.9 0 0.7 0.9 1 1 0.5 1 0.5 0.9 0.9 1 0.9 1 1 0.7 1 18.7

Dependence Power 15 15 10 6.5 15 9.2 4.3 10 9.9 12 15 6.5 6.9 14 13 7.6 7.5 12 7.5 11 8.9 12 11 9.7
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Figure 3: MICMAC analysis

Figure 4: Fuzzy MICMAC analysis
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In Table 7, the position of each CSF in fuzzy and nonfuzzy MICMAC analyses is specified.

Table 7: Driving and dependence power of critical success factors

Group Critical Success Factors

Nonfuzzy Fuzzy

1. Autonomous 18,8 2*16 3,7,8,9,17,18,20,22,23

2. Dependent 3,7,10,14,16,17,20,22 4,6,12,13,16,19,21,24

3. Linkage 11,15,23,24 2*5,19 1,10

4. Independent 1,4,6,9,13,22 2,5,11,14,15

5 Conclusion

As organizations are interested in implementing lean production systems, it would be of particular importance
to identify CSFs to facilitate their implementation and provide a conceptual model in this area. ISM provides
a proper framework and order for such systems. Thereby, decision-makers are given a clear picture of how
various factors influence the system as a whole and how to best proceed to reach their objective. The current
research utilized ISM to identify the type of relationship between factors and determine the levels of CSFs.
Then, seven levels were assigned to the factors based on a summary of expert opinions and an ISM analysis.
The conceptual model of CSFs in lean production indicates that leadership is the foundational element of
the model and serves as the driver for other factors. Consequently, leadership is deemed the foremost CSF in
lean production. When establishing lean production systems in organizations, senior managers should focus
on higher levels and the CSFs underlying the model.

Based on the findings from Figures 3 and 4, as well as Table 7, it can be inferred that the fuzzy MICMAC
analysis offers superior insights into the analysis of driving and dependence power. This eliminates the issue
posed by the presence of border CSFs in the nonfuzzy MICMAC analysis. The fuzzy MICMAC analysis
helped identify several key factors that are highly effective in achieving success in implementing lean produc-
tion. These factors include “participate personally”, “communicate, inform, discuss”, “develop vision and
roadmap”, “standardize and manage discipline”, and “find and share best practices”. These factors exhibit
high driving and weak dependence power. The CSFs of leadership and lean business are linkage factors,
which exhibit a significant correlation with the factors at the preceding levels of the model and a moderate
driving on other factors.

The key factors of “educate managers”, “set and follow-up targets”, “use rewards and recognition”, “mon-
itor and audit implementation”, “stepwise approach, “benchmark others”, “use external experts”, and “use
lean tools and methods” are also dependent on the factors of the previous levels in the model. Other fac-
tors with low driving and dependence power include “educate employees”, “involve and support employees”,
“dedicate human resources”, “commit corporate management”, “focus on areas and prioritizing activities”,
“invest time and money”, “emphasize team concept”, “hold regular implementation meetings”, and “empha-
size safety and job attractiveness” in the autonomous category.

In future studies, fuzzy-based conceptual models can be developed by FDRM or fuzzy ISM that builds
on a questionnaire with linguistic variables and completely fuzzy calculations. Alternatively, ISM can be
considered to develop models of quantitative approaches. In the current study, ISM was used as a tool whose
performance is based on the judgment of experts for the development of the model.

Conflict of Interest: ”The authors declare no conflict of interest.”
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Abstract. This article focuses on evaluating the success or failure of kidney transplantation using Shannon entropy,
fuzzy sets, and Scaf. The data for Scaf references used in this study for both healthy individuals and kidney
transplant recipients have been collected from the relevant literature. For both groups, Scaf’s Shannon entropy
values have been calculated using an appropriate probability density function and formulation, and sequences have
been generated for CAF and Scr biomarkers from entropy values, with findings interpreted. These sequences
are called healing sequences. A case study demonstrating whether the transplant procedure was successful or
unsuccessful was presented using sequences that we refer to as healing sequences. In this context, the utilization
of mathematical tools such as fuzzy sets, Shannon entropy, and reference intervals becomes evident. These tools
provide a systematic and quantitative approach to assessing the outcomes of kidney transplantation. By leveraging
the principles of Shannon entropy, we gain insights into the degree of unpredictability and fuzziness associated with
biomarker values, which can be indicative of the transplant’s success. Furthermore, the concept of healing sequences
provides a valuable framework for tracking the progression of patients post-transplantation. By monitoring changes
in CAF and Scr biomarkers over time, healthcare professionals can make informed decisions and interventions to
ensure the well-being of kidney transplant recipients.
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Keywords and Phrases: Healing sequence, Shannon entropy, Fuzzy set, Renal transplant, Biomarker.

1 Introduction
In recent years, a rapid increase in the applications of fuzzy sets and fuzzy logic across various disciplines
has been observed. One of these disciplines is medicine. For instance, in medical diagnostics [1], ECG
interpretation [2] and [3], image processing [4], pacemaker control [5], anesthesia control [6], lung disease
control [7] fuzzy sets or fuzzy logic have been widely used. Similarly, when we look at the literature, it will
be seen that Ahmad et al., in [8], have used fuzzy logic-based systems to monitor chronic kidney diseases.
Furthermore, Hamedan [9] and Norouzi [10] have used fuzzy expert systems to predict kidney diseases and
predicting renal failure progression in chronic kidney disease, respectively. From another point of view, the
ECG signal process was investigated by Czogala [11]. In [12] Rakkus, in [13] Tunç and Bloch[14] followed
a different approach to medicine using fuzzy sets. Generally, when examining the previous studies related
to this field, the severity of disease symptoms is transformed into fuzzy clusters, and with the assistance of
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expert systems, tasks such as sequencing during organ transplantation and determining the nature of the
disease is addressed [15].

A literature review has revealed that there are either very few or no scientific studies specifically focusing
on the compatibility or incompatibility of transplanted organs within the context of organ transplantation.
This area has remained an open problem. As a starting point, Kılınç [16] has conducted research on patients
with systemic lupus erythematosus, providing information about the condition of the tissue using entropy.
However, the health status of an organ has not been investigated by Kılınç.

The scientific innovation, in this study, is that after kidney transplantation it is the application of Shannon
entropy for the purpose of analyzing Serum C-Terminal Agrin Fragment (Scaf) as a biomarker to evaluate
kidney function. While the use of biomarkers in clinical research and medical applications is increasing,
the specific application of Shannon entropy to Scaf interval is a new approach in this study. Researchers
can assess the degree of impairment in kidney function by calculating the Shannon entropy values of Scaf
intervals for both healthy individuals and kidney transplant recipients. The findings indicate that the Shannon
entropy of Scaf values is an indicator of the success or failure of kidney transplantation. This innovative use of
Shannon entropy adds new insights to the assessment of kidney function using Scaf as a biomarker, potentially
contributing to advanced diagnostic and treatment approaches in the field of nephrology. Thus, we believe
that employing Shannon entropy in conjunction with a biomarker like Scaf can yield more insights into the
health status of kidney transplant patients and enable more effective monitoring of kidney functions. It is
important to note that the choice of using Shannon entropy is specific to this study, and while other types of
entropy could also be used; the results should be evaluated accordingly.

2 Preliminaries

At the core of our research are reference intervals, fuzzy sets, and Shannon entropy. Therefore, in the following
subsections, we will provide explanations of kidney reference intervals and subsequently, achieve the main
goal of the study, we will define fuzzy sets and Shannon entropy.

2.1 References Intervals

Biomarkers are used to provide information about a biological condition, in clinical research and medical
practice for diagnostic, prognostic, and therapeutic purposes. Biomarkers can include molecules, genes, cells,
or physiological functions that are objectively measured and evaluated as indicators of normal biological
processes, pathogenic processes, or pharmacologic responses to therapeutic interventions [17]. In addition
to its wide use as a biomarker associated with neuromuscular junction (NMJ) dysfunction [18], C-terminal
agrin fragment (CAF) has also been utilized by Yu et al. as a biomarker to evaluate kidney function after
kidney transplantation [19]. Scaf consists of the C-terminal fragment of agrin, a protein secreted from kidney
glomeruli. Agrin is an important protein for the formation and maintenance of the glomerular filtration barrier
in the kidney. Scaf is a fragment of agrin that is released into circulation as a result of protein breakdown.
As mentioned above, SCAF has been considered a promising biomarker for the evaluation of kidney function
in recent years. Based on medical research, it has been demonstrated that when the kidney glomeruli are
damaged, Scaf levels increase [20]. Therefore, biomarkers have great importance for the early diagnosis and
treatment of significant health problems such as chronic kidney disease (CKD). Here are some scientific papers
about Serum C-Terminal Agrin Fragment (Scaf) as a biomarker for evaluating kidney function [19, 18, 20].
These papers investigate the utility of Scaf as a biomarker for evaluating kidney function in various patient
populations, highlighting its potential in clinical applications for the diagnosis, prognosis, and monitoring of
kidney disease.
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2.2 Fuzzy Sets
The following sentence emphasizes that medical data is a very rich source for fuzzy sets theory.

”Everything in medicine is fuzzy [21].”

Fuzzy sets are mathematical sets in which each element is defined by a certain degree of uncertainty. Con-
sidering an interval [a, b], where a and b are real numbers, it may initially seem that there is no specific
uncertainty associated with the elements within this interval. However, this assumption may not reflect the
reality. Therefore, a membership function can be used to provide a certain degree of uncertainty for each
element in the interval [a, b]. This function, known as the membership function, expresses the degree of
membership of a particular element in the interval. More formally, a fuzzy set is defined as follows:

Let X be a nonempty crisp set, R and N for the set of all real and natural numbers, respectively.
According to Zadeh, a fuzzy subset of X is a nonempty subset {(x, u(x)) : x ∈ X } of X × [0, 1] for some
function u : X → [0, 1], [22]. Consider a function u : R → [0, 1] as a subset of a nonempty base space R. If
there exist reference functions L and R and scalars α and β, then a continuous fuzzy number (or fuzzy set)
u can be represented in the L−R form, where the membership function u(x) of u, is defined as

u(x) =

{
L
(
λ−x
α

)
, x ∈ [λ− α, λ)

R
(
x−λ
β

)
, x ∈ [λ, λ+ β]

. (1)

The notation λ ∈ R is called the mean value of u, α and β are called the left and right spreads, respectively.
The support of u is stated as an interval [λ− α, λ+ β]. If take L(x) = R(x) = 1− x then the graphic shape
of the membership of fuzzy set u will be triangular shape which is mostly used in the application of fuzzy
sets [12]. In this study, we will also use a triangular membership functions.

2.3 Shannon Entropy
In the fuzzy set theory, measuring the degree of fuzziness of a fuzzy set is an important aspect, and various
methods have been developed to determine it. Initially, it was believed that the degree of fuzziness could be
quantified as the distance between a fuzzy set and its nearest non-fuzzy set. However, this method was later
replaced by the use of entropy as a measure of fuzziness [23] and [24]. Thus, what exactly is entropy and
how is it used to measure the fuzziness of a fuzzy set? The answer to this question is given as ”Entropy is
an information theory measure that quantifies the amount of uncertainty or unpredictability in a given set of
data.” In the context of fuzzy set theory, entropy is used to measure the degree of fuzziness of a fuzzy set by
taking into account the membership values of the set’s elements. Essentially, the higher the entropy value, the
greater the degree of fuzziness of the set. Therefore, entropy provides a useful tool for evaluating the degree
of fuzziness in fuzzy sets, which in turn can be used in a variety of applications, such as decision-making and
pattern recognition. The entropy is defined as follows:

Let u ∈ F and u(x) be the membership function of the fuzzy set u and consider the functionH : F → R+,
where F denotes all fuzzy sets on real numbers set.

If the function H satisfies the following conditions, then H is called an entropy function [25]:
(i) H(u) = 0 iff u is crisp set,
(ii) H(u) has a unique maximum, if u(x) = 1

2 , for all x ∈ R
(iii) For u, v ∈ F , if u(x) ≤ v(x) for u(x) ≤ 1

2 and u(x) ≤ v(x) for u(x) ≥ 1
2 then H(u) ≥ H(v),

(iv) H(uc) = H(u), where uc is the complement of the fuzzy set u.
Let’s suppose that the function h : [0, 1] → [0, 1] satisfies the following properties:

1. Monotonically increasing at [0, 12 ] and decreasing [12 , 1],
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2. h(x) = 0 if x = 0 and h(x) = 1 if x = 1
2 .

The function h is the called entropy function and the equality H(u(x)) = h(u(x)) holds for x ∈ R. Some
well-known entropy functions are given as follows:

h1(x) = 4x(1− x), h2(x) = −x lnx− (1− x) ln(1− x), h3(x) = min{2x, 2− 2x} and

h4(x) =

{
2x, x ∈ [0, 12 ]

2(1− x), x ∈ [12 , 1]
.

Note that the function h1 is the logistic function, h2 is the called Shannon function and h3 is the tent function.
The probability density function (PDF) for a continuous random variable defined on the interval [a, b] is

a non-negative function p(x) such that the integral of p(x) over the entire interval equals 1. In other words,
for any subset A of the interval [a, b], the probability of the random variable taking a value in S is given by
the integral of over A. Mathematically, this can be expressed as follows [24]:

0 ≤
∫
x∈A

p(x)dx ≤ 1 (2)

The PDF can be used to determine the probability of the random variable taking on a value in any subset
of [a, b], and can also be used to calculate expected values, variances, and other statistical properties of the
random variable.

If p(x) is any probability density function then the Shannon entropy of p(x) is equal to [26]:

H = −
∫
x∈(−∞,∞)

p(x) log2 p(x)dx. (3)

Let us suppose that u(x) be any triangular membership function of fuzzy set u over a real numbers interval
[a, b] and

∆ =

∫
x∈Supp u

u(x)dx, (4)

where the notation Supp u is Supp u = {x : u(x) ≥ λ, λ ∈ [0, 1]}. Then the function

P (x) =
1

∆
u(x) (5)

is satisfy the conditions of probability density functions. After that, in the following calculations, the function
P (x) will be considered the probability density function on the interval [a, b] and the interval [a, b] will be
any interval of biomarkers for kidney diseases. Thus the Shannon entropy value on the interval [a, b] will be
equal to

H[a,b] = −
∫
x∈Supp u

P (x) log2 P (x)dx. (6)

Since Shannon’s entropy can be thought of as the measure of ”information content” in a variable, in the
following section and next section, we will compare the Shannon entropy values of CAF(pM), Scr(µmol/l)
and CysC (mg/l) obtained for healthy men and women in different age ranges.

Let u and v be two fuzzy set on any crisp set X. Then the Koczy similarity [27] of fuzzy sets u and v is
defined as follows:

S(u, v) =
1

1 + d(u, v)
(7)

where d(u, v) = max
i=1,2,3

{|ui − vi|} and according to (1) the u1, u2, u3, v1, v2 and v3 are u1 = λ1 − α1, u2 = λ1

and u3 = λ1 + β1, v1 = λ2 − α2, v2 = λ2 and v3 = λ2 + β2. Let (H i
n) =

(
−
∫
x∈(−∞,∞) Pn(x) log2 Pn(x)dx

)
,
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(n ∈ N) be the entropy sequence of the ith biomarker of a patient who has undergone a kidney transplant
and H i

both be the entropy value calculated for healthy male or female individuals according to ith biomarker.
Let’s modify the expression given in (7) to provide the following definition.

Definition 2.1. The sequence (H i
n) is called healing sequence according to ith biomarker that is i ∈

{CAF, Scr, Cys}, another word, if i is one of the CAF, Scr, or Cys. Let

lim
n

S(H i
both,H

i
n) =

1

1 + limn d(H i
both,H

i
n)

=

{
Successful transplant, if limn S(H

i
both,H

i
n) ∈ (12 , 1]

Unsuccessful transplant, if limn S(H
i
both,H

i
n) ∈ [0, 12 ]

.

(8)
The limit value given in (8) is called the success of transplantation.

It may not always be possible to obtain a sequence using the entropy values obtained for a biomarker. In
this case, using a sequence that has terms close in value to the terms of the obtained entropy sequence can be
a solution. The (H i

n) sequences used here will be taken as a sequence of real numbers that are approximately
equal to the terms of the actual entropy sequence. As an example of the use of Definition 2.1, we will give
the following case study:

3 A Case Study
In the [19], the intervals of serum levels of biomarkers among healthy subjects of different age and sex groups
are given by Yu et al. in Table 1 and in Table 2. In this study the valuable data which obtained by Yu et al.
will play a fundamental role.

Table 1: Serum levels of biomarkers among healthy subjects of different age and sex groups

Age of Groups Gender Numbers CAF (pM) Scr(µumol/l)) Sys C(mg/l)

18-34 Years

Male 25 131.2 ±71.6 110.6 ± 11.8 0.78 ±0.10
Female 29 120.3 ± 56.1 89.3 ± 7.0 0.70 ± 0.09
Both 54 125.3 ±63.3 99.2 ± 14.3 0.74 ± 0.10

35-49 Years

Male 25 138.6 ± 34.8 104.8 ± 13.7 0.77 ± 0.08
Female 31 117.5 ±44.6 82.7 ±9.8 0.65 ± 0.10
Both 56 126.9 ± 41.5 92.6± 16.0 0.70 ± 0.11

50-64 Years

Male 25 149.1±49.8 108.6 ±13.3 0.91± 0.22
Female 19 202.6± 42.9 94.7 ± 11.3 0.82 ± 0.15
Both 44 172.2 ± 53.6 102.6 ± 14.2 0.87 ± 0.20

≥65 Years

Male 22 154.1 ± 47.3 112.0 ± 12.6 1.09± 0.32
Female 24 192.3 ± 53.3 91.8 ±13.7 0.91 ± 0.14
Both 46 174.1 ± 53.6 101.5 ±16.5 1.00± 0.26

In this paper continuous data were expressed as mean ± standard deviation (SD) or median (minimum;
maximum). That is, the means of the notation a ± b is the real number a is denotes arithmetic mean and
the real number b is denotes standard deviation. In our calculations by using a± b we will obtain support of
fuzzy sets and these supports will denote [a− b, a+ b].
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Again, in [19], Yu et al. have observed that time course changes in Serum CAF, Creatinine, eGFR (CKD-
EPI), Cystatin C and NGAL in patients undergoing kidney transplantation and these changes are given in
Table 2. If we compare the data in Table 1 and Table 2, we can observe that there is a certain variation

Table 2: Time course changes in serum CAF, creatinine, eGFR (CKD-EPI), cystatin C and NGAL in
patients undergoing kidney transplantation.

Before Tx 1 day after 2 days after 6 months after
Serum CAF (pM) 921.7 (618.1, 1508.8) 360.4 (85.9, 1291.3)* 164.1 (6.8, 977.3)* 164.8 (74.3, 338.0)*
Creatinine (lmol/l) 845.5 (476.0, 1856.0) 365.0 (115.0, 1254.0)* 204.5 (80.0, 1275.0)* 144.0 (67.0, 320.0)*
eGFR (ml/min/173 m2 ) 5.8 (2.6, 11.1) 17.4 (4.2, 58.2)* 35.2 (4.2,8 8.3)* 52.6 (20.1, 121.7)*
Cystatin C (mg/l) 5.49 (1.00, 12.00) 2.00 (1.00, 4.18)* 2.00 (1.00, 4.47)* 1.42 (0.77, 3.60)*
NGAL (ng/ml) 911.0 (305.3, 1783.2) 201.1 (71.0, 654.1)* 158.9 (52.5, 994.4)* 93.1 (11.9, 186.5)*

in the values. However, they do not provide us with information about the uncertainties contained in these
variations. Therefore, it is necessary to calculate their entropies to determine these uncertainties. This will
be performed in this study. If you need to more information about the notations in Table 1 and Table 2, you
can see [19].

4 The Entropies of Serum CAF, Creatinine and Cystatin C in Patients
Undergoing Kidney Transplantation

In this section, the biomarker intervals will convert into fuzzy sets according to age and sex using appropriate
membership functions and determined their entropies values. Afterwards, obtained entropy values will be
evaluated based on their magnitudes to determine the chaotic state contained in the biomarker intervals.

According to Table 1, CAF values for individuals who are male and aged between 18-34 are given in the
interval [59.6, 202.8]. According to this, for males and aged between 18-34, the membership function of the
CAF, CAF(18−34)M (x), is equal to

CAF(18−34)M (x) =


x−59.6

131.2−59.6 , x ∈ [59.6, 131.2]
202.8−x

202.2−131.2 , x ∈ (131.2, 202.8]

0, otherwise
. (9)

If we consider equality (4) then we see that ∆ = 71.6. From equality (5) we obtain that the probability
density function of CAF for individuals who are male and aged between 18-34 as follows:

PCAF (18−34)M (x) =
1

∆
CAF(18−34)M (x) =


x−59.6
5126.56 , x ∈ [59.6, 131.2]
202.8−x
5126.56 , x ∈ (131.2, 202.8]

0, otherwise
. (10)

The function P(18−34)M (x) given in (11) satisfies the conditions of the probability density function which it
given in (2). Thus, the entropy of the CAF for individuals who are male and aged between 18-34 is computed
as follows:

HCAF (18−34)M = −
∫
x∈Supp CAF (18−34)M

P(18−34)M (x) log2 P(18−34)M (x)dx = 6.88324.

Similarly to above, since ∆ = 1
56.1 ;

PCAF (18−34)F (x) =
1

∆
CAF(18−34)F (x) =


x−64.2
3147.21 , x ∈ [64.2, 120.3]
176.4−x
3147.21 , x ∈ (120.3, 176.4]

0, otherwise
. (11)
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and the Shannon entropy of the CAF for individuals who are female and aged between 18-34 is

HCAF (18−34)F = −
∫
x∈Supp CAF (18−34)F

P(18−34)F (x) log2 P(18−34)F (x)dx = 6.53128.

For individuals who are male and female and aged between 18-34 according to data of [19], similar calculations
can made for Scr(µumol/l) and Sys C(mg/l), it can be seen that HScr(18−34)M = 4.28206, HScr(18−34)F =
3.5287. TheHCys(18−34)M = −2.60058 andHCys(18−34)F = −2.75258. The Shannon entropies of Scr(µumol/l)
and Sys C(mg/l) can be calculated for other age groups with similar calculations. These are given in Table
3 as a table. The term in the expression 6.46551 represents a very small imaginary component, which may

Table 3: Shannon entropy of biomarkers among healthy subjects of different age and sex groups

Age of Groups Gender Shannon Entropy of CAF (pM) Shannon Entropy of Scr(µumol/l) Shannon Entropy of Sys C(mg/l)

18-34 Years

Male 6.88324 4.28206 -2.60058
Female 6.53128 3.5287 −2.75258
Both 6.70548 4.55929 -2.60076

35-49 Years

Male 5.84236 4.49745 -2.92251
Female 3.81713 4.01413 -2.70018
Both 6.09639 4.72135 -2.46308

50-64 Years

Male 4.50536 4.4547 -1.46308
Female 6.14425 3.63403 -2.01562
Both 6.46551 4.54917 -1.60058

≥65 Years

Male 6.28512 4.3767 -0.922509
Female 6.45741 4.49745 -2.11515
Both 6.46551 4.76574 -1.22207

arise due to rounding errors or other computational reasons. Therefore, the real part of the result should
be considered as 6.46 to evaluate the Shannon entropy. This is very important: Entropy is a concept that
measures the uncertainty of a probability distribution. If a negative Shannon entropy is obtained, it is
indicated that this may be due to the characteristics of the probability distribution. For example, if the sum
of probabilities is not equal to 1 or if there is an inverse relationship between the probabilities, a negative
entropy can be obtained. This indicates that the distribution is regular and predictable, and the information
content is low. If the entropy value is 0, the distribution becomes completely predictable, and there is no
uncertainty.

In some cases, a negative entropy result can be a realistic outcome. For example, if a group of items in a
dataset exhibits a more distinct characteristic than all other items, then the probability distribution for that
group may have a lower entropy and this entropy could be negative. Therefore, negative entropy in the table
may not be perceived as a problem.

5 The Shannon Entropy of Reference Ranges and Healing Sequences for
Serum c-terminal Agrin Fragment Used as a Biomarker for Kidney
Function in Kidney Recipients

In the [19] (see, Table 3), the values of CAF , Scr and Cys C have given as a table for the baseline charac-
teristics of kidney transplants. According to Table 3. of Yu et al., Serum CAF (pM) takes the value in the
interval [618.1, 1508.8] before Tx, takes the value of [85.9, 1291.3] after one days, takes the value of [6.8, 977.3]
after two days and the takes value of [74.3, 338.0] after six months. Similarly, Creatinine (µmol/l) takes
the value of in the interval [476.0, 1856.0] before Tx, the value of [115.0, 1254.0] after one days, the value of
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[80.0, 1275.0] after two days and the value of [67.0, 320.0] after six months and Cystatin C (mg/l) takes the
value of in the interval [1.00, 12.00] before Tx, the value of [1.00, 4.18] after one days, the value of [1.00, 4.47]
after two days and the value of [0.77, 3.60] after six months, where Tx denotes transplantation.

Similarly to Section 4, we can construct membership functions of the Serum CAF (pM), Creatinine,
Cystatin C after we can obtain probability density functions and using these functions we can calculate
Shannon entropy of kidney recipients.

According to data of [19], Serum CAF (pM) takes the value of in the interval [618.1, 1508.8] before Tx.
According to this, the membership function Serum CAF (pM) before Tx, CAFTx(x), is equal to

CAFTx(x) =


x−618.1

1063.45−618.1 , x ∈ [618.1, 1063.45]
1508.8−x

1508.8−1063,45 , x ∈ (1063, 45, 1508.8]

0, otherwise
. (12)

If we consider equality (4) then we see that ∆ = 445.35. From equality (5) we obtain that the probability
density function of CAF for individuals who are male and aged between 18-34 as follows:

PCAFTx
(x) =

1

∆
CAFTx(x) =


x−618.1

198336,6225 , x ∈ [618.1, 1063.45]
1508.8−x

198336,6225 , x ∈ (1063.45, 1508.8]

0, otherwise
. (13)

The function PCAFTx
(x) with given in (13) satisfies the conditions of the probability density function which

is given in (2). Thus, the entropy of the CAFTx is computed as follows:

HCAFTx
= −

∫
x∈Supp PCAFTx

PCAFTx
(x) log2 PCAFTx

(x)dx = 9.52014.

Similarly to above, the entropy values of the CAF, Scr and Sys are given in Table 4 .

Table 4: Healing entropy values for various biomarkers

The Entropy Values according to Days after Transplantation
Biomarkers 1.Day 2. Day ... 180.Day ...
CAF 9.95664 9.94393 ... 7.7641 ...
Scr 9.8749 9.9441 ... 7.70434 ...
Cys 1.39037 9.94414 ... 1.22215 ...

Now, we can determine the success of the transplantation of the kidney using the healing sequence which
it given in Definition (2.1).

Taking into account the data in Table 4, we can write the healing sequences of CAF as (HCAF
n ) =

(6.68+ 3.27e(−0.2116(n−1))) for kidney transplantation. The value of HCAF
both is 6.4332 by taking the arithmetic

average of the sum of the ”both” values of CAF in Table 3. In this case,
1

2
< lim

n
S(HCAF

both ,HCAF
n ) =

1

1 + limn d(6.4332,HCAF
n )

≤ 1, (14)

where d denotes the natural metric on real numbers set.
Again, taking into account the data in Table 4, we can write the healing sequences of Scr as (HScr

n ) =
(4.55 + (9.94− 4.55)/(1 + (n− 1)/59) for kidney transplantation. The value of HScr

both is 4.642 by taking the
arithmetic average of the sum of the ”both” values of Scr in Table 3. In this case,

1

2
< lim

n
S(HScr

both,H
Scr
n ) =

1

1 + limn d(4.642,HScr
n )

≤ 1. (15)
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Due to Definition 2.1, the meaning of (14) and (15) are that the kidney transplant is successful according to
healing sequences (HCAF

n ) = (6.68+ 3.27e(−0.2116(n−1))) and (HScr
n ) = (4.55+ (9.94− 4.55)/(1+ (n− 1)/59).

Furthermore, the (14) and (15) give us the result that the transplants of kidney transplant recipients, who
were the subject of the research of Yu et al. in [19], were successful.

It is note that the healing sequence is obtained differently for each biomarker. These sequences will also
vary from patient to patient. Therefore, a healing sequence should be obtained according to the patient under
observation. Sometimes it may not be possible to obtain a healing sequence.

A similar calculation can also be made for Sys. However, I could not obtain an improvement sequence
for Sys. I will address this as a separate problem in another study.

6 Discussions
We will consider full part and three decimals of the Shannon entropy values of the biomarkers CAF, Scr and
Cys C which they have given in Table 3 and are discussed as follows:

6.1 Discussions for Table 3
The discussions can be summarized as follows:

1. For the age group of 18-34 years, the Shannon entropy value provides valuable insights into the un-
certainty associated with the CAF (pM) interval, as indicated in Table 1. The entropy value, being
significantly greater than 1 for all sex types, suggests that there is a substantial amount of variability
in CAF levels within this age range. This variability could be attributed to various factors such as
individual differences, lifestyle choices, and underlying health conditions.
A Shannon entropy value greater than 1 implies that the distribution of CAF levels within the specified
age group is widely spread, leading to a higher degree of uncertainty. In practical terms, this means that
within the 18-34 age range, kidney transplant patients may exhibit diverse CAF concentrations, making
it challenging to draw definitive conclusions solely based on these values. The observation of high entropy
underscores the importance of further investigation to understand the underlying factors contributing
to this variability in CAF levels. It also emphasizes the need for additional studies involving larger and
more diverse patient populations to validate these findings and establish more robust reference ranges
for CAF in kidney transplant recipients. Moreover, healthcare professionals should be cautious while
interpreting CAF levels in young adult patients, considering the significant uncertainty associated with
the biomarker’s values in this specific age group. The use of complementary diagnostic tools and the
integration of patient-specific data may be essential in making accurate clinical decisions and evaluating
kidney function effectively in young kidney transplant recipients.
In conclusion, the Shannon entropy analysis highlights the considerable uncertainty in CAF levels among
kidney transplant patients aged 18-34 years. This finding encourages further research to enhance our
understanding of this phenomenon and underscores the importance of personalized and comprehensive
approaches when evaluating kidney function in this particular age group.

2. For the age group of 18-34 years, the Shannon entropy values for the intervals of Scr (µmol/l) and Sys C
(mg/l) in kidney transplant patients (Table 1) reveals a substantial degree of uncertainty across all sex
types. These high entropy values suggest considerable variability in serum creatinine and systemic C
levels within this specific age range. Such pronounced uncertainty underscores the complexity of kidney
function in young transplant recipients, emphasizing the importance of careful monitoring and tailored
medical interventions to address the diverse needs and responses observed in this demographic. Further
research and analysis of these biomarkers’ fluctuations can potentially lead to enhanced strategies
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for managing kidney transplant patients within this age category and improving their overall health
outcomes.

3. For the 35-49 years, the Shannon entropy value indicates that the interval of CAF(PM), which is given
Table 1, contains a large amount of uncertainty as it is much greater than 1 for all sex types.

4. In the 35-49 years age group, the Shannon entropy value reveals a notable level of uncertainty within the
intervals of Scr (µumol/l) and Sys C (mg/l), as presented in Table 1, across all sex types. The entropy
value, significantly greater than 1, suggests substantial variability in the levels of serum creatinine (Scr)
and serum C (Sys C) biomarkers among kidney transplant patients within this specific age range. This
finding indicates that kidney function and other related physiological processes represented by these
biomarkers exhibit diverse and complex patterns in individuals aged 35-49 years.
The observed high entropy underscores the importance of carefully monitoring kidney function and
related health parameters in this particular age group of kidney transplant recipients. The variability in
Scr and Sys C levels may be influenced by various factors, such as lifestyle, comorbidities, and response
to immunosuppressive medications. Therefore, healthcare professionals must take these fluctuations
into account when designing personalized treatment plans and assessing the overall health status of
patients within this age category.

5. In the 50-64 years age group, the Shannon entropy value highlights significant uncertainty within the
intervals of CAF (pM), as reported in Table 1, across all sex types. The entropy value, being much
greater than 1, suggests substantial variability in the levels of CAF biomarkers in kidney transplant
patients within this specific age range. This finding implies that kidney function and neuromuscular
junction (NMJ) dysfunction, which the CAF biomarker represents, may exhibit diverse patterns and
responses in this demographic.
The observed high entropy underscores the complexity and heterogeneity of kidney-related health con-
ditions in individuals aged 50-64 who have undergone kidney transplantation. It also emphasizes the
need for precise and individualized monitoring and treatment strategies to manage the varying health
challenges that may arise in this age category.

6. For the 50-64 years, the Shannon entropy value indicates that the intervals of Scr(µumol/l) and Sys
C(mg/l), which are given in Table 1, contains a large amount of uncertainty as it is much greater than
1 for all sex type.

Shannon entropy is generally used as a measure of uncertainty in an information source. If the entropy of
CAF or other biomarkers is greater than 1; it usually indicates uncertainty in that source. This may also
suggest that the information source is less predictable or more complex. However, this is only a general
interpretation and more context are needed for a more accurate interpretation.

6.2 Discussions for Results of Section 5
Considering the insights gained from this section, the initial measurements taken during the early days of
kidney transplantation reveal a highly intricate state of kidney function, as indicated by the remarkably high
values of entropy. This finding suggests that the biomarkers used to assess kidney function, as reported by Yu
and other researchers in [19], exhibit a significant degree of chaos and variability within their respective ranges.
The heightened entropy values imply that kidney transplant recipients experience considerable fluctuations
and unpredictability in these biomarkers during the immediate post-transplant period.

As patients progress through the post-transplant period and undergo proper medical management, a
notable transformation occurs. The once chaotic state of kidney function gradually stabilizes, as reflected
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by a decrease in the entropy values over time. This reduction in entropy signifies a trend toward greater
regularity and predictability in the levels of biomarkers associated with kidney function.

The decreasing entropy values can be attributed to various factors, such as the healing and recovery process
of the transplanted kidney, the adjustment of immunosuppressive medications, and the body’s adaptation
to the new organ. As the transplanted kidney becomes integrated into the recipient’s body and begins to
function optimally, the overall dynamics of kidney-related biomarkers tend to stabilize, leading to a less
chaotic state.

The observed trend of decreasing entropy over time is promising and reinforces the significance of con-
tinuous monitoring and medical intervention during the early phases of kidney transplantation. By closely
observing the changes in entropy values and biomarker levels, healthcare professionals can better understand
the trajectory of kidney function recovery and identify potential complications or abnormalities that may
require timely intervention.

Furthermore, this knowledge could pave the way for refining post-transplant care protocols and developing
personalized treatment strategies tailored to individual patients. By promoting the transition from a chaotic
to a more stable state of kidney function, healthcare providers can enhance the long-term success of kidney
transplantations and improve the overall quality of life for transplant recipients.

In conclusion, the fluctuations in entropy values during the early post-transplant period highlight the
complexity and dynamic nature of kidney function. The subsequent decrease in entropy underscores the
positive evolution of kidney function over time, offering hope for improved patient outcomes and reinforcing
the importance of meticulous monitoring and care throughout the kidney transplantation journey.

6.3 The Disadvantages of This Study
The entropy values, in this calculation, maybe depend

1. to measure devices and individuals,

2. to conditions of the environment,

3. to alimentation of people,

4. results may change from one region to an other region

5. entropy values may depend on the species of the person.

Converting reference ranges to fuzzy sets and calculating Shannon entropy can be used to confirm a diagnostic
method or identify a disease. However, these data are only a part of the picture. These data should be
considered in conjunction with many other factors such as disease symptoms, medical history, medication
use, age, gender and genetic factors.

Therefore, a more comprehensive data analysis is necessary to collect, model, and interpret data more
accurately. This analysis may include data mining techniques, artificial intelligence methods, and other
mathematical and statistical tools to obtain more comprehensive results. In general, it has been concluded
that combining biomarkers such as Scaf with mathematical techniques such as fuzzy sets and Shannon entropy
can provide a valuable understanding of the diagnosis and treatment of kidney diseases; advanced research
can lead to the development of more effective diagnostic and treatment approaches for kidney diseases.

7 Conclusion
The Shannon entropy, discussed in this article, can be used to measure the disorder in the tissue; high entropy
values indicate the disorder is high, while low entropy values indicate that more order. This information
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can help machine learning algorithms be more successful in recognition or classification tasks by better
understanding of the structure of the tissue.
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1 Introduction
George Boole’s endeavor to formalize propositional logic led to the concept of Boolean algebra ([1]). Unfor-
tunately, the discrete nature of the truth values fails to handle situations in which the accuracy of statements
is not precisely known. In his attempt to solve this problem, Zadeh ([2]) proposed the idea of working with
the unit interval [0, 1] equipped with the usual order, giving rise to fuzzy logic. Considering the potential
non-comparability of elements within the set of truth values, a substantial advancement occurred in 1967
when Goguen [3] brought in a novel approach: replacing the unit interval with a bounded lattice, and using
triangular norms and co-norms to extend the concepts of logical conjunction and disjunction. Among the
significant features of triangular norms and co-norms, their compatibility with the principle of residuation
stands out, resulting in the algebraic structure called residuated lattice (see [4]). In 2008, Van Gasse et al.
([5]) established residuated lattices based on lattices of closed intervals, also known as triangular lattices,
thereby introducing the concept of Interval-valued residuated lattices (IVRLs). Subsequently, they equipped
the latter with two approximation operators and with a third angular point, leading to the so called extended
Interval-valued residuated lattices, which are equationally represented by triangle algebras [6].
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A crucial concept in algebraic structures used for formal fuzzy logic, is that of a filter, since filters
have a natural interpretation as sets of provable formulas, and therefore are important in the proof of the
completeness of these logics. Indeed, the theory of triangle algebras has been endowed with the filter theory
(see [7, 8, 9]). In 2017, Zahiri et al. [8] conducted an investigation into a particular class of filters in
triangle algebras, namely, co-annihilators. Our main purpose is to introduce and thoroughly explore relative
co-annihilators in triangle algebras, as a generalization of co-annihilators.

In the literature, the concept of co-annihilator of an element a relative to a filter F was introduced in
BL-algebra by Meng and Xin [10]. Following this, Maroof et al. ([11]) and Rasouli ([12]) extended this notion
to residuated lattices. In [11], they examinined the co-annihilator of an arbitrary subset T with respect to
another subset Y within a residuated lattice. Nevertheless, the concept of relative co-annihilator remains
unexplored in triangle algebras.

This paper is organized as follows: In Section 2, we recall some preliminary notions in order to make the
document self-contained. Section 3 is devoted to the notion of relative co-annihilator in triangle algebras,
with some of its properties. In Section 4, we provide more properties of relative co-annihilators through
filters of triangle algebras. We prove that for any two nonempty subsets T and Y of a triangle algebras
L, if Y is a Boolean filter of the second kind (respectively, pseudo-complementation filter, implicative filter,
Boolean filter, prime filter, prime filter of the third kind, pseudo-prime filter, involution filter), then, so is the
co-annihilator of T relative to Y . Finally, we highlight some conditions under which the co-annihilator of T
relative to Y is a prime filter of the second kind.

2 Preliminaries
In this section, we recall some notions that will be useful in this paper.

Definition 2.1. [13, 4] A residuated lattice is an algebra L = (L,∨,∧,⊙,→, 0, 1) with four binary operations
and two constants such that:

(R1) (L,∨,∧, 0, 1) is a bounded lattice;

(R2) (L,⊙, 1) is a commutative monoid;

(R3) x⊙ y ≤ z iff x ≤ y → z, for all x, y and z in L.

Unless otherwise specified, by L we will denote the residuated lattice (L,∨,∧,⊙,→, 0, 1). The negation
¬ in L is defined by ¬x = x → 0, for all x in L.

Theorem 2.2. [14, 11, 6, 4] Let L be a residuated lattice. Then, the following properties are valid, for all
x, x1, x2, y, y1, y2, z ∈ L :

(RL1) 1 → x = x, x → x = 1, ¬1 = 0, and ¬0 = 1;

(RL2) x⊙ y ≤ x, y hence x⊙ y ≤ x ∧ y, y ≤ x → y and x⊙ 0 = 0;

(RL3) x⊙ y ≤ x → y, and x⊙ y = 0 iff x ≤ ¬y;

(RL4) x ≤ y iff x → y = 1;

(RL5) x⊙ (x → y) ≤ y, x ≤ (x → y) → y, ((x → y) → y) → y = x → y;

(RL6) x → y ≤ (x⊙ z) → (y ⊙ z);

(RL7) x ≤ y implies (x⊙ z) ≤ (y ⊙ z), z → x ≤ z → y, y → z ≤ x → z, and ¬y ≤ ¬x;
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(RL8) x → y ≤ (z → x) → (z → y), x → y ≤ (y → z) → (x → z);

(RL9) x⊙ (y → z) ≤ y → (x⊙ z) ≤ (x⊙ y) → (z ⊙ z);

(RL10) x → (y → z) = (x⊙ y) → z = y → (x → z);

(RL11) x1 → y1 ≤ (y2 → x2) → [(y1 → y2) → (x1 → x2)];

(RL12) (x → z) ∨ (y → z) ≤ x ∧ y → z;

(RL13) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z), z ∨ (x⊙ y) ≥ (z ∨ x)⊙ (z ∨ y);

(RL14) x ≤ ¬¬x ≤ ¬x → x, ¬¬¬x = ¬x;

(RL15) ¬(x⊙ y) = x → ¬y, y → ¬x = ¬¬x → ¬y, and x → y ≤ ¬y → ¬x.

Recall from [7] that a filter of a residuated lattice L is a nonempty subset F of L such that for all x, y ∈ L:

(F1) if x ∈ F and x ≤ y, then y ∈ F ;

(F2) if x, y ∈ F , then x⊙ y ∈ F .

We now recall the notion of interval-valued residuated lattices, which are residuated lattices on triangu-
larizations. This has led to the development of triangle algebras through the use of approximation operators,
describing the aspect of incompleteness inherent in interval-valued residuated lattices.

Definition 2.3. [5, 6] Let L = (L,∨,∧, 0, 1) be a bounded lattice. We call triangularization or triangular
lattice of L the bounded lattice, T(L) of the closed intervals of L defined by

T(L) = (Int(L),∨Int(L),∧Int(L), [0, 0], [1, 1])

such that Int(L) = {[x1, x2] : x1, x2 ∈ L and x1 ≤ x2}, and for all x1, x2, y1, y2 ∈ L,

• [x1, x2] ∨Int(L) [y1, y2] = [x1 ∨ y1, x2 ∨ y2];

• [x1, x2] ∧Int(L) [y1, y2] = [x1 ∧ y1, x2 ∧ y2];

• [x1, x2] ≤Int(L) [y1, y2] iff x1 ≤ y1 and x2 ≤ y2.

The set D(L) = {[x, x] : x ∈ L} is called diagonal of T(L).

From [5, 6], an interval-valued residuated lattice (IVRL) is a residuated lattice
(Int(L),∨,∧,⊙,→⊙, [0, 0], [1, 1]) on the triangularization T(L) of a bounded lattice L, in which the diagonal
D(L) is closed under ⊙ and →⊙, i.e., [x, x]⊙ [y, y] ∈ D(L) and [x, x] →⊙ [y, y] ∈ D(L), for all x, y in L.

Definition 2.4. [6, 15] An extended IVRL is a structure (Int(L),∨,∧,⊙,→, prv, prh, [0, 0] , [0, 1] , [1, 1]) where
u = [0, 1] is a constant interval, prv and prh are maps from Int(L) to Int(L), respectively called vertical and
horizontal projections defined by prv ([x1, x2]) = [x1, x1] and prh ([x1, x2]) = [x2, x2], for all [x1, x2] ∈ Int(L).

The following definition presents the concept of triangle algebra, which serves as an equational represen-
tation of interval-valued residuated lattices.
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Definition 2.5. [5, 16] A triangle algebra is a structure L = (L,∨,∧,⊙,→, ν, µ, 0, u, 1) in which (L,∨,∧,⊙,→
, 0, 1) is a residuated lattice, ν and µ are unary operations on L, u (0 ̸= u ̸= 1) a constant, all satisfying the
following conditions:

(T.1)νx ≤ x; (T.1′)x ≤ µx;
(T.2)νx ≤ ννx; (T.2′)µµx ≤ µx;
(T.3)ν(x ∧ y) = νx ∧ νy; (T.3′)µ(x ∧ y) = µx ∧ µy;
(T.4)ν(x ∨ y) = νx ∨ νy; (T.4′)µ(x ∨ y) = µx ∨ µy;
(T.5)νu = 0; (T.5′)µu = 1;
(T.6)νµx = µx; (T.6′)µνx = νx;
(T.7)ν(x → y) ≤ νx → νy;
(T.8)(νx ↔ νy)⊙ (µx ↔ µy) ≤ (x ↔ y);
(T.9)νx → νy ≤ ν(νx → νy).

Note that the statement x ↔ y stands for (x → y) ∧ (y → x).

Remark 2.6. ν0 = µ0 = 0 and ν1 = µ1 = 1.

Unless otherwise specified, the triangle algebra (L,∨,∧,⊙,→, ν, µ, 0, u, 1) will be denoted by L.

Proposition 2.7. [17] Let L be a triangle algebra. Then, for all x, y ∈ L we have:

1. ν(x⊙ y) = νx⊙ νy;

2. µ(x⊙ y) ≤ µx⊙ µy.

Lemma 2.8. Let L be a triangle algebra. For all x, y ∈ L, if νx ∨ y = 1, then x⊙ y = x ∧ y.

Proof.
Let x, y ∈ L. We already know from (RL2) of Theorem 2.2 that x ⊙ y ≤ x ∧ y. All we need to prove is

x ∧ y ≤ x⊙ y. We have:

x ∧ y = 1⊙ (x ∧ y)

= (νx ∨ y)⊙ (x ∧ y), as νx ∨ y = 1

= [νx⊙ (x ∧ y)] ∨ [y ⊙ (x ∧ y)], from (RL13)
≤ (νx⊙ y) ∨ (x⊙ y), as x ∧ y ≤ x, y

≤ (x⊙ y) ∨ (x⊙ y), as νx ≤ x

= x⊙ y.

□

Definition 2.9. [7, 16] A filter (or IVRL-filter) of a triangle algebra L is a nonempty subset F of L satisfying:

(F1) if x ∈ F, y ∈ L and x ≤ y, then y ∈ F ;

(F2) if x, y ∈ F , then x⊙ y ∈ F ;

(F3) if x ∈ F , then νx ∈ F .

It is worth noticing that, for every filter F of a triangle algebra L, 1 ∈ F ,
and [x ∈ F if and only if νx ∈ F ], see [18].
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Definition 2.10. [9, 8] Let F be a filter of a triangle algebra L. Then, F is said to be:

1. a Boolean filter (BF) if for all x ∈ L, ν(x ∨ ¬x) ∈ F .

2. a Boolean filter of the second kind (BF2) if for all x ∈ L, νx ∈ F or ν(¬x) ∈ F .

3. a prime filter (PF) if for all x, y ∈ L, ν(x → y) ∈ F or ν(y → x) ∈ F (or both).

4. a prime filter of the second kind (PF2) if for all x, y ∈ L, ν(x ∨ y) ∈ F implies νx ∈ F or νy ∈ F (or
both).

5. a prime filter of the third kind (PF3) if for all x, y ∈ L, ν[(x → y) ∨ (y → x)] ∈ F .

6. a pseudo-prime filter (PPF) if for all x, y ∈ L, νx → νy ∈ F or νy → νx ∈ F (or both).

7. an implicative filter (IF) if for all x, y, z ∈ L, ν[x → (y → z)] ∈ F and ν(x → y) ∈ F imply
ν(x → z) ∈ F (first form) or equivalently, ν[x → (x → z)] ∈ F implies that ν(x → z) ∈ F (second
form).

8. a pseudocomplementation filter (PSF) if for all x ∈ L, ν[¬(x ∧ ¬x)] ∈ F .

9. an involution filter (VF) iff for all x ∈ L, ν(¬¬x → x) ∈ F .

Proposition 2.11. [8] Let F be a filter of L. Then, F is an implicative filter iff ν(x → x2) ∈ F, for all
x ∈ L.

Definition 2.12. [16]
Let A be a nonempty subset of a triangle algebra L. Then, the co-annihilator of A, denoted by A⊤ is the

filter defined by A⊤ = {x ∈ L | νx ∨ a = 1, for all a ∈ A}.

3 Relative Co-annihilators in Triangle Algebras
In this section, we introduce the notion of relative co-annihilator in a triangle algebra L and investigate some
of its properties.

Definition 3.1. Let L be a triangle algebra, A and B be subsets of L. The co-annihilator of A relative to
B is the set (A⊤, B) = {a ∈ L | (∀b ∈ A), νa ∨ b ∈ B}.

If B = {x}, then we will denote (A⊤, {x}) by (A⊤, x).
In a similar way, If A = {a}, then we will denote ({a}⊤, B) by (a⊤, B).

Remark 3.2. For any subset A of L, (A⊤, 1) = A⊤.

Example 3.3.
Let L = {[0, 0], [0, a], [0, b], [a, a], [b, b], [0, 1], [a, 1], [b, 1], [1, 1]} be the lattice whose associated Hasse dia-

gram is depicted in Figure 1. Define ⊙ and ⇒ as presented in Table 1.
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Figure 1: Hasse diagram of L in Example 3.3

Table 1: Operation tables of ⊙ and ⇒ for L in Example 3.3

⊙ 0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

⇒ 0 a b 1

0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Consider the actions on L of ν, µ, ⊙ and → defined as follows: for all [x1, x2], [y1, y2] ∈ L, ν [x1, x2] =
[x1, x1]; µ [x1, x2] = [x2, x2]; [x1, x2]⊙L [y1, y2] = [x1 ⊙ y1, x2 ⊙ y2];
[x1, x2] → [y1, y2] = [(x1 ⇒ y1) ∧ (x2 ⇒ y2) , x2 ⇒ y2].

Then, L = (L,∨,∧,⊙L,→, ν, µ, [0, 0], [0, 1], [1, 1]) is a triangle algebra [16].
SetA = {[b, b], [b, 1], [1, 1]} andB = {[0, 0], [a, a], [1, 1]}. One easily verifies that (A⊤, B) = {[a, a], [a, 1], [1, 1]}.

In a similar manner, (B⊤, A) = {[b, b], [b, 1], [1, 1]}.

Some of the following properties of relative co-annihilators have been established within the framework of
residuated lattices (see [11]). Nevertheless, the formulations presented here are specific to triangle algebras,
since the approximation operator ν is involved.

Proposition 3.4. Let L be a triangle algebra. Let A and B be subsets of L. Then,

(1) A = ∅, implies (A⊤, B) = L;

(2) With A ̸= ∅:

(i) if B = ∅, then (A⊤, B) = ∅;

(ii) for A ̸= {0}, (A⊤, 0) = ∅;

(iii) (A⊤, 1) ⊆ {x ∈ L | (∀y ∈ A), x⊙ y = x ∧ y};

(iv) (0⊤, 1) = {1},(1⊤, 0) = ∅, (L⊤, 1) = {1}, (1⊤, 1) = L, (0⊤, 0) = {x ∈ L | νx = 0};

(v) (L⊤, A) = ∅ iff 1 /∈ A;

(vi) (L⊤, A) ⊆ A.

Proof.
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(1) We write (A⊤, B) in a more logical form as {x ∈ L | (∀y)(y ∈ A implies νx∨ y ∈ B)}. Thus, (∅⊤, B) =
{x ∈ L | (∀y)(y ∈ ∅ implies νx ∨ y ∈ B)} = L, since the statement ”(∀y)(y ∈ ∅ implies νx ∨ y ∈ B)” is
always true, for all x ∈ L.

2 Consider A ̸= ∅:
(i) if B = ∅, then :

(A⊤, B) = (A⊤, ∅)
= {x ∈ L | (∀y ∈ A), νx ∨ y ∈ ∅}
= ∅.

(ii) If A ̸= {0}, then,

(A⊤, 0) = {x ∈ L | (∀y ∈ A), νx ∨ y = 0}
= ∅

(iii) For all z ∈ L,

z ∈ (A⊤, 1) ⇒ ∀y ∈ A, νz ∨ y = 1

⇒ ∀y ∈ A, z ⊙ y = z ∧ y, (by Lemma 2.8)
⇒ z ∈ {x ∈ L | (∀y ∈ A), x⊙ y = x ∧ y}

Thus, (A⊤, 1) ⊆ {x ∈ L | (∀y ∈ A), x⊙ y = x ∧ y}.

(iv) We have:

(0⊤, 1) = {x ∈ L | νx ∨ 0 = 1}
= {1};

(1⊤, 0) = {x ∈ L | νx ∨ 1 = 0}
= ∅;

(L⊤, 1) = L⊤, (by Remark 3.2)
= {x ∈ L | (∀y ∈ L), νx ∨ y = 1}
= {1};

(0⊤, 0) = {x ∈ L | νx ∨ 0 = 0}
= {x ∈ L | νx = 0};

(1⊤, 1) = {x ∈ L | νx ∨ 1 = 1}
= L.

(v) Let (L⊤, A) = ∅. Then 1 /∈ A, otherwise we would have (L⊤, 1) = ∅, which implies from (iv) that
{1} = ∅, a contradiction.
Conversely,
suppose by contrary that (L⊤, A) ̸= ∅ and let x ∈ (L⊤, A). Then, for all y ∈ L, νx∨y ∈ A. Since 1 ∈ L,
then 1 = νx ∨ 1 ∈ A, which contradicts the fact that 1 /∈ A.
It follows that (L⊤, A) = ∅ iff 1 /∈ A.
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(vi) Suppose by contrary that (L⊤, A) ⊈ A. Then, there is x ∈ (L⊤, A) such that x /∈ A, i.e., for all y ∈ L,
νx ∨ y ∈ A and x /∈ A. In particular, for y = x, we have νx ∨ x ∈ A and x /∈ A, i.e., x ∈ A (since
νx ≤ x) and x /∈ A, which is absurd. Thus, (L⊤, A) ⊆ A.

□
The reverse inclusion in Proposition 3.4 (vi) is not always true, as it is deduced from Proposition 3.4 (v)

that A ⊈ ∅ = (L⊤, A) whenever 1 /∈ A.

Proposition 3.5. Let L be a triangle algebra. Let T, T1, T2, Y1, Y2, Y and Z be nonempty subsets of L. Then,

(i) T1 ⊆ T2 implies
(
T⊤
1 , Y

)
⊆
(
T⊤
2 , Y

)
;

(ii) Y1 ⊆ Y2 implies
(
T⊤, Y1

)
⊆
(
T⊤, Y2

)
;

(iii)
(
T⊤
1 , Y

)
∩
(
T⊤
2 , Z

)
⊆
(
(T1 ∩ T2)

⊤, Y ∩ Z
)
;

(iv) (T⊤, (T⊤, Y ∩ Z)) ⊆ (T⊤, (T⊤, Y )) ∩ (T⊤, (T⊤, Z));

(v)
(
T⊤,

∩
i∈I

Yi

)
⊆
∩
i∈I

(
T⊤, Yi

)
⊆
(
T⊤,

∪
i∈I

Yi

)
⊆
∪
i∈I

(
T⊤, Yi

)
;

(vi)
(∩

i∈I
T⊤
i , Y

)
⊆
∩
i∈I

(
T⊤
i , Y

)
⊆
(∪

i∈I
T⊤
i , Y

)
⊆
∪
i∈I

(
T⊤
i , Y

)
;

(vii) T ∩ (T⊤, Y ) ⊆ Y ;

(viii) (T⊤, Y ) =
∩
t∈T

(t⊤, Y ).

Proof.

(i) Suppose that T1 ⊆ T2 and let x ∈
(
T⊤
1 , Y

)
. Then, for all t1 ∈ T1 ⊆ T2, νx ∨ y ∈ Y . Thus, x ∈

(
T⊤
2 , Y

)
and consequently,

(
T⊤
1 , Y

)
⊆
(
T⊤
2 , Y

)
.

(ii) Let x ∈
(
T⊤, Y1

)
. Then, for all z ∈ T , νx ∨ z ∈ Y1 ⊆ Y2, that is, x ∈

(
T⊤, Y2

)
. Therefore,

(
T⊤, Y1

)
⊆(

T⊤, Y2

)
.

(iii) Let x ∈ L. Then, x ∈
(
T⊤
1 , Y

)
∩
(
T⊤
2 , Z

)
implies that for all y ∈ T1 and z ∈ T2, νx ∨ y ∈ Y and

νx ∨ z ∈ Z. Given that T1 ∩ T2 ⊆ T1, T2, we deduce that for all y ∈ T1 ∩ T2, νx ∨ t ∈ Y ∩ Z, i.e.,
x ∈

(
(T1 ∩ T2)

⊤, Y ∩ Z
)
.

(iv) We have Y ∩Z ⊆ Y, Z. Then by (ii), (T⊤, Y ∩Z) ⊆ (T⊤, Y ), (T⊤, Z). Applying (ii) again, (T⊤, (T⊤, Y ∩
Z)) ⊆ (T⊤, (T⊤, Y )), (T⊤, (T⊤, Z)). Therefore, (T⊤, (T⊤, Y ∩ Z)) ⊆ (T⊤, (T⊤, Y )) ∩ (T⊤, (T⊤, Z)).

(v) (*) Let us prove that
(
T⊤,

∩
i∈I

Yi

)
⊆
∩
i∈I

(
T⊤, Yi

)
.

Since
∩
i∈I

Yi ⊆ Yi for all i ∈ I, by (ii), we have
(
T⊤,

∩
i∈I

Yi

)
⊆
(
T⊤, Yi

)
, for all i ∈ I.

Thus,
(
T⊤,

∩
i∈I

Yi

)
⊆
∩
i∈I

(
T⊤, Yi

)
.

(**) To show that
∩
i∈I

(
T⊤, Yi

)
⊆
(
T⊤,

∪
i∈I

Yi

)
, for all i ∈ I, we have Yi ⊆

∪
i∈I

Yi. Thus, by (ii), we
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obtain that for all i ∈ I,
(
T⊤, Yi

)
⊆
(
T⊤,

∪
i∈I

Yi

)
, that is,

∩
i∈I

(
T⊤, Yi

)
⊆
(
T⊤,

∪
i∈I

Yi

)
.

(***) Now we prove that
(
T⊤,

∪
i∈I

Yi

)
⊆
∪
i∈I

(
T⊤, Yi

)
. Let x ∈

(
T⊤,

∪
i∈I

Yi

)
. Then, for all y ∈ T , there

is i ∈ I such that νx ∨ y ∈ Yi. Thus, there is i ∈ I such that x ∈ (T⊤, Yi), that is x ∈
∪
i∈I

(
T⊤, Yi

)
.

Therefore,
(
T⊤,

∪
i∈I

Yi

)
⊆
∪
i∈I

(
T⊤, Yi

)
.

(vi) (*) We have
∩
i∈I

T⊤
i ⊆ T⊤

i , for all i ∈ I. Then by (i), we obtain that
(∩

i∈I
T⊤
i , Y

)
⊆
(
T⊤
i , Y

)
, for all

i ∈ I. Thus,
(∩

i∈I
T⊤
i , Y

)
⊆
∩
i∈I

(
T⊤
i , Y

)
.

(**) For all i ∈ I, T⊤
i ⊆

∪
i∈I

T⊤
i . By applying (i), we have

(
T⊤
i , Y

)
⊆
(∪

i∈I
T⊤
i , Y

)
, for all i ∈ I.

Therefore,
∩
i∈I

(
T⊤
i , Y

)
⊆
(∪

i∈I
T⊤, Y

)
.

(***) Let x ∈
(∪

i∈I
T⊤
i , Y

)
. Then, there exists i ∈ I such that νx ∨ y ∈ Y , for all y ∈ Ti. Thus, there

exist i ∈ I such that x ∈
(
T⊤
i , Y

)
, that is, x ∈

∪
i∈I

(
T⊤
i , Y

)
. Therefore,

(∪
i∈I

T⊤
i , Y

)
⊆
∪
i∈I

(
T⊤
i , Y

)
.

(vii) If x ∈ T ∩ (T⊤, Y ), then x ∈ T and νx ∨ y ∈ Y , for all y ∈ T . In particular, νx ∨ x ∈ Y , which implies
that x ∈ Y , as νx ≤ x. Thus, T ∩ (T⊤, Y ) ⊆ Y .

(viii) Let x ∈ L. Then, x ∈ (T⊤, Y ) iff for all t ∈ T, νx ∨ y ∈ Y iff for all t ∈ T, x ∈ (t⊤, Y ) iff x ∈
∩
t∈T

(t⊤, Y ).

Therefore, (T⊤, Y ) =
∩
t∈T

(t⊤, Y ).

□

4 Relative Co-annihilators as Filters of Triangle Algebras.
Exploring the relative co-annihilator (A⊤, B), where A and B are arbitrary subsets of L, prompts a natural
query: what happens when B is a filter of L? This section examines relative co-annihilators with respect to
filters of triangle algebras, providing additional properties.

Proposition 4.1. Let A and B be two nonempty subsets of a triangle algebra L. If B is a filter of L, then
(A⊤, B) is a filter of L.

Proof. Since B is a filter of L, then 1 ∈ B. Also, for all a ∈ A, ν1 ∨ a = 1 ∈ B (by Remark 2.6). Thus,
1 ∈ (A⊤, B), and therefore (A⊤, B) is nonempty.
Let x ∈ (A⊤, B) and y ∈ L such that x ≤ y. Then, νx ∨ a ∈ B. But x ≤ y implies x = x ∧ y. By (T.3), we
have νx = ν(x ∧ y) = νx ∧ νy, that is, νx ≤ νy, which implies that νx ∨ a ≤ νy ∨ a, for all a ∈ A. But since
B is a filter of L, we deduce that νy ∨ a ∈ B. Thus, y ∈ (A⊤, B).
Now, let x, y ∈ (A⊤, B). Then, for all a ∈ A, we have νx ∨ a ∈ B and νy ∨ a ∈ B. Since B is a filter of L,
then (νx∨ a)⊙ (νy ∨ a) ∈ B. But by (RL13) and Proposition 2.7 (1), (νx∨ a)⊙ (νy ∨ a) ≤ a∨ ν(x⊙ y) and
since B is a filter of L, we have a ∨ ν(x⊙ y) ∈ B, for all a ∈ A. Hence, x⊙ y ∈ (A⊤, B).
Moreover, let x ∈ (A⊤, B). This implies that νx ∨ a ∈ B, that for all a ∈ A. But νx ≤ ννx, which implies
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that νx∨a ≤ ννx∨a, for all a ∈ A. It follows that ννx∨a ∈ B, since B is a filter of L. Hence, νx ∈ (A⊤, B).
□

The converse of Proposition 4.1 is not necessarily true. Indeed, consider the triangle algebra L from
Example 3.3. For X = {[a, 1]} and Y = {[a, a], [1, 1]}, we observe that (X⊤, Y ) = {[b, b], [b, 1], [1, 1]} which is
a filter of L. However, Y is not a filter, as [a, a] ≤ [a, 1] /∈ Y .

Proposition 4.2. Let T be a filter of a triangle algebra L, and Y a nonempty subset of L. Then,

(i) T ⊆ (Y ⊤, T );

(ii) (Y ⊤, T ) = L iff Y ⊆ T (specifically, (Y ⊤, L) = L, and (T⊤, T ) = L);

(iii) (L⊤, T ) = T ;

(iv) ((T⊤, T )⊤, T )) = T and ((T⊤, (T⊤, T )) = L;

(v) Y ∩ (Y ⊤, T ) = Y ∩ T ;

(vi) T ⊆ Y implies (Y ⊤, T ) ∩ Y = T ;

(vii) If Y ⊆ T , then ((Y ⊤, T )⊤, T ) = T ;

(viii) (Y ⊤, T )⊤, T ) ∩ (Y ⊤, T ) = T .

Proof.

(i) Let x ∈ T . Then, νx ∈ T since T is a filter. We have νx ≤ ννx ≤ ννx ∨ y, for all y ∈ Y . Therefore,
ννx ∨ y ∈ T , as T is a filter. Thus, νx ∈ (Y ⊤, T ) and consequently, T ⊆ (Y ⊤, T ).

(ii) Suppose that (Y ⊤, T ) = L and y ∈ Y . Since 0 ∈ L = (Y ⊤, T ), then y = ν0 ∨ y ∈ T . Therefore, Y ⊆ T .
Reciprocally, for any y ∈ Y ⊆ T , ν0 ∨ y = y ∈ T , i.e., 0 ∈ (Y ⊤, T ). Hence, L = (Y ⊤, T ).

(iii) By (i), we have T ⊆ (L⊤, T ).
Also, from Proposition 3.4 (vi), we have (L⊤, T ) ⊆ T . Thus, (L⊤, T ) = T .

(iv) (T⊤, T ) = L (by (ii)). This implies that ((T⊤, T )⊤, T ) = (L⊤, T ) = T , by (iii).
Also, (T⊤, (T⊤, T )) = (T⊤, T ) = L, by (ii).

(v) Clearly, T ⊆ (Y ⊤, T ) by (i) , which implies that Y ∩ T ⊆ Y ∩ (Y ⊤, T ).

In addition, Y ∩ (Y ⊤, T ) ⊆ T by Proposition 3.5 (vii). Thus, Y ∩ (Y ⊤, T ) = Y ∩ [Y ∩ (Y ⊤, T )] ⊆ Y ∩T ,
i.e., Y ∩ (Y ⊤, T ) ⊆ Y ∩ T. Therefore, Y ∩ (Y ⊤, T ) = Y ∩ T .

(vi) Assume that T ⊆ Y . Then, Y ∩ T = T . Thus, (v) becomes Y ∩ (Y ⊤, T ) = T .

(vii) Since Y ⊆ T , then by (ii), (Y ⊤, T ) = L. We obtain from (iii) that ((Y ⊤, T )⊤, T ) = (L⊤, T ) = T .

(viii) From (i), we have T ⊆ (Y ⊤, T ). Then, from (vi), we deduce that ((Y ⊤, T )⊤, T ) ∩ (Y ⊤, T ) = T .

□

Lemma 4.3. Let L be a triangle algebra, T , Y and Z, nonempty subsets of L. If Z is a filter, then
(T⊤, (Y ⊤, Z)) ⊆

∩
t∈T,y∈Y

((νt ∨ y)⊤, Z).
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Proof. Let x ∈ L, then,

x ∈ (T⊤, (Y ⊤, Z)) ⇒ ∀t ∈ T, νx ∨ t ∈ (Y ⊤, Z)

⇒ ∀t ∈ T, ∀y ∈ Y, ν(νx ∨ t) ∨ y ∈ Z

⇒ ∀t ∈ T, ∀y ∈ Y, (ννx ∨ νt) ∨ y ∈ Z (by (T.4))
⇒ ∀t ∈ T, ∀y ∈ Y, ννx ∨ (νt ∨ y) ∈ Z (by associativity )

⇒ νx ∈
∩

t∈T,y∈Y
((νt ∨ y)⊤, Z).

But since νx ≤ x and Z is a filter, then by Proposition 4.1,
∩

t∈T,y∈Y
((νt ∨ y)⊤, Z) is also a filter and we

have x ∈
∩

t∈T,y∈Y
((νt ∨ y)⊤, Z).

Consequently, (T⊤, (Y ⊤, Z)) ⊆
∩

t∈T,y∈Y
((νt ∨ y)⊤, Z). □

Theorem 4.4. Let T and Y be two nonempty subsets of a triangle algebra L. If Y is a BF2 (respectively
PSF, IF, BF, PF, PF3, PPF, VF), then so is (T⊤, Y ).

Proof. We establish the first three properties, and the remaining ones are demonstrated in a similar manner.

Let T and Y be two nonempty subsets of a triangle algebra L:

(i) Suppose that Y is a (BF2) and that for all x ∈ L, ν(¬x) /∈ (T⊤, Y ). Let us show that νx ∈ (T⊤, Y ).
Since Y is a (BF2), we have νx ∈ Y or ν(¬x) ∈ Y . But since Y is a filter of triangle algebra, and that
νx ≤ νx ∨ a and ν(¬x) ≤ ν(¬x) ∨ a for all a ∈ T ⊆ L, then, we have νx ∨ a ∈ Y or ν(¬x) ∨ a ∈ Y ,
for all a ∈ T . That is, x ∈ (T⊤, Y ) or ¬x ∈ (T⊤, Y ). But, (T⊤, Y ) is a filter and ν(¬x) /∈ (T⊤, Y ) by
assumption, therefore x ∈ (T⊤, Y ), and hence, νx ∈ (T⊤, Y ).

(ii) Suppose that Y is a (PSF). For all x ∈ L, let us show that ν[¬(x ∧ ¬x)] ∈ (T⊤, Y ). Now, since Y is a
(PSF), then ν[¬(x ∧ ¬x)] ∈ Y . But ν[¬(x ∧ ¬x)] ≤ ν[¬(x ∧ ¬x)] ∨ a for all a ∈ T ⊆ L. And since Y is
a filter of L, we have ν[¬(x ∧ ¬x)] ∨ a ∈ Y , for all a ∈ T . It yields that, ¬(x ∧ ¬x) ∈ (T⊤, Y ). Hence,
since (T⊤, Y ) is a filter, we have ν[¬(x ∧ ¬x)] ∈ (T⊤, Y ).

(iii) Suppose that Y is an (IF). let us prove that (T⊤, Y ) is also an (IF).
Let x be an arbitrary element of L. By Proposition 2.11, it is sufficient to show that ν(x → x2) ∈
(T⊤, Y ). We have ν(x → x2) ∈ Y and ν(x → x2) ≤ νν(x → x2) ≤ νν(x → x2) ∨ a, for all a ∈ T . Since
Y is a filter, we have νν(x → x2) ∨ a ∈ Y for all a ∈ T . Hence, ν(x → x2) ∈ (T⊤, Y ).

□
The following property is specific to PF2 (Prime filter of second kind).

Proposition 4.5. Let L be a triangle algebra, T be PF2 of L, and Y a subset of L such that Y ⊈ T . Then,
(Y ⊤, T ) = T (and hence (Y ⊤, T ) is PF2).

Proof.
Since T is a filter of L, then T ⊆ (Y ⊤, T ), by Proposition 4.2 (i).
For the converse, let us suppose by contrary that (Y ⊤, T ) ⊈ T . Then, there is x ∈ L such that x ∈ (Y ⊤, T )

and x /∈ T . This means that for all a ∈ Y, νx ∨ a ∈ T and νx /∈ T (as T is a filter), which implies that for all
a ∈ Y, ν(νx ∨ a) ∈ T and νx /∈ T (from (F3)).
Since T is a PF2, it follows that for all a ∈ Y, [ννx ∈ T or νa ∈ T ] and νx /∈ T .
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This implies that for all a ∈ Y, [νx ∈ T or a ∈ T (as T is a filter)] and νx /∈ T . Which is absurd, since
a ∈ Y ⊈ T from hypothesis. Therefore, (Y ⊤, T ) ⊆ T . □

It is evident that the converse of Proposition 4.5 may not always hold. Specifically, consider the triangle
algebra L from Example 3.3:

• Let T = [1, 1]. We have (L⊤, T ) = T , but T does not satisfy the PF2 property.

• For X = {[a, 1]} and Y = {[a, a], [1, 1]}, we obtain (X⊤, Y ) = {[b, b], [b, 1], [1, 1]} which is PF2. But Y
is not even a filter.

Proposition 4.6. Let L be a triangle algebra, T a filter of L and Y a nonempty subset of L. If L is linear,
then (Y ⊤, T ) = T or (Y ⊤, T ) = L.

Proof. Let us suppose that (Y ⊤, T ) ̸= L and prove that (Y ⊤, T ) = T . Since T is a filter of L, then
T ⊆ (Y ⊤, T ), from Proposition 4.2 (i).
Since (Y ⊤, T ) ̸= L then by (ii) of Proposition 4.2, we have Y ⊈ T . Thus, there exists b ∈ L such that b ∈ Y
and b /∈ T . Let a ∈ (Y ⊤, T ); then for all y ∈ Y , νa ∨ y ∈ T , which implies that, νa ∨ b ∈ T as, b ∈ Y .
Also, since νa ≤ a, and that νa ∨ b ≤ a ∨ b, then a ∨ b ∈ T due to the fact that T is a filter. Now, since L
is linear, then either a ≤ b or b ≤ a. We claim that a ≰ b otherwise, we would have b = a ∨ b ∈ T which
is a contradiction. So, b ≤ a. Consequently, a = a ∨ b ∈ T . This shows that (Y ⊤, T ) ⊆ T . It yields that
(Y ⊤, T ) = T . □

The converse of Proposition 4.6 is not always guaranteed. Revisiting Example 3.3, if we set (Y = L and
T = {[1, 1]}) or (Y = {[1, 1]} and T = {[1, 1]}), in both cases, we find that (Y ⊤, T ) = T or (Y ⊤, T ) = L,
whereas L is not linear.

5 Conclusion and Future Work
This article is in the general framework of the study of filters in triangle algebras. We have introduced the
notion of relative co-annihilator, established some of its properties, and built the link with filters in triangle
algebras. In addition, we proved that the co-annihilator of a nonempty subset T of a triangle algebra L
relative to a filter Y of L preserves certain characteristics of the filter Y . In particular, if Y is a Boolean filter
of the second kind, then the co-annihilator of T with respect to Y is also a Boolean filter of the second kind;
the same applies to an implicative filter, a pseudo complementation filter, a Boolean filter, a prime filter, a
prime filter of the third kind, a pseudo-prime filter or an involution filter, respectively. Moreover, we have
presented certain conditions under which the co-annihilator of T with respect to Y is a prime filter of the
second type.

Filters are particularly interesting as they are closely related to congruence relations, which are used to
construct quotient algebras: from each filter, a congruence relation can be defined (see [7]). However, we
have identified some inaccuracies in [16]: the relation θ given in [16, Example 4.2] is not a congruence relation
since it is not reflexive. Also, contrary to what they claimed in [16, Example 4.3], the congruence relation θ
does preserve co-annihilators. In the process of asserting that every congruence relation on an MTL-triangle
algebra preserves co-annihilators, they claimed that the relation θ(Y ) = {(a, b) ∈ A×A;φ(a)∩Y = φ(b)∩Y }
is a congruence relation, which is not always true. Hence, this remains an open problem in the framework of
triangle algebras for further examination in future works.

In our forthcoming work, we will extend our exploration of algebraic structures, with a specific focus
on triangle algebras. More precisely, since ideals also represent sets of provable formulas within algebraic
structures, and knowing that ideals and filters are not dual notions in residuated lattices, it follows that
they will not be dual notions in triangle algebras either, given that triangle algebras are enriched residuated
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lattices. A subsequent paper introducing ideals in Triangle algebras and proving soundness and completeness
with respect to triangle algebras is in preparation.

Another challenge for the future is the investigation of the concepts of annihilator and relative annihilator
in triangle algebras, viewed as special types of ideals.
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1 Introduction

The Global Health Security Index states that all countries remain dangerously unprepared for future epi-
demic and pandemic threats, including threats potentially more devastating than COVID-19, [1]. In [2],
we ranked the Organization for Economic Cooperation and Development (OECD) countries with respect to
their preparation. In [3], countries are ranked with respect to their health care. We find the fuzzy similarity
measure between these two rankings. We use implication operators to define a new fuzzy similarity measure
to find the fuzzy similarity of these rankings. We also consider the natural disaster risk, the political stability
of OECD countries. We provide the rankings as given in [4, 5, 6]. The report in [4] considers a country’s
vulnerability and exposure to natural hazards to determine a ranking of countries around the world based
on their natural disaster risk. The index of Political Stability and Absence of Violence/Terrorism measures
perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or
violent means, including politically motivated violence and terrorism. We used five different fuzzy similarity
measures. In three cases, we found the similarities to be medium and in two, we found the similarity to be
low.

Let X be a set. Then the fuzzy power set of X, denoted FP(X), is the set of all fuzzy subsets of X.
Define the relations ∨,∧ on the closed interval [0, 1] by for all a, b ∈ [0, 1], a ∨ b is the maximum of a and b
and a ∧ b is the minimum of a and b.

Define ⊼ : [0, 1]× [0, 1] → [0, 1] by ⊼(a, b) = 1 if a = b and a ∧ b if a ̸= b. Define ∅ : [0, 1]× [0, 1] → [0, 1]
by ∅(a, b) = 1 if a = b and a∧b

a∨b if a ̸= b. Note that for all a, b ∈ [0, 1], ∅(a, b) = a∧b
a∨b .
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2 Preliminary Results
Definition 2.1. Let S be a function of FP(X) × FP(X) into [0, 1]. Then S is called a fuzzy similarity
measure on FP(X) if the following properties hold: ∀µ, ν, ρ ∈ FP(X) :

(1)S(µ, ν) = S(ν, µ);

(2)S(µ, ν) = 1 if and only if µ = ν;

(3) If µ ⊆ ν ⊆ ρ, then S(µ, ρ) ≤ S(µ, ν) ∧ S(ν, ρ);

(4) If S(µ, ν) = 0, then ∀x ∈ X,µ(x) ∧ ν(x) = 0.

Example 2.2. Let µ, ν be fuzzy subsets of a set X. Then M and S are fuzzy similarity measures on FP(X),
where

M(µ, ν) =

∑
x∈X µ(x) ∧ ν(x)∑
x∈X µ(x) ∨ ν(x)

,

S(µ, ν) = 1−
∑

x∈X |µ(x)− ν(x)|∑
x∈X(µ(x) + ν(x))

.

Results concerning fuzzy similarity measures can be found in [7, 8].

Definition 2.3. ([9], p. 14) Let I be a function of [0, 1] × [0, 1] into [0, 1] such that I(0, 0) = I(0, 1) =
I(1, 1) = 1 and I(1, 0) = 0. Then I is called an implication operator.

An implication operator I is said to satisfy the identity principle if I(x, x) = 1 for all x ∈ [0, 1]. An
implication operator is said to satisfy the ordering principle if x ≤ y ⇔ I(x, y) = 1, [10]. Clearly, the
ordering principle implies the identity principle.

I1, I2, and L defined below are implication operators that satisfy the ordering principle.

Example 2.4. Let x, y ∈ [0, 1].

(1) Godel implication operator:I1(x, y) = 1 if x ≤ y, I1(x, y) = y otherwise.
(2) Goguen implication operator: I2(x, y) = 1 if x ≤ y and I2(x, y) = y/x otherwise
(3) Luckasiewicz implication operator: L(x, y) = (1− x+ y) ∧ 1.

By ([2], Theorem 3.1), SL is a fuzzy similarity, where SL(µA, µB) =
1
n

∑
x∈X(1− µA(x)) ∧ (1− µB(x)) ∧

(µA(x)) ∧ µB(x).

Definition 2.5. ([9], p. 15) Let I be an implication operator. Define the fuzzy subset EI of FP(X)×FP(X)
by for all µ, ν ∈ FP(X),

EI(µ, ν) = ∧{∧{I(µ(x), ν(x))|x ∈ X},∧{I(ν(x), µ(x))|x ∈ X}}.

Then EI(µ, ν) is called the degree of sameness of µ and ν.

In [2], it was decided that the following definition would be more suitable than the previous definition for
defining fuzzy similarity measures from implication operators.

Definition 2.6. Let I be an implication operator. Define S : FP(X) × FP(X) → [0, 1] by for all (µ, ν) ∈
FP(X)×FP(X), S(µ, ν) = 1

n

∑
x∈X I((µ(x), ν(x))∧ I((ν(x), µ(x))). Then S is called a degree of likeness.
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In ([2], Theorem 2.7), it was shown that the function S of Definition 2.6 is a fuzzy similarity measure.
An implication operator I is called a hybrid monotonous implication operator if I(x,_) is non

decreasing for all x ∈ [0, 1] and i(_, y) is nonincreasing for all y ∈ [0, 1].

Other implication operators can be found in [9].
Let X be a set with n elements, n > 1, say X = {x1, ..., xn). Let A be one-to-one function of X onto

{1, ..., n}. Then A is called a ranking of X. Define the fuzzy subset µA of X by for all x ∈ X,µA(x) =
A(x)
n .

Then µA is called the fuzzy subset associated with A.

For two rankings A and B of X,
∑

x∈X(A(x) +B(x)) = n(n+ 1) and so
∑

x∈X(µA(x) + µB(x)) = n+ 1.
Thus for S of Example 2.2,

S(µA, µB) = 1−
∑

x∈X |µA(x)− νB(x)|
n+ 1

.

3 Main Results
Let S1 and S2 be the fuzzy similarity measures defined by I1 and I2 under Definition 2.6, respectively. Then

S1(µ, ν) =
1

n

∑
x∈X

µ(x) ⊼ ν(x),

S2(µ, ν) =
1

n

∑
x∈X

µ(x)∅ν(x).

We next consider how small S1 can be with respect to rankings A and B.
Suppose n is even. Let A be the ranking: 1, 2, ...n2 ,

n+2
2 ..., n − 1, n and let B be the ranking n, n −

1, ..., n+2
2 , n2 , , , , , 2, 1. Then

S1(µA, µB) =
1

n

∑
x∈X

µA(x) ⊼ µB(x) =
1

n
(2(1 + 2 + ...+

n

2
))
1

n

=
1

n
(2([

n

2
(
n

2
+ 1)])/2)

1

n
=

1

n2
(
n2

4
+

n

2
) =

1

4
+

1

2n
.

Suppose that n is odd. LetA be the ranking 1, 2, ..., n+1
2 , ..., n−1, n andB be the ranking n, n−1, ..., n+1

2 , ..., 2, 1.
Then

S1(µA, µB) =
1

n

∑
x∈X

µA(x) ⊼ µB(x) =
1

n
(1 + 2(1 + 2 + ...+

n− 1

2
))
1

n

=
1

n2
(1 + 2(

n− 1

2
)(
n− 1

2
+ 1)/2) =

1

n2
(1 + 2(

n− 1

2

n+ 1

2

1

2
))

=
1

n2
(1 +

n2 − 1

4
) =

1

n2
+

1

4
− 1

4n2
=

1

4
+

3

4n2
.

Example 3.1. Let n = 6. Let A be the ranking 1, 2, ..., 5, 6 and B the ranking 6, ..., 2, 1. Then µA(xi) =
i
6

and B(xi) =
6−i+1

6 , i = 1, 2, ..., 6. Hence

µA(x1) ∧ µB(x1)

µA(x1) ∨ µB(x1)
=

1
6
6
6

=
µA(x6) ∧ µB(x6)

µA(x6) ∨ µB(x6)
,

µA(x2) ∧ µB(x2)

µA(x2) ∨ µB(x2)
=

2
6
5
6

=
µA(x5) ∧ µB(x5)

µA(x5) ∨ µB(x5)
,

µA(x3) ∧ µB(x3)

µA(x3) ∨ µB(x3)
=

3
6
4
6

=
µA(x4) ∧ µB(x4)

µA(x4) ∨ µB(x4)
.
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Let n = 5. Let A be the ranking 1, 2, ..., 5,and B the ranking 5, ..., 2, 1. Then µA(xi) = i
5 and B(xi) =

5−i+1
5 , i = 1, 2, ..., 5. Hence

µA(x1) ∧ µB(x1)

µA(x1) ∨ µB(x1)
=

1
5
5
5

=
µA(x5) ∧ µB(x5)

µA(x5) ∨ µB(x5)
,

µA(x2) ∧ µB(x2)

µA(x2) ∨ µB(x2)
=

2
5
4
5

=
µA(x4) ∧ µB(x4)

µA(x4) ∨ µB(x4)
,

µA(x3) ∧ µB(x3)

µA(x3) ∨ µB(x3)
=

3
5
3
5

=
µA(x3) ∧ µB(x3)

µA(x3) ∨ µB(x3)
.

We see that for n odd, the middle term will yield the value 1.

The following discussion is to determine the smallest value a fuzzy similarity measure can be with respect
to rankings. Let S be any fuzzy similarity measure with respect to some rankings A and B. We determine
the smallest value S can be for the following reason: Say, the smallest value S can be is S∗. Then the ratio
S−S∗

1−S∗ ranges from 0 to 1. A clearer picture of the similarity is thus provided.

Lemma 3.2. (1) Suppose n is even. Let A be the ranking: 1, 2, ...n2 ,
n+2
2 ..., n− 1, n and let B be the ranking

n, n− 1, ..., n+2
2 , n2 , , , , , 2, 1. Then

1
n(

n
2

n
2
+1 + ...+ 2

n−1 + 1
n) = (n+ 1)(

∑n
j=n

2
+1

1
j )−

n
2 .

(2) Suppose n is odd. Let A be the ranking 1, 2, ..., n+1
2 , ..., n − 1, n and B be the ranking n, n −

1, ..., n+1
2 , ..., 2, 1. Then

n−1
2

n+3
2

+ ...+ 2
n−1 + 1

n = (n+ 1)
∑n

j=n+1
2

1
j )−

n−1
2 .

Proof. (1)
n
2

n
2
+1 + ...+ 2

n−1 + 1
n =

n
2∑

i=1

i

n− i+ 1
=

n∑
j=n

2
+1

n− j + 1

j
=

n∑
j=n

2
+1

(
n

j
− 1 +

1

j
)

= (n+ 1)(
n∑

j=n
2
+1

1

j
)− n

2
.

(2)
n−1
2

n+3
2

+ ...+ 2
n−1 + 1

n =
∑n−1

2
i=1

i
n−i+1 .

Let j = n− i+ 1. Then i = n− j + 1 and j = n, n− 1, ..., n2 + 3
2 . Now

n−1
2∑

i=1

i

n− i+ 1
=

n∑
j=n+3

2

n− j + 1

j
=

n∑
j=n+3

2

(
n

j
− 1 +

1

j
)

= (n+ 1)(

n∑
j=n+3

2

1

j
)− n− 1

2
.

□
Theorem 3.3. (1) Suppose n is even. Let A be the ranking: 1, 2, ...n2 ,

n+2
2 ..., n−1, n and let B be the ranking

n, n− 1, ..., n+2
2 , n2 , , , , , 2, 1. Then S2(µA, µB) =

2
n [(n+ 1)(

∑n
j=n

2
+1

1
j )−

n
2 ].

(2) Suppose n is odd. Let A be the ranking 1, 2, ..., n+1
2 , ..., n − 1, n and B be the ranking n, n −

1, ..., n+1
2 , ..., 2, 1. Then S2(µA, µB) =

1
n [[(n+ 1)(

∑n
j=n+3

2

1
j )−

n−1
2 ]2 + 1].
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Proof. (1) S2(µA, µB) =
1
n(

n
2

n+2
2

+ ... + 2
n−1 + 1

n)2 = 1
n(

n
2

n
2
+1 + ... + 2

n−1 + 1
n)2 = 2

n [(n + 1)(
∑n

j=n
2
+1

1
j ) −

n
2 ]

by Lemma 3.2 (1).
(2) S2(µA, µB) =

1
n((

n−1
2

n+3
2

+ ...+ 2
n−1 + 1

n)2 + 1) = 1
n [[(n+ 1)(

∑n
j=n+3

2

1
j )−

n−1
2 ]2 + 1] by Lemma 3.2 (2).

□
We next determine approximate values for

∑n
j=n

2
+1

1
j when n is even and

∑n
j=n+3

2

1
j when n is odd. Recall

that Hn =
∑n

j=1
1
j is a harmonic sum which sums approximately to γ+ln 2, where γ is the Euler-Mascheroni

constant, γ ≈ 0.5772 and where ≈ denotes approximately equal to.
Let n be even. Consider

∑n
j=n

2
+1

1
j . We have

∑n
j=n

2
+1

1
j =

∑n
j=1

1
j −

∑n
2
j=1

1
j ≈ γ + lnn − (γ + ln n

2 ) =

lnn− ln n
2 = ln 2.

Let n be odd. Consider
∑n

j=n+3
2

1
j . We have

∑n
j=n+3

2

1
j =

∑n
j=1

1
j −

∑n+1
2

j=1
1
j ≈ γ + lnn − (γ + ln n+1

2 ) =

lnn− ln n+1
2 = ln 2n

n+1 .

Theorem 3.4. (1) Suppose n is even. Let A be the ranking: 1, 2, ...n2 ,
n+2
2 ..., n − 1, n and let B be the

ranking n, n− 1, ..., n+2
2 , n2 , , , , , 2, 1. Then S2(µA, µB) ≈ 0.386 + 2

n ln 2.
(2) Suppose n is odd. Let A be the ranking 1, 2, ..., n+1

2 , ..., n − 1, n and B be the ranking n, n −
1, ..., n+1

2 , ..., 2, 1. Then S2(µA, µB) ≈ 2 ln 2n
n+1 + 2

n ln 2n
n+1 − 1 + 2

n .

Proof. Theorem 3.3 is used in the following arguments.
(1) We have

S2(µA, µB) =
1

n
(

n
2∑

j=1

j

n− j + 1
)2

=
2

n
[(n+ 1)(

n∑
j=n

2
+1

1

j
)− n

2
]

≈
2

n
[(n+ 1) ln 2− n

2
]

= (2 +
2

n
) ln 2− 1

= 2 ln 2 +
2

n
ln 2− 1

≈ 0.386 +
2

n
ln 2.

(2) We have

S2(µA, µB) =
1

n
[[(n+ 1)(

n∑
j=n+3

2

1

j
)− n− 1

2
]2 + 1]

=
2

n
[(n+ 1)(

n∑
j=n+3

2

1

j
)− n− 1

2
] +

1

n

≈
2

n
[(n+ 1) ln

2n

n+ 1
− n− 1

2
] +

1

n

= (2 +
2

n
) ln

2n

n+ 1
− (1− 1

n
) +

1

n

= 2 ln
2n

n+ 1
+

2

n
ln

2n

n+ 1
− 1 +

2

n
.
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□

Proposition 3.5. Let S1, ..., Sn be fuzzy similarity measures on FP(X). Let wi ∈ [0, 1] be such that
∑n

i=1wi =
1. Then

∑n
i=1wiSi is a fuzzy similarity measure on FP(X).

Proof. Let S =
∑n

i=1wiSi and µ, ν, ρ ∈ FP(X). Then S(µ, ν) =
∑n

i=1wiSi(µ, ν) =
∑n

i=1wiSi(ν, µ) =
S(ν, µ). Now S(µ, ν) = 1 ⇔

∑n
i=1wiSi(µ, ν) = 1 ⇔ Si(µ, ν) = 1 for i = 1, ..., n ⇔ µ = ν. Suppose that

µ ⊆ ν ⊆ ρ. Then Si(µ, ρ) ≤ Si(µ, ν) ∧ Si(ν, ρ), i = 1, ..., n. Hence

n∑
i=1

wiSi(µ, ρ) ≤
n∑

i=1

wi[Si(µ, ν) ∧ Si(ν, ρ)] =

n∑
i=1

wiSi(µ, ν) ∧ wiSi(ν, ρ)

≤
n∑

i=1

wiSi(µ, ν) ∧
n∑

i=1

wiSi(ν, ρ) = S(µ, ν) ∧ S(ν, ρ).

Suppose S(µ, ν) = 0. Then
∑n

i=1wiSi(µ, ν) = 0. Thus Si(µ, ν) = 0 for all i such that wi > 0. Thus for all
x ∈ X,µ(x) ∧ ν(x) = 0. □

Proposition 3.6. Let S1, ..., Sn be fuzzy similarity measures on FP(X). Let wi ∈ [0, 1] be such that
∑n

i=1wi =
1. Let ai be the smallest value Si can be, i = 1, ..., n. Then

∑n
i=1wiai is the smallest value

∑n
i=1wiSi can be.

Proof. Suppose (
∑n

i=1wiSi)(µ, ν) = b. Then
∑n

i=1(wiSi)(µ, ν) = b. Let Si(µ, ν) = bi, i = 1, ..., n. Then
bi ≥ ai, i = 1, ..., n. Now b =

∑n
i=1wibi and so b ≥

∑n
i=1wiai. □

Converting a fuzzy similarity measures to a measure using the smallest value it can be, converts the
measure to the interval [0, 1]. We can say if this converted value lies between 0 and 0.2, the similarity is very
low, from 0.2 to 0.4 the similarity is low, from 0.4 to 0.6 the similarity is medium, from 0.6 to 0.8 high, and
from 0.8 to 1 very high.

4 Country Health

The 2021 Global Health Security Index measures the capacities of 195 countries to prepare for epidemics
and pandemics. All countries remain dangerously unprepared for future epidemics and pandemic threats,
including threats potentially more devastating than Covid-19, [3]. In [1], a ranking of countries with respect
to health care is provided. We provide the ranking with respect to OECD countries.
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Table 1: OECD health security and health care rankings

Country Health
Security

Health
Care Country Health

Security
Health
Care

Australia 2 9 Korea, Rep. 8 1
Austria 22 5 Latvia 14
Belgium 19 4 Lithuania 18 26
Canada 4 19 Luxembourg 35
Chile 23 30 Mexico 21 23

Czech Rep. 30 12 Netherlands 10 3
Denmark 11 8 New Zealand 12 16
Estonia 25 18 Norway 17 13
Finland 3 11 Poland 24 29
France 13 6 Portugal 27 22

Germany 7 10 Slovak Rep. 29 28
Greece 32 31 Slovenia 5 27
Hungary 28 33 Spain 15 7
Iceland 34 Sweden 9 20
Ireland 26 32 Switzerland 20 17
Israel 36 15 Turkey 33 21
Italy 31 25 United Kingdom 6 14
Japan 16 2 United States 1 24

Let M and S be the fuzzy similarity measures of Example 2.2. We deleted the countries in the Health
Security ranking that were not in the Health Care ranking and then reranked the Health Security countries.
We found that S(µA, µB) = 1− 223

1122 = 1− 0.199 = 0.801. By ([10], Theorem 2.10), S(µA, µB) =
2M(µA,µB)
1+M(µA,µB) .

Hence M(µA, µB) =
S(µA,µB)

2−S(µA,µB) = 0.801
1.199 = 0.668. With the countries deleted, n = 33. Thus the smallest M

can be is n+1
3n−1 = 34

98 = 0.347. The smallest S can be is 1
2 + 1

2n = 1
2 + 1

66 = 0.515. Therefore,

0.668− 0.347

1− 0.347
=

0.321

0.653
= 0.492

and
0.801− 0.515

1− 0.515
=

0.286

0.485
= 0.590.

We see that in both cases the similarity is medium.
A fuzzy similarity measure using implication operators was defined in [2]: SL(µA, µB) = 1

n

∑
x∈X [(1 −

µA(x)) ∧ (1 − µB(x)) + µA(x) ∧ µB(x)]. We have by ([2], Proposition 3.5) that SL = S + 1
n(S − 1). Thus

SL(µA, µB) = 0.801+ 1
33(0.801−1) = 0.801−0.006 = 0.795. The smallest SL(µA, µB) is 1

2 +
1

2n2 = 1
2 +

1
2178 =

0.5 + 0.000459 which we round off to 0.5. Thus0.795−0.5
1−0.5 = 0.59. The similarity is thus medium.

We have that

S1(µA, µB) =
1

n

∑
x∈X

µA∧µB(x)

=
1

33
(
428

33
) = 0.393.

The smallest S1 can be is ≈ 1
4 + 3

4n2 = 0.25 + 0.003 = 0.253. Thus 0.393−0.253
1−0.253 = 0.140

0.747 = 0.187 and so the
similarity is very low.
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We find that S2(µA, µB) =
17.921
33 = 0.543. The smallest S2 can be is ≈ 2 ln 66

34 +
2
34 − 1+ 3

33 = 0.426. Thus
we have 0.543−0.426

1−0.426 = 0.117
0.514 = 0.228.

Hence the similarity is low.
We have that 1

3S1+
1
3S2+

1
3SL ≈ 1

3(0.393+0.543+0.795) = 1
3(1.649) = 0.577. The smallest 1

3S1+
1
3S2+

1
3SL

can be is ≈ 1
3(0.276 + 0.426 + 0.500) = 1

3(1.202) = 0.401.
Now 0.577−0.401

1−0.401 = 0.176
0.499 = 0.353. Here the similarity is low.

5 Natural Disaster, Political Stability, and Political Risk
We next consider the natural disaster risk, [4], the political stability, [6], and the political risk, [5], of OECD
countries. We provide the rankings as given in [4, 5, 6]. The report in [4] systematically considers a country’s
vulnerability and exposure to natural hazards to determine a ranking of countries around the world based
on their natural disaster risk. The index of Political Stability and Absence of Violence/Terrorism measures
perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or
violent means, including politically motivated violence and terrorism. The index is an average of several other
indexes from the Economist Intelligence Unit, the Economic Forum, and the Political Risk Services, among
others, [6]. The Political Risk Index is the overall measure of risk for a given country, calculated by using
all 17 risk components from the PRS Methodology including turmoil, financial transfer, direct investment,
and export markets. The Index provides a basic convenient way to compare countries directly as well as
demonstrating changes over the last five years, [5].

The rankings in the following tables are from low to high.

Table 2: OECD natural disaster and political stability rankings

Country Natural
Disaster

Political
Stability Country Natural

Disaster
Political
Stability

Australia 34 17 Korea, Rep. 28 23
Austria 7 14 Latvia 13 22
Belgium 19 24 Lithuania 14 18
Canada 33 12 Luxembourg 1 3
Chile 30 32 Mexico 36 34

Czech Rep. 3 9 Netherlands 18 13
Denmark 5 10 New Zealand 29 1
Estonia 11 19 Norway 16 5
Finland 8 8 Poland 20 29
France 24 30 Portugal 22 11

Germany 17 20 Slovak Rep. 4 27
Greece 25 31 Slovenia 9 21
Hungary 2 15 Spain 27 26
Iceland 10 2 Sweden 12 7
Ireland 15 16 Switzerland 6 4
Israel 21 35 Turkey 31 36
Italy 26 25 United Kingdom 23 28
Japan 32 6 United States 35 33

Let M and S be the fuzzy similarity measures of Example 2.2. Here n = 36. We have that S(µA, µB) = 1−
290
1332 = 0.782. Thus M(µA, µB) =

S(µA,µB)
2−S(µA,µB) =

0.782
1.218 = 0.642. The smallest M can be is n+2

3n+2 = 38
110 = 0.345.
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Hence 0.642−0.345
1−0.345 = 0.453. Therefore, the similarity is medium. The smallest S can be is n/2+1

n+1 = 19
37 = 0.514.

Thus 0.782−0.514
1−0.514 = 0.551. Hence the similarity is medium.

SL(µA, µB) = 1− 1
362

(149 + 141) = 1− 1
1296(290) = 0.7762. The smallest SL(µA, µB) can be is 0.5. Thus

0.776−0.5
1−0.5 = 0.276

0.5 = 0.552. Hence the fuzzy similarity measure is medium.
S1(µA, µB) =

∑
x∈X µA(x)∧µB(x)

n = 549/36
36 = 0.424 and S2 ≈ S1(µA, µB) + ln 2− 5

8 = 0.424 + 0.068 = 0.492.

The smallest S1 can be is 1
4+

1
n = 0.25+0.028 = 0.278 since n = 36 is even. Thus 0.492−0.278

1−0.278 = 0.214
0.722 = 0.296.

Hence the similarity is low.
We find that S2(µA, µB) = 22

36 = 0.611. The smallest S2 can be is ≈ 0.386 + 2
36(0.693) = 0.442. Thus

0.611−0.442
1−0.442 = 0.169

0.558 = 0.303. Once again the similarity is low.
We have that 1

3S1+
1
3S2+

1
3SL ≈ 1

3(0.424+0.611+0.776) = 1
3(1.811) = 0.604. The smallest 1

3S1+
1
3S2+

1
3SL

can be is ≈ 1
3(0.278 + 0.442 + 0.500) = 1

3(1.220) = 0.407.

Now 0.604−0.407
1−0.402 = 0.197

0.598 = 0.329. The average similarity is low.

6 Conclusion
We used fuzzy implication operators to define the fuzzy similarity between the two rankings of countries
involving health security and health care. We then found a fuzzy similarity involving the rankings of countries
with respect to national disaster and political disaster. In each case, we found the similarity measures to be
medium for SL,M, and S and low for S1 and S2. Future research could involve other regions in the world
other than the OECD countries. It was shown in ([2], Theorem 3.6) that M ⊆ SL ⊆ S. It is clear that
S1 ⊆ S2. Another potential project is to determine the relationship between S2 and M. Further reading on
implication operators can be found in [11].
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Abstract. Data clustering consists of grouping similar objects according to some characteristic. In the literature,
there are several clustering algorithms, among which stands out the Fuzzy C-Means (FCM), one of the most
discussed algorithms, being used in different applications. Although it is a simple and easy to manipulate clustering
method, the FCM requires as its initial parameter the number of clusters. Usually, this information is unknown,
beforehand and this becomes a relevant problem in the data cluster analysis process. In this context, this work
proposes a new methodology to determine the number of clusters of partitional algorithms, using subsets of the
original data in order to define the number of clusters. This new methodology, is intended to reduce the side
effects of the cluster definition phase, possibly making the processing time faster and decreasing the computational
cost. To evaluate the proposed methodology, different cluster validation indices will be used to evaluate the quality
of the clusters obtained by the FCM algorithms and some of its variants, when applied to different databases.
Through the empirical analysis, we can conclude that the results obtained in this article are promising, both from
an experimental point of view and from a statistical point of view.
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1 Introduction
The concept of data clustering consists of clustering similar objects together into groups, which are called
clusters, taking into account one or more common features [1, 2]. In this context, several clustering techniques
have been proposed in the literature, including hierarchical and partitional algorithms, which are widely used
in several applications of different areas of knowledge. Most clustering algorithms require the number of
clusters in the partition as an input parameter. However, the ideal number of clusters that represents the
dataset, most of the time, is unknown. Thus, the definition of the number of clusters is one of the fundamental
problems in the process of clustering data [3].

In the literature, several approaches have been proposed to determine the number of clusters [4, 5, 6, 7,
8, 9]. In spite of the potential of these approaches, there is no universal approach that performs well for all
clustering problems [10]. The definition of the number of clusters in the data clustering process can take
time and have a high computational cost, especially when a dataset has a large number of instances and
attributes. In general, it is necessary to run an algorithm several times with different cluster settings, to
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evaluate the result of each run, and then to select the best number of clusters. In addition, most applications
have large datasets, which demand computational time and resources for processing. Therefore, the size of
the dataset can become an aggravating factor in the definition of the number of clusters and, consequently,
in the clustering process.

Despite presenting satisfactory results, the different approaches proposed in the literature to define the
number of clusters [4, 5, 7, 8, 11, 12, 13, 14, 15] use the complete dataset, which can lead to problems
such as high processing time and high computational cost. Consequently, the use of large datasets with high
dimensions limits the application of a clustering algorithm, which can lead to an inefficient clustering process.
Therefore, the main motivation of this work started from the need to try to improve the definition of the
number of clusters of partitional algorithms, by proposing a new methodology to determine the number of
clusters. The idea is to use a subset of the original data to define the number of clusters, in an attempt to
mitigate the side effects of the cluster definition phase, possibly making processing time faster and lowering
the computational cost.

2 The Proposed Approach
As previously mentioned, the phase of finding the best number of clusters for a dataset demands time
and has a high computational cost, since it is performed by running an algorithm with different cluster
configurations, evaluating each execution, and then evaluating each result to select the best number of
clusters. In addition, the use of large datasets is an aggravating factor at this stage, due to the time and
computational resources that this processing demands. In order to accelerate the definition of the number
of clusters in the clustering process, this work presents a proposal for data partitioning applied to clustering
algorithms, based on validation indices to determine the ideal subset of a dataset. The main objective of
this proposal is to find, for each clustering algorithm considered in this research, a percentage p of the data
that, for any dataset X we can choose a p% of the data in X to determine the best number of clusters. Our
goal is to define an expressive p value in a way that its performance is similar to when the whole dataset is
considered.

Figure 1: Structure of the proposed approach

Figure 1 presents the steps of the approach proposed in this work. A dataset is partitioned into N subsets.
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Each subset has different sizes in relation to the total set, i.e., each subset has a particular percentage of
the total set (p). The instances of each subset are randomly selected. and each subset has different sizes
(with a variation of 10% each). The clustering algorithm is applied on all subsets and also on the full dataset
(p = 100%). Each clustering is evaluated based on validation indices and the best number of clusters for each
index is defined. Finally, an analysis is performed on the number of clusters selected by each index, in an
attempt to identify the minimum percentage of data sufficient to infer the number of clusters.

As an illustrative example, consider a given dataset with 1000 instances and 5 attributes. We need to
cluster the instances in k clusters that best represent this dataset. Initially, the dataset is divided into N
subsets, each of which has a size corresponding to a different percentage of the full dataset. Usually, we
start with a low percentage. Then, there is a gradual increase of this percentage in the following subsets,
until it reaches 100% (p = 100%). For example, we can start with 10% of the original data and increase
the percentage by 10%, until it reaches 100% of the data. In this case, we will have 10 subsets with 10, 20,
..., 100% of the original dataset. The next step is to apply clustering algorithms on each subset, varying
the number of clusters k, kmin ≤ k ≤ kmax. Suppose we use kmin = 2 and kmax = 10. In this case, each
clustering algorithm is applied to each subset of the original dataset, varying the number of clusters from 2
to 10. Then, the validation stage of the clusters is performed based on validation indices, in order to identify
the subset that best represents the entire dataset. Each subset has the best cluster number defined according
to the used validation index. For example, suppose that the best cluster number is k = 3 for p = 10% and
p = 100% and k = 4 for p = 50%, according to an index I. Note that the number of clusters set for 10%
and 100% of the data is the same. In this example, the use of 10% of the data would be sufficient to infer
the number of clusters that best represent the dataset. Finally, it is possible to identify the minimum data
subset sufficient to infer the number of clusters that best represent the dataset, after analyzing the number
of clusters defined by an index I in each subset.

3 Experimental Setting up

In order to evaluate the feasibility of the proposed method, an empirical analysis will be conducted. This
section describes the main aspects of this empirical analysis.

3.1 Methods and Material

As previously discussed, the methodology proposed in this paper aims to investigate the minimum amount
of data sufficient to infer the number of clusters in a dataset using partitional algorithms.

Initially, each dataset was normalized and partitioned into subsets of different sizes. The experiments
carried out compared the performance of each subset in relation to the original dataset, through the perfor-
mance obtained by the clustering validation indices (described in 3.4). The quality of a cluster is related to
the ability to find the ideal number of clusters.

In order to evaluate the quality of the obtained partitions, an experimental methodology was proposed in
order to investigate and identify the best number of clusters for the dataset. Each clustering algorithm runs
on each subset and on the original dataset for each number of clusters k, kmin ≤ k ≤ kmax, aiming to find
the best number of clusters in each subset as well as in the original dataset. Then, for each validation index,
the number of clusters selected is stored. This experiment is repeated 31 times, with different initialization
in each run [16]. The purpose of performing different initializations is to get as close as possible to the most
likely number of clusters for a given dataset. The number of clusters is obtained after checking the most
frequent value resulting from the 31 iterations. The variation in the number of clusters, k, being kmin = 2
and kmax = 10, took place based on the number of classes of all analyzed datasets.
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3.2 Datasets
In this analysis, 30 datasets were imported from UCI Machine Learning Repository [17], Kaggle Datasets
[18] and GitHub. The main features of these datasets are described in Table 1. All datasets had been
preprocessed, with the goal of correcting some issues, such as attributes in different scales and missing values.
In addition, it is noteworthy that they are supervised classification datasets and, for this reason, the class
attribute was removed for the clustering process.

Table 1: Dataset features

Datasets Instances Attributes Classes
Balance Scale 625 4 3

Banknote Authentication (BA) 1372 4 2
Bupa 345 6 2

Climate Model Simulation Crashes CMSC) 540 20 2
Cnae-9 1080 856 9

Column 3C 310 6 3
Contraceptive 1473 9 3

Ecoli 336 7 8
Glass Identification (GI) 214 9 6

Heart Statlog 270 13 2
Haberman 306 3 2
Ionosphere 351 34 2

Iris 150 4 3
Lymphography 148 18 4

Molecular Biology (MB) 3190 60 3
Multiple Features (MF) 2000 64 10

Parkinsons 195 22 2
Pima 768 8 2

Planning Relax 182 12 2
QSAR Biodegradation (QSAR-B) 1055 41 2

Robot Failure lp4 117 90 3
Seeds 210 7 3

Semeion 1593 256 10
Sonar 208 60 2

Steel Plates Faults (SPF) 1941 33 2
Thoracic Surgery (TS) 470 16 2

User Knowledge Modeling (UKM) 403 5 5
Vehicle 846 18 4
Voice 3168 20 2
Wine 178 13 3

3.3 Clustering Algorithms
Partitional algorithms can be divided into two approaches: crisp and fuzzy. In the crisp approach, each
observation in the dataset belongs exclusively to a single cluster, while in the fuzzy approach, each object
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can belong to more than one cluster with a degree of relevance uij ∈ [0, 1]. In this article, the focus is on the
fuzzy approach, specifically the following algorithms: FCM [19, 20], ckMeans [21] and FCMσ [22].

Based on the concept of fuzzy logic, the Fuzzy C-means algorithm [19, 20] divides a dataset X =
{x1, x2, ..., xn} into k clusters, resulting in a fuzzy partition matrix [µij ]n×k, called a membership matrix
[23].

The Fuzzy C-Means algorithm searches for the fuzzy partition of the dataset, which minimizes the objec-
tive function, given in Equation (1).

J =

n∑
i=1

k∑
j=1

µm
ijd(xi; cj)

2 (1)

where m is the fuzzification parameter, 2 which defines the allowed distance between an object (point)
and cluster centers; xi is i-th data object; cj is the center of the j-th cluster; µij is the membership degree of
xi to j-th cluster; d(xi; cj) is the distance between xi and cj . Note that cj does not necessarily belong to the
dataset, but has similar composition (same attributes) of the elements in the dataset.

The Fuzzy C-Means algorithm receives as input a dataset X = {x1, x2, ..., xn}, the number of clusters k
and the value of m. Then, it initializes the membership matrix µ; calculating the initial fuzzy membership
matrix µ according to Equation (2).

µij =
1∑k

l=1

(
d(xi;cj)
d(xi;cl)

) 2
m−1

(2)

After calculating J using Equation (1); the center of the cluster j is calculated using Equation (3).

cj =

∑n
i=1 µ

m
ijxi∑n

i=1 µ
m
ij

(3)

The algorithm continues to update of the fuzzy membership matrix according to Equation (2), as well
as the centers of the clusters, according to Equation (3). This process continues until a stopping condition
is reached. The two most usual stop conditions of clustering algorithms are: defining a fixed number of
iterations and defining a threshold ε > 0, stopping the process when ||J t − J (t−1)|| ≤ ε, where J t is the
objective function calculated in the current iteration and J (t−1) is the objective function calculated in the
previous iteration.

The other clustering algorithms considered in this research are variants from the FCM. The ckMeans
algorithm follows the same FCM framework, however, it differs in how to calculate the cluster centers [24, 25].
Finally, the FCMσ changes the distance metric used in the conventional FCM to a new metric, taking into
account a distance variation in each cluster [22].

3.4 Validation Indices

In clustering tasks, it is important to evaluate the resulting partition to determine the quality of the obtained
solution, as well as whether it is satisfactory for the desired goal. The evaluation of the partition can be
done by clustering validation indices, which can be broadly divided into two main categories: internal and
external. The internal indices measure the similarity of a partition using the instances of the clusters obtained
by the clustering algorithm. External indices use external information related to the partition, usually the
class labels to evaluate the obtained partition [26, 27].

2The value of m influences directly on the resulting cluster. High values of m result in less well defined clusters [28].
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In this article, three cluster validation indices will be used: (i) Modified Partition Coefficient (MPC); (ii)
Sugeno; e (iii) Xie and Beni (XB). The first index involves only the membership matrix, while the second
and third ones use membership matrix and information about the dataset. These are well-known indices and
the formal definitions of these validation indices can be found easily in the literature[29, 30, 31].

4 Experimental Results
Tables 2, 3 and 4 illustrate the results obtained for all analyzed datasets, using the FCM algorithm and
the MPC, XB and Sugeno indices, respectively. This experiment was replicated for the other clustering
algorithms and validation indices. Tables 5, 6 and 7 present the results obtained for all analyzed datasets,
using the ckMeans algorithm and the MPC, XB and Sugeno indices, respectively. Tables 8, 9 and 10 present
the results obtained for all datasets analyzed, using the FCMσ algorithm and the MPC, XB and Sugeno
indices, respectively. The rows of each table correspond to each dataset and the columns correspond to
the percentage of the data of the corresponding subset. The values presented in each cell correspond to the
number of groups selected for each dataset and the number of times this number was selected (in parentheses),
out of 31 repetitions. Finally, the shaded cells indicate the cases in which the algorithm-index configuration
selected the same number of groups in all analyzed percentages and in the original dataset.
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Table 2: FCM-MPC: Number of clusters selected for multiple subsets of data.

Percentages of DataDatasets 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Balance 10(10) 4(9) 6(7) 4(6) 6(13) 6(18) 6(15) 6(25) 6(25) 6(30)

BA 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Bupa 2(23) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

CMSC 2(19) 2(28) 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Cnae-9 2(5)3(5) 3(5)5(5)8(5) 3(9) 3(9) 9(8) 2(9) 10(6) 2(7) 2(6) 3(10)

Column 3C 2(28) 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Contraceptive 2(25) 2(27) 2(28) 2(30) 2(30) 2(30) 2(31) 2(31) 2(31) 2(31)

Ecoli 10(7) 3(24) 3(22) 3(27) 3(28) 3(29) 3(31) 3(30) 3(31) 3(31)
GI 2(20) 2(24) 2(27) 2(21) 2(17) 2(19) 3(18) 2(16) 3(19) 3(23)

Haberman 10(15) 3(7) 4(9) 4(14) 4(16) 4(19) 4(16) 3(14)4(14) 4(15) 3(19)
Heart Statlog 2(11) 2(22) 2(28) 2(27) 2(31) 2(31) 2(31) 2(31) 2(30) 2(31)

Ionosphere 2(15) 2(30) 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Iris 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Lymph 10(31) 10(20) 2(18) 2(14) 2(15) 2(16) 2(16) 2(18) 2(19) 2(28)
MB 10(23) 10(15) 10(21) 10(13) 10(11) 10(9) 10(12) 9(8) 10(8) 10(11)
MF 3(16) 2(21) 2(17) 2(23) 2(22) 2(20) 2(24) 2(24) 2(20) 2(23)

Parkinsons 2(14) 3(19) 3(23) 3(25) 3(28) 3(31) 3(30) 3(30) 3(27) 3(28)
Pima 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Planning Relax 10(31) 10(26) 2(12) 3(11) 2(18) 2(15) 3(14) 3(12) 3(12) 2(22)
QSAR-B 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Robot Failure 10(31) 10(28) 2(23) 2(24) 2(27) 2(28) 2(29) 2(28) 2(29) 2(26)
Seeds 10(15) 2(28) 2(30) 2(30) 2(31) 2(31) 2(30) 2(31) 2(30) 2(31)

Semeion 3(9) 2(8) 2(10) 2(13) 2(11) 2(18) 2(12) 2(19) 2(16) 2(18)
Sonar 10(29) 2(9) 2(19) 2(18) 2(23) 2(18) 2(20) 2(15)3(15) 2(19) 2(27)
SPF 2(18) 2(25) 2(29) 2(30) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31)
TS 2(26) 2(23) 2(31) 2(30) 2(30) 2(31) 2(31) 2(29) 2(31) 2(31)

UKM 10(21) 10(7) 2(17) 2(21) 2(21) 2(26) 2(29) 2(30) 2(31) 2(29)
Vehicle 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Voice 2(27) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Wine 10(12) 4(11) 3(12) 4(13) 3(13)4(13) 3(12)4(12) 4(15) 4(17) 4(20) 4(19)
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Table 3: FCM-XB: Number of clusters selected for multiple subsets of data

Percentages of DataDatasets 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Balance 10(11) 9(11)10(11) 10(12) 10(17) 10(13) 10(17) 10(22) 10(22) 10(24) 10(18)

GI 2(7) 2(12) 2(11) 2(9)5(9)6(9) 2(11) 2(11) 2(9) 5(18) 2(12) 5(30)
Bupa 2(10) 2(19) 2(16) 2(25) 2(26) 2(23) 2(28) 2(28) 2(29) 2(31)

CMSC 2(23) 2(29) 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Cnae-9 2(8)3(8) 2(13) 2(13) 2(9)3(9) 2(14) 2(13) 2(15) 2(16) 2(16) 2(13)

Column 3C 10(13) 2(24) 2(28) 2(28) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Contraceptive 2(8) 3(20) 3(26) 3(20) 3(22) 3(24) 3(29) 3(26) 3(27) 3(30)

Ecoli 10(7) 9(7) 3(9) 3(12) 3(8) 3(14) 3(12) 3(14) 3(9)9(9) 8(12)
GI 2(15) 2(17) 2(25) 2(21) 2(17) 2(18) 3(19) 2(16) 3(19) 3(23)

Haberman 3(6)8(6)10(6) 3(10) 8(7) 3(13) 3(14) 7(8) 3(12) 3(13) 3(11) 3(18)
Heart Statlog 10(8) 9(6)10(6) 5(9) 7(6)8(6)9(6)10(6) 10(10) 9(7)10(7) 10(9) 8(11) 9(9) 9(14)

Ionosphere 2(16) 2(25) 2(25) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Iris 2(28) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Lymph 10(29) 2(9) 2(17) 3(16) 3(17) 3(19) 3(16) 3(19) 3(17) 3(18)
MB 10(26) 10(25) 10(23) 10(26) 10(20) 10(28) 10(22) 10(22) 10(21) 10(23)
MF 2(12) 2(20) 2(15) 2(21) 2(22) 2(13) 2(22) 2(21) 2(15) 2(25)

Parkinsons 2(16) 3(17) 3(24) 3(24) 3(28) 3(31) 3(31) 3(30) 3(30) 3(29)
Pima 2(28) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Planning Relax 10(20) 10(9) 2(14) 2(11) 2(16) 2(16) 2(12) 2(12) 2(18) 2(21)
QSAR-B 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Robot Failure 10(31) 10(17) 2(21) 2(25) 2(26) 2(26) 2(29) 2(28) 2(29) 2(26)
Seeds 10(9) 2(7) 5(5)7(5) 7(9) 6(8) 6(6)7(6)10(6) 6(9) 9(9) 6(8)9(8) 10(14)

Semeion 10(9) 10(10) 10(7) 9(8) 10(12) 10(7) 10(7) 10(7) 10(10) 10(9)
Sonar 10(18) 3(15) 2(17) 3(14) 2(17) 3(16) 3(15) 3(20) 3(22) 3(25)
SPF 2(23) 2(28) 2(25) 2(29) 2(31) 2(30) 2(31) 2(31) 2(31) 2(31)
TS 2(26) 2(24) 2(31) 2(30) 2(30) 2(31) 2(31) 2(29) 2(31) 2(31)

UKM 9(11) 9(10)10(10) 10(15) 9(12) 10(9) 7(8) 10(8) 6(8) 7(15) 7(13)
Vehicle 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Voice 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Wine 3(11) 3(13) 4(13) 3(17) 3(16) 3(15)4(15) 4(16) 4(22) 4(19) 4(19)
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Table 4: FCM-Sugeno: Number of clusters selected for multiple subsets of data

Percentages of DataDatasets 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Balance 10(22) 10(19) 10(25) 10(27) 10(25) 10(26) 10(29) 10(26) 10(29) 10(27)

GI 10(11) 9(10)10(10) 10(11) 9(15) 9(16) 9(19) 9(19) 9(27) 9(16) 9(17)
Bupa 10(13) 6(6) 10(7) 5(7) 5(6) 5(9) 7(8) 5(12) 5(10)7(10) 5(21)

CMSC 8(8) 9(9) 4(10) 5(8) 5(15) 5(10) 10(7) 5(9) 5(10) 5(18)
Cnae-9 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)

Column 3C 10(23) 10(10) 4(10) 5(10) 5(16) 5(14) 5(14) 4(15) 5(23) 5(20)
Contraceptive 10(19) 10(24) 10(28) 10(28) 10(28) 10(29) 10(29) 10(30) 10(31) 10(31)

Ecoli 10(24) 10(17) 10(17) 10(10) 10(10) 9(10) 10(11) 10(11) 7(13) 7(14)
GI 10(13) 3(10) 4(14) 3(10) 4(14) 3(13) 3(18) 3(15) 3(19) 3(23)

Haberman 10(12) 10(14) 10(10) 10(9) 10(13) 10(12) 10(13) 10(14) 10(22) 10(20)
Heart Statlog 10(17) 10(15) 10(16) 9(16) 10(15) 10(15) 9(11) 8(13) 10(14) 9(10)

Ionosphere 10(22) 10(20) 10(15) 10(19) 10(18) 10(16) 10(22) 10(20) 10(23) 10(20)
Iris 10(15) 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Lymph 10(31) 10(29) 10(29) 10(26) 10(28) 10(30) 10(31) 10(31) 10(30) 10(31)
MB 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
MF 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)

Parkinsons 10(8) 3(19) 3(23) 3(25) 3(28) 3(31) 3(31) 3(30) 3(29) 3(29)
Pima 8(6) 3(10) 2(7) 3(9) 3(14) 3(15) 3(14) 3(22) 3(22) 3(28)

Planning Relax 10(31) 10(30) 10(30) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
QSAR-B 5(8) 5(16) 6(11) 5(15) 5(19) 6(16) 5(16) 5(18) 5(21) 5(30)

Robot Failure 10(31) 10(31) 10(29) 10(27) 10(25) 10(29) 10(31) 10(31) 10(31) 10(31)
Seeds 10(23) 10(15) 7(8)9(8)10(8) 10(12) 10(11) 9(12) 9(9)10(9) 9(11) 9(10)10(10) 10(14)

Semeion 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
Sonar 10(31) 10(25) 10(26) 10(29) 10(29) 10(29) 10(30) 10(30) 10(31) 10(31)
SPF 3(9) 5(11) 5(16) 5(17) 5(19) 5(18) 5(20) 7(16) 7(19) 7(27)
TS 2(21) 2(19) 2(29) 2(29) 2(30) 2(31) 2(31) 2(29) 2(31) 2(31)

UKM 10(27) 10(22) 10(20) 10(21) 10(25) 10(29) 10(26) 10(25) 10(27) 10(25)
Vehicle 4(12) 2(18) 2(15) 2(16) 2(21) 2(22) 2(19) 2(21) 2(27) 2(31)
Voice 4(13) 4(13) 4(19) 4(16) 4(25) 4(21) 4(21) 4(22) 4(21) 4(31)
Wine 10(15) 10(10) 4(9) 4(10) 4(12) 4(13) 4(15) 4(19) 4(18) 4(19)
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Table 5: ckMeans-MPC: Number of clusters selected for multiple subsets of data

Percentages of DataDatasets 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Balance 4(8) 2(8) 4(12) 4(13) 3(14) 4(12) 4(17) 4(14) 3(15) 3(13)4(13)

GI 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Bupa 2(22) 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

CMSC 2(24) 2(30) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Cnae-9 3(12) 3(11) 3(18) 3(22) 3(22) 3(17) 3(22) 3(23) 3(22) 3(23)

Column 3C 2(30) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Contraceptive 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(30) 2(31)

Ecoli 3(15) 3(20) 3(24) 3(20) 3(24) 3(23) 3(24) 3(29) 3(30) 3(30)
GI 2(18) 2(28) 2(29) 2(29) 2(31) 2(31) 2(31) 2(30) 2(30) 2(31)

Haberman 10(7) 3(13) 3(13) 3(19) 4(16) 3(17) 3(21) 3(25) 3(28) 3(20)
Heart Statlog 2(13) 2(23) 2(25) 2(27) 2(29) 2(29) 2(31) 2(31) 2(31) 2(31)

Ionosphere 2(25) 2(27) 2(31) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Iris 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Lymph 10(30) 10(11) 2(25) 2(21) 3(18) 2(18) 3(23) 3(21) 3(21) 3(29)
MB 2(22) 2(27) 2(28) 2(30) 2(31) 2(31) 2(30) 2(31) 2(30) 2(30)
MF 2(24) 2(26) 2(28) 2(30) 2(31) 2(31) 2(29) 2(31) 2(31) 2(31)

Parkinsons 2(15) 2(19) 2(23) 2(24) 2(24) 2(21) 2(28) 2(28) 2(30) 2(31)
Pima 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Planning Relax 10(26) 10(15) 2(11) 2(14) 3(11) 2(16) 3(15) 2(16) 2(21) 2(27)
QSAR-B 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Robot Failure 10(31) 10(19) 2(17) 2(28) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31)
Seeds 10(11) 2(24) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Semeion 2(14) 2(20) 2(16) 2(22) 2(24) 2(20) 2(19) 3(19) 3(18) 3(24)
Sonar 10(21) 2(15) 2(15)3(15) 2(15)3(15) 2(17) 2(17) 2(18) 2(19) 2(16) 2(29)
SPF 2(23) 2(26) 2(29) 2(31) 2(30) 2(30) 2(31) 2(31) 2(31) 2(31)
TS 2(31) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

UKM 10(8) 2(18) 2(27) 2(22) 2(23) 2(29) 2(27) 2(28) 2(29) 2(31)
Vehicle 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Voice 2(26) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Wine 10(14) 4(12) 3(15) 3(15) 3(17) 3(18) 3(13) 3(14) 3(16) 4(30)
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Table 6: ckMeans-XB: Number of clusters selected for multiple subsets of data.

Percentages of DataDatasets 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Balance 10(10) 10(16) 10(21) 10(22) 10(26) 10(24) 10(26) 10(23) 10(27) 10(27)

GI 8(10) 9(11) 10(8) 9(11) 10(10) 9(12) 10(10) 10(12) 10(12) 10(13)
Bupa 10(13) 2(10) 10(12) 10(11) 10(14) 10(15) 10(14) 10(11) 10(10) 10(8)

CMSC 2(28) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Cnae-9 10(27) 10(25) 10(27) 10(24) 10(24) 10(23) 10(26) 10(23) 10(22) 10(26)

Column 3C 10(13) 10(16) 10(14) 10(11) 10(21) 10(19) 10(20) 10(19) 10(21) 10(21)
Contraceptive 10(15) 10(17) 10(21) 10(18) 10(20) 10(20) 10(16) 9(14)10(14) 10(19) 10(17)

Ecoli 10(11) 10(11) 9(12) 10(11) 10(13) 10(12) 10(12) 10(11) 10(11) 10(12)
GI 2(12) 2(27) 2(28) 2(27) 2(30) 2(30) 2(31) 2(30) 2(30) 2(31)

Haberman 4(8) 4(7) 3(11) 3(16) 3(12) 3(10) 3(15) 3(17) 3(22) 3(17)
Heart Statlog 10(13) 10(8) 10(10) 9(9) 8(8) 10(11) 10(13) 9(11)10(11) 10(10) 9(17)

Ionosphere 10(8) 6(8)7(8) 8(8) 9(9)10(9) 10(9) 8(9)9(9) 7(9) 8(11) 7(9)8(9) 8(7)10(7)
Iris 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Lymph 10(27) 10(20) 10(19) 10(25) 10(26) 10(20) 10(23) 10(24) 10(18) 10(20)
MB 10(29) 10(31) 10(26) 10(28) 10(29) 10(29) 10(26) 10(29) 10(28) 10(28)
MF 10(23) 10(18) 10(24) 10(28) 10(26) 10(29) 10(21) 10(27) 10(24) 10(23)

Parkinsons 2(15) 2(19) 2(22) 2(24) 2(24) 2(21) 2(28) 2(28) 2(30) 2(31)
Pima 2(27) 2(28) 2(29) 2(26) 2(28) 2(29) 2(30) 2(31) 2(31) 2(30)

Planning Relax 10(20) 10(22) 10(21) 10(23) 10(20) 10(19) 10(22) 10(20) 10(22) 10(24)
QSAR-B 10(13) 9(11) 10(15) 10(12) 10(11) 10(12) 9(12) 10(15) 10(18) 10(11)

Robot Failure 10(30) 10(19) 10(16) 10(13) 10(13) 10(10) 10(14) 9(8)10(8) 10(11) 8(11)
Seeds 7(8) 5(6) 10(8) 9(7)10(7) 9(8) 10(8) 10(9) 9(9) 8(12) 10(13)

Semeion 10(27) 10(26) 10(28) 10(27) 10(24) 10(28) 10(31) 10(26) 10(28) 10(26)
Sonar 10(20) 10(17) 10(22) 10(18) 10(20) 10(23) 10(20) 10(20) 10(21) 10(21)
SPF 2(28) 2(30) 2(29) 2(31) 2(31) 2(30) 2(31) 2(31) 2(31) 2(31)
TS 2(26) 2(30) 2(31) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

UKM 10(18) 10(15) 10(19) 10(18) 10(18) 10(20) 10(16) 10(22) 10(15) 10(17)
Vehicle 2(30) 2(31) 2(29) 2(31) 2(31) 2(28) 2(30) 2(31) 2(31) 2(31)
Voice 2(28) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Wine 4(7)10(7) 3(15) 3(15) 3(19) 3(16) 3(19) 4(15) 4(14) 3(15) 4(30)
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Table 7: ckMeans-Sugeno: Number of clusters selected for multiple subsets of data

Percentages of DataDatasets 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Balance 10(17) 10(15) 10(19) 10(18) 10(15) 10(24) 10(22) 10(22) 10(26) 10(25)

GI 9(11)10(11) 10(14) 10(18) 10(14) 10(15) 9(15) 9(19) 9(17) 9(18) 9(17)
Bupa 9(8)10(8) 2(12) 2(14) 2(15) 2(15) 2(12) 2(14) 2(13) 2(17) 4(24)

CMSC 9(7) 6(9) 9(9) 5(14) 5(9) 5(15) 5(20) 5(23) 5(25) 5(27)
Cnae-9 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)

Column 3C 10(12) 10(7) 4(15) 4(15) 4(13) 4(16) 4(16) 4(16) 3(19) 3(29)
Contraceptive 10(11) 10(17) 10(16) 10(22) 10(17) 10(19) 10(20) 10(17) 10(21) 10(20)

Ecoli 10(16) 10(12) 10(12) 6(9) 7(7)8(7)10(7) 7(10) 8(9) 7(8)9(8) 9(10) 7(10)
GI 10(9) 10(8) 2(7)4(7) 4(10) 2(8) 4(10) 4(13) 4(16) 4(13) 4(24)

Haberman 10(13) 10(9) 10(11) 9(11) 10(9) 10(11) 9(11) 10(13) 10(18) 10(11)
Heart Statlog 10(15) 10(12) 8(8) 8(7) 8(7)9(7) 8(7) 7(7)8(7) 8(9) 8(9) 5(10)

Ionosphere 10(19) 10(14) 8(8) 10(11) 8(8)9(8) 8(11) 7(10) 8(10) 9(9) 8(9)
Iris 2(20) 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Lymph 10(29) 10(19) 10(27) 10(14) 10(18) 10(22) 10(26) 10(23) 10(19) 10(22)
MB 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
MF 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)

Parkinsons 3(7) 3(11) 4(11) 4(11) 4(15) 4(12) 4(16) 4(19) 4(26) 4(31)
Pima 6(9) 4(7) 5(11) 5(11) 5(12) 5(14) 5(17) 5(19) 5(21) 5(23)

Planning Relax 10(26) 10(23) 10(24) 10(25) 10(25) 10(28) 10(27) 10(29) 10(29) 10(29)
QSAR-B 9(6) 5(8) 7(9) 6(9) 6(9) 5(15) 7(9) 5(9)6(9) 6(11) 5(16)

Robot Failure 10(31) 10(24) 10(23) 10(18) 10(18) 10(14) 10(16) 10(13) 9(13) 10(16)
Seeds 10(19) 10(12) 10(9) 10(9) 6(6)7(6)10(6) 10(11) 8(8) 6(9) 8(7) 10(10)

Semeion 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
Sonar 10(24) 10(24) 10(21) 10(21) 10(23) 10(16) 10(23) 10(28) 10(20) 10(25)
SPF 4(17) 4(22) 4(15) 4(19) 5(17) 5(15) 5(18) 5(28) 5(29) 5(31)
TS 2(27) 2(30) 2(31) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

UKM 10(20) 10(15) 10(19) 10(23) 10(19) 10(17) 10(22) 10(24) 10(27) 10(23)
Vehicle 2(12) 2(17) 4(14) 4(16) 4(20) 4(22) 4(22) 4(21) 4(26) 4(28)
Voice 4(10) 6(15) 6(16) 6(22) 6(18) 6(21) 6(23) 6(22) 6(28) 6(31)
Wine 10(19) 4(8) 5(7)10(7) 5(10) 5(11) 6(10) 5(13) 5(16) 5(12) 4(30)
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Table 8: FCMσ-MPC: Number of clusters selected for multiple subsets of data

Percentages of DataDatasets 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Balance 3(15) 3(15) 2(19) 2(18) 2(24) 2(27) 2(27) 2(28) 2(31) 2(30)

GI 2(28) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Bupa 2(19) 2(23) 2(13) 2(15) 2(14) 2(15) 2(11) 2(8) 3(7)4(7) 5(8)

CMSC 3(7)5(7) 4(10) 3(15) 3(19) 3(19) 3(25) 3(27) 3(31) 3(31) 3(31)
Cnae-9 7(6) 10(8) 8(8)10(8) 10(7) 8(8) 9(10) 9(10) 10(8) 8(8) 8(8)

Column 3C 2(30) 2(31) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Contraceptive 2(24) 2(21) 2(22) 2(24) 2(25) 2(28) 2(24) 2(20) 2(26) 2(25)

Ecoli 2(12) 10(8) 2(12) 2(14) 2(16) 3(15) 2(18) 2(18) 3(16) 2(17)
GI 2(23) 2(30) 2(30) 2(29) 2(30) 2(31) 2(30) 2(30) 2(31) 2(31)

Haberman 2(10) 2(23) 2(27) 2(24) 2(30) 2(29) 2(31) 2(31) 2(31) 2(31)
Heart Statlog 2(14) 2(23) 2(27) 2(29) 2(31) 2(29) 2(30) 2(31) 2(31) 2(31)

Ionosphere 2(13) 2(22) 2(24) 2(25) 2(24) 2(25) 2(27) 2(29) 2(28) 2(28)
Iris 2(16) 2(20) 2(20) 2(18) 2(18) 2(22) 2(19) 2(20) 2(22) 2(31)

Lymph 3(14) 2(13) 3(14) 2(13)3(13) 2(15) 3(18) 2(14) 2(14) 2(15) 2(17)
MB 5(18) 7(12) 7(13) 7(13) 8(11) 9(10) 8(10) 7(10) 7(12) 8(8)
MF 3(7) 2(9) 2(8) 2(10) 2(12) 2(14) 2(13) 2(15) 2(13) 2(14)

Parkinsons 2(26) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Pima 2(31) 2(31) 2(31) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Planning Relax 3(9) 3(12) 3(10) 2(11) 2(11) 2(11) 2(9) 2(9) 2(8)3(8) 3(11)
QSAR-B 2(29) 2(31) 2(31) 2(30) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31)

Robot Failure 10(31) 2(16) 2(15) 2(17) 2(24) 2(25) 2(17) 2(24) 2(22) 2(22)
Seeds 2(16) 2(26) 2(27) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(30)

Semeion 10(24) 9(16) 10(19) 10(18) 10(17) 10(15) 10(15) 10(17) 9(14) 9(12)
Sonar 3(16) 2(13) 3(11) 3(13) 2(12)3(12) 2(14) 2(9) 2(11) 3(10) 2(8)
SPF 2(26) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
TS 2(12) 2(14) 10(15) 10(16) 10(24) 10(21) 10(22) 10(28) 10(29) 10(31)

UKM 2(13)3(13) 2(14) 3(13) 2(14) 2(14) 2(13) 2(12)3(12) 2(13) 2(13) 3(10)
Vehicle 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Voice 2(27) 2(30) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Wine 2(13) 2(23) 2(20) 2(24) 3(16) 2(22) 2(20) 2(18) 2(21) 2(31)
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Table 9: FCMσ-XB: Number of clusters selected for multiple subsets of data

Percentages of DataDatasets 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Balance 3(8) 10(7) 10(8) 10(13) 9(11) 10(15) 10(17) 10(15) 10(11) 10(13)

GI 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Bupa 2(20) 2(26) 2(19) 2(24) 2(22) 2(24) 2(21) 2(20) 2(21) 2(25)

CMSC 2(23) 2(24) 2(29) 2(27) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31)
Cnae-9 2(8) 9(6)10(6) 9(7) 10(6) 2(8) 9(6)10(6) 10(8) 10(7) 8(7) 9(9)

Column 3C 2(31) 2(31) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Contraceptive 2(18) 2(19) 2(19) 2(16) 2(21) 2(19) 2(20) 2(19) 2(24) 2(23)

Ecoli 2(16) 2(16) 2(16) 2(15) 2(23) 2(21) 2(24) 2(22) 2(24) 2(21)
GI 2(26) 2(31) 2(31) 2(29) 2(30) 2(31) 2(30) 2(30) 2(31) 2(31)

Haberman 2(13) 2(15) 2(18) 2(17) 2(21) 2(23) 2(20) 2(19) 2(16) 2(28)
Heart Statlog 2(17) 2(21) 2(23) 2(25) 2(28) 2(25) 2(30) 2(28) 2(27) 2(28)

Ionosphere 2(22) 2(21) 2(17) 2(23) 2(21) 2(22) 2(25) 2(26) 2(27) 2(22)
Iris 2(28) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Lymph 2(8) 2(9) 2(11) 2(10) 2(9) 2(10)3(10) 2(12) 2(12) 2(13) 2(16)
MB 5(19) 6(12)7(12) 7(13) 8(16) 8(12) 9(11) 8(12)9(12) 7(10)8(10) 7(11) 8(12)
MF 2(7) 2(15) 2(8) 2(12) 2(13) 2(13) 2(11) 2(11) 2(13) 2(18)

Parkinsons 2(27) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Pima 2(31) 2(31) 2(31) 2(30) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Planning Relax 3(8) 4(9) 9(7) 2(6)9(6) 10(12) 10(10) 9(8) 7(8) 9(10) 10(12)
QSAR-B 2(29) 2(31) 2(30) 2(30) 2(28) 2(30) 2(31) 2(31) 2(31) 2(31)

Robot Failure 10(31) 2(19) 2(13) 2(16) 2(24) 2(19) 2(20) 2(20) 2(22) 2(25)
Seeds 2(18) 2(31) 2(29) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)

Semeion 10(14) 10(16) 9(14) 10(17) 10(19) 10(17) 10(18) 9(14) 10(13) 10(16)
Sonar 2(12) 2(11) 2(8) 2(11) 3(8) 2(9) 3(9) 3(8) 2(11) 2(11)
SPF 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
TS 2(24) 2(24) 2(27) 2(25) 2(28) 2(27) 2(29) 2(28) 2(25) 2(30)

UKM 2(12) 2(8)4(8) 2(12) 2(9) 2(7)3(7) 2(14) 2(9) 2(11) 2(10) 3(10)
Vehicle 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31) 2(31)
Voice 2(23) 2(28) 2(27) 2(30) 2(29) 2(31) 2(31) 2(31) 2(31) 2(31)
Wine 2(15) 2(14) 3(17) 3(15) 3(25) 3(28) 3(30) 3(30) 3(29) 3(31)
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Table 10: FCMσ-Sugeno: Number of clusters selected for multiple subsets of data

Percentages of DataDatasets 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Balance 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)

GI 10(25) 10(24) 10(26) 10(30) 10(31) 10(29) 10(29) 10(28) 10(29) 10(28)
Bupa 10(28) 10(30) 10(30) 10(31) 10(30) 10(31) 10(31) 10(31) 10(31) 10(31)

CMSC 6(8) 6(7) 5(8)7(8) 5(11) 5(15) 5(14) 5(23) 5(17) 5(26) 5(31)
Cnae-9 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)

Column 3C 10(16) 10(25) 10(25) 10(26) 10(27) 10(26) 10(29) 10(30) 10(26) 10(30)
Contraceptive 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)

Ecoli 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
GI 10(22) 10(20) 10(24) 10(28) 10(28) 10(31) 10(30) 10(30) 10(31) 10(31)

Haberman 10(21) 10(18) 10(20) 10(23) 10(24) 10(26) 10(28) 10(31) 10(31) 10(30)
Heart Statlog 10(27) 10(30) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)

Ionosphere 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
Iris 2(12) 3(15) 3(24) 3(23) 3(28) 3(27) 3(29) 3(31) 3(31) 3(31)

Lymph 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
MB 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
MF 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)

Parkinsons 10(9) 2(9) 3(8) 2(8) 3(8) 3(8) 5(8) 5(7)10(7) 5(17) 5(25)
Pima 2(15) 2(17) 2(17) 2(13) 2(15) 2(25) 2(22) 2(25) 2(28) 2(31)

Planning Relax 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
QSAR-B 10(29) 10(31) 10(30) 10(30) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)

Robot Failure 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
Seeds 10(16) 10(13) 10(14) 10(22) 10(25) 10(22) 10(24) 10(26) 10(28) 10(28)

Semeion 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
Sonar 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
SPF 6(11) 6(18) 5(16) 5(15)6(15) 6(19) 6(17) 6(22) 6(23) 6(24) 6(31)
TS 10(22) 10(31) 10(29) 10(30) 10(31) 10(31) 10(30) 10(31) 10(31) 10(31)

UKM 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31) 10(31)
Vehicle 3(17) 3(24) 3(30) 3(30) 3(30) 3(31) 3(31) 3(31) 3(31) 3(31)
Voice 3(23) 3(23) 3(25) 3(25) 3(23) 3(30) 3(31) 3(30) 3(31) 3(31)
Wine 10(10) 4(10) 4(16) 4(19) 4(23) 4(24) 4(28) 4(30) 4(31) 4(31)

From Tables 2, 3 and 4, we can observe that the FCM algorithm showed similar behavior with 15, 12 and
15 datasets, respectively. In other words, the same number of clusters was chosen in all subsets and in the
total set, when using the MPC, XB and Sugeno index for evaluation. The ckMeans algorithm showed similar
behavior with 19, 22 and 15 datasets, when using the MPC, XB and Sugeno index, respectively, as shown
in Tables 5 to 7. The FCMσ algorithm showed similar behavior with 15, 20 and 25 datasets, considering
the MPC, XB and Sugeno index, respectively, according to Tables 8 to 10. Considering that FCM, ckMeans
and FCMσ are non-deterministic algorithms, in some cases there was a difference in the number of times the
number of clusters was chosen.

From Tables 2 to 10, we can observe that, in a general perspective, the analyzed algorithms showed
similar behavior, selecting the same number of clusters for almost all the data subsets as well as for the
original dataset. It is important to emphasize that there was a discrepancy in some scenarios when selecting
the number of clusters. Therefore, it is necessary to apply statistical tests in order to assess the performance
delivered by the analyzed scenarios, from a statistical point of view.
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4.1 Statistical Test
In the statistical analysis, the Kruskal-Wallis test as well as the Mann-Whitney test were used. The Kruskal-
Wallis test was used to compare the behavior of the algorithms in each data subset and in the original
dataset. Therefore, it is applied directly to the classification result, i.e., over a vector of 31 positions, where
each position refers to the number of clusters selected in the corresponding execution. This test serves to
evaluate the hypothesis that the different percentages of data have the same distribution.

The results of the Kruskal-Wallis test for the FCM, ckMeans and FCM σ algorithms are presented in
Table 11. The values presented in each cell correspond to the p-value of this test for each dataset, algorithm
and validation index.

Table 11: p-value result from the Kruskal Wallis test

FCM ckMeans FCMσDatasets MPC XB Sugeno MPC XB Sugeno MPC XB Sugeno
Balance 0.0094 0.0191 0.0255 0.0314 <0.0001 0.0027 <0.0001 <0.0001 0.5000

GI 0.5000 0.4687 0.9397 0.5000 0.5543 0.4453 0.0013 0.4373 0.0526
Bupa <0.0001 <0.0001 <0.0001 <0.0001 0.5248 <0.0001 0.0001 0.3967 0.1144

CMSC <0.0001 <0.0001 0.0996 <0.0001 0.0122 <0.0001 0.0002 <0.0001 <0.0001
Cnae-9 0.3136 0.3520 0.5000 0.2736 0.7996 0.5000 0.0867 0.1878 0.5000

Column 3C 0.0115 <0.0001 <0.0001 0.5315 0.0014 <0.0001 0.5315 0.4373 <0.0001
Contraceptive 0.0027 0.0512 <0.0001 0.1313 0.7323 0.0814 0.3865 0.6837 0.5000

Ecoli <0.0001 0.2498 <0.0001 0.0270 0.9997 <0.0001 0.0002 0.0195 0.5000
GI <0.0001 0.0005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0078 <0.0001

Haberman <0.0001 0.0436 0.0002 <0.0001 0.1271 0.1774 <0.0001 0.0002 <0.0001
Heart Statlog <0.0001 0.5155 0.0025 <0.0001 0.0160 <0.0001 <0.0001 0.0002 0.0006

Ionosphere <0.0001 <0.0001 0.1281 <0.0001 0.2875 0.0002 <0.0001 0.2473 0.5000
Iris 0.0345 0.0013 <0.0001 0.5000 0.0345 <0.0001 0.0035 0.0013 0.0303

Lymph <0.0001 <0.0001 0.0318 <0.0001 0.0706 0.0002 0.1517 0.5758 0.5000
MB <0.0001 0.3280 0.5000 <0.0001 0.5213 0.5000 <0.0001 <0.0001 0.5000
MF 0.0519 0.0010 0.5000 0.0001 0.0214 0.5000 <0.0001 0.0180 0.5000

Parkinsons 0.0004 <0.0001 <0.0001 <0.0001 <0.0001 0.1569 <0.0001 <0.0001 0.2060
Pima 0.5000 0.0116 0.0024 0.5000 0.1914 0.0594 0.4373 0.4373 <0.0001

Planning Relax <0.0001 <0.0001 0.5315 <0.0001 0.9457 0.2321 0.6555 <0.0001 0.5000
QSAR-B 0.5000 0.5000 0.0463 0.4373 0.4376 0.0114 0.2684 0.1981 0.2684

Robot Failure <0.0001 <0.0001 0.0004 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.5000
Seeds <0.0001 <0.0001 0.0006 <0.0001 0.0073 <0.0001 <0.0001 <0.0001 <0.0001

Semeion 0.0002 0.4946 0.5000 0.0004 0.4341 0.5000 0.0005 0.6987 0.5000
Sonar <0.0001 <0.0001 0.0088 <0.0001 0.9374 0.0964 0.1381 0.4885 0.5000
SPF <0.0001 <0.0001 <0.0001 <0.0001 0.0974 <0.0001 <0.0001 0.5000 <0.0001
TS <0.0001 <0.0001 <0.0001 0.4373 0.0002 0.0034 <0.0001 0.2740 <0.0001

UKM <0.0001 <0.0001 0.0974 <0.0001 0.4562 0.0407 0.6245 0.5412 0.5000
Vehicle 0.5000 0.5000 <0.0001 0.5000 0.1034 0.1338 0.4373 0.5000 <0.0001
Voice <0.0001 0.5000 <0.0001 <0.0001 0.0013 0.0085 0.0037 <0.0001 <0.0001
Wine 0.0007 0.2636 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0045 <0.0001

Based on the values presented in Table 11, it can be observed that there is a statistically significant
difference in all validation algorithms and indices (p-value ≤ 0.05). Therefore, it is necessary to identify
which subsets showed a statistically significant difference in relation to the total set. In this context, Mann-
Whitney test was applied for all algorithms and validation indices. Mann-Whitney test is a non-parametric
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method well known in the literature, which compares two paired samples, and can identify pairs that are
statistically different.

Table 12 presents the results of Mann-Whitney test when comparing the behavior obtained by the al-
gorithms in each subset of data with the total set. In this analysis, we took into account the number of
datasets that did not present a statistically significant difference by percentage of data, for each validation
index and for each clustering algorithm. For example, using the FCM algorithm, MPC index and 40% of
the data from the total set, we have 21 datasets (out of 30), which did not differ from a statistical point of
view. Therefore, values outside parentheses indicate the number of datasets that did not show a statistically
significant difference, while values inside parentheses indicate otherwise.

Table 12: Result of the Mann-Whitney test when comparing each subset of data with the total set

Algorithms Indices 10% 20% 30% 40% 50% 60% 70% 80% 90%

FCM
MPC 7(23) 14(16) 19(11) 21(9) 24(6) 23(7) 25(5) 25(5) 27(3)
XB 12(18) 17(13) 18(12) 21(9) 25(5) 22(8) 24(6) 23(7) 27(3)

Sugeno 13(17) 14(16) 16(14) 17(13) 15(15) 19(11) 19(11) 20(10) 22(8)

ckMeans
MPC 11(19) 15(15) 19(11) 20(10) 21(9) 23(7) 22(8) 24(6) 25(5)
XB 18(12) 19(11) 23(7) 22(8) 25(5) 26(4) 26(4) 27(3) 28(2)

Sugeno 10(20) 17(13) 18(12) 20(10) 20(10) 25(5) 24(6) 26(4) 23(7)

FCMσ
MPC 6(24) 15(15) 19(11) 19(11) 22(8) 23(7) 25(5) 26(4) 27(3)
XB 11(19) 19(11) 22(8) 21(9) 26(4) 26(4) 26(4) 27(3) 28(2)

Sugeno 17(13) 20(10) 20(10) 20(10) 22(8) 22(8) 26(4) 27(3) 26(4)

Table 13 presents the percentage of datasets that did not show any difference from the statistical point of
view, when comparing each data subset (column) with the original dataset. The percentage was calculated
based on the value obtained in each index for each algorithm. For example, in order to calculate the percentage
of datasets that did not show statistical difference taking into account p = 10% and the FCM algorithm,
we took into consideration the values presented in each index and algorithm (7 + 12 + 13 = 32) and the
percentage of the value is calculated, taking into account all 30 datasets used in the experiments, for each
index and algorithm (3 indices x 30 datasets = 90). Therefore, the percentage of datasets that did not show
statistical difference for the FCM algorithm when 10% of the data was used is equal to 35.56% ((32x100)/90
= 35.56).

Table 13: Percentage of Datasets that did not show statistical difference

Algorithms Percentage of Data
10% 20% 30% 40% 50% 60% 70% 80% 90%

FCM 35.56% 50.00% 58.89% 65.56% 71.11% 71.11% 75.56% 75.56% 84.44%
ckMeans 43.33% 56.67% 66.67% 68.89% 73.33% 82.22% 80.00% 85.56% 84.44%

FCMσ 37.78% 60.00% 67.78% 66.67% 77.78% 78.89% 85.56% 88.89% 90.00%

In this analysis, let consider percentages equal or higher than 70% was considered as a strong percentage
(more than 2/3 of the subsets that did not present a statistically significant difference). The use of the strong
percentage concept aims to identify the smallest data subset that delivers similar perfomance than the orginal
dataset (reaches the strong percentage). Therefore, from Table 13, we can observe that the strong percentage
was reached with p ≥ 50%, for all the analyzed algorithms (shadded values).

Based on this analysis, it is possible to infer that the number of clusters in a dataset can be done using
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a data subset higher than 50% (p ≥ 50%). It is important to highlight that this reduction in the number of
instances in a dataset allows to optimize the computational time and processing cost in the data clustering
process, especially when using large datasets with no previous knowledge about the data.

5 Final Remarks
Several approaches in the literature investigate the problem of defining the number of clusters in a dataset.
In general, these approaches use the original dataset as a way to determine the number of clusters. In this
work, we investigated the use of data subsets in the definition of the number of clusters. It is a smaller
sample, but still able to infer the number of clusters of a dataset. In this investigation, three clustering
algorithms (FCM, ckMeans and FCMσ) were applied and assessed using three validation indices. In order to
assess the performance of this proposal, we performed an empirical analysis with 30 datasets. Each dataset
was partitioned into 9 data subsets, starting with 10% (p = 10%) and increasing with 10% intervals untils it
reaches the original dataset size (p=10, 20, ...,90%).

Through the empirical analysis, we can conclude that the results obtained in this article are promising,
both from an experimental point of view and from a statistical point of view. These results show that the use
of a smaller percentage of a dataset can be used to infer the number of clusters with an efficient performance.
More specifically, data subsets higher than 50% (p ≥ 50%) present results similar to the original dataset
when defining the best number of clusters of a dataset.

In future work, we can use a larger number of datasets and characterize them categorically, in an attempt
to find the data percentage to infer the number of clusters, according to the characteristics of each dataset. In
addition, we can use other clustering algorithms, such as k-Means and initialization of initial centers as in[32],
and perform a similar study for interval fuzzy clustering algorithms [33] or use this methodology applied to
the context of clustering ensembles optimization [34].
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Abstract. In today’s data-driven landscape, to ensure continuous survival and betterment, the implementation of a
robust Big Data Governance Framework (BDGF) is imperative for organizations to effectively manage and harness
the potential of their vast data resources. The BDGF serves no purpose when implemented in a random manner.
This article delves into the complex decision-making challenges that emerge in the context of implementation of
the BDGF under uncertain conditions. Specifically, we aim to analyze and evaluate the BDGF performance using
the Multi-Attribute Decision-Making (MADM) techniques aiming to address the intricacies of big data governance
uncertainties. To achieve our objectives, we explore the application of Frank operators within the framework of
complex picture fuzzy (CPF) sets (CPFs). We introduce complex picture fuzzy Frank weighted averaging (CPF-
FWA) and complex picture fuzzy Frank ordered weighted averaging (CPFFOWA) operators to enable more accurate
implementation of the BDGF. Additionally, we rigorously examine the reliability of these newly proposed fuzzy
Frank (FF) operators (FFAOs), taking into consideration essential properties such as idempotency, monotonicity,
and boundedness. To illustrate the practical applicability of our approach, we present a case study that high-
lights the decision-making challenges encountered in the implementation of the BDGF. Subsequently, we conduct
a comprehensive numerical example to assess various BDGF implementation options using the MADM technique
based on complex picture fuzzy Frank aggregation (CPFFA) operators. Furthermore, we perform a comprehensive
comparative assessment of our proposed methodology, emphasizing the significance of the novel insights and results
derived. In conclusion, this research article offers a unique and innovative perspective on decision-making within
the realm of the BDGF. By employing the CPFFWA and the CPFFOWA operators, organizations can make well-
informed decisions to optimize their BDGF implementations, mitigate uncertainties, and harness the full potential
of their data assets in an ever-evolving data landscape. This work contributes to the advancement of decision
support systems for big data governance (BDG), providing valuable insights for practitioners and scholars alike.
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Keywords and Phrases: Picture fuzzy set, Complex picture fuzzy set, Frank operations, Averaging operators,
Geometric operators.

1 Introduction

Although having a BDGF is crucial for companies, a judicious and optimized implementation of the BDGF is
a lot more important. The BDGF is like a set of rules and plans to make sure that when a lot of information
(Big Data) is collected and used, it’s done in a smart and responsible way. It’s about making sure the data
is accurate, safe, and used in a way that helps rather than causes problems. Just like traffic rules help
everyone drive safely on the roads, Big Data Governance rules help manage information in a sensible and
secure manner.

..

∗Corresponding Author: Faisal Mehmood, Email: mehmood@gxmzu.edu.cn, ORCID: 0000-0001-6921-6035
Received: 9 Octob 2023; Revised: 13 March 2024; Accepted: 18 March 2024; Available Online: 18 March 2024; Published
Online: 7 May 2024.

How to cite: Iftikhar H, Mehmood F. Enhancing big data governance framework implementation using novel fuzzy Frank
operators: An application to MADM process. Transactions on Fuzzy Sets and Systems. 2024; 3(1): 88-125. DOI:
https://doi.org/10.30495/TFSS.2024.1105557

88

https://sanad.iau.ir/journal/tfss/
https://doi.org/10.30495/TFSS.2024.1105557
https://orcid.org/0009-0008-9233-3107
https://orcid.org/0000-0001-6921-6035


Enhancing Big Data Governance Framework Implementation
Using Novel Fuzzy Frank Operators: An Application to MADM Process. Trans. Fuzzy Sets Syst. 2024; 3(1) 89

In today’s fiercely competitive business environment, companies are constantly challenged to not only
attain profitability but also to allocate their funds judiciously. The imperative arises when organizations
seek to implement a robust BDGF to manage and harness the potential of their ever-expanding data assets.
However, the challenge they face lies in determining how to deploy these financial resources effectively, par-
ticularly when confronted with multiple options for their allocation. This problem is further worsened by the
inherent complexity of the BDGF, where cost attributes and profit attributes are pivotal components, ren-
dering it a multi-attribute decision-making problem. This study underscores the critical need for a suitable
and comprehensive implementation of the BDGF within companies to ensure their continuous survival in
competitiveness and achieve long-term profitability. To address this challenge, our research article introduces
an innovative approach based on CPFSs and FFA Operators. This novel method offers a powerful tool to
tackle the intricacies of multi-attribute decision-making in the context of data governance, ensuring that orga-
nizations make well-informed, data-driven choices when allocating resources for optimal outcomes. Through
powerful empirical and academic analysis, our research article provides a convincing argument for the imple-
mentation of a BDGF in a manner that strictly goes in the companys favor. By leveraging CPFS and FFAOs,
organizations can not only navigate the complexities of data governance but also make informed decisions
that enhance profitability, reduce risks, and fortify their competitive position in an increasingly data-centric
world. This research article serves as a valuable resource for executives, practitioners, and scholars seeking
to fortify their organizations’ data governance practices in the pursuit of sustainable success.

Figure 1: Big data governance framework of a company.

The MADM is a method of organizing and resolving planning and judgmental problems by determining
the most appropriate alternative based on an expert’s judgment in line with predetermined criteria [1]. This
decision-making process is very important and has drawn the attention of many academicians [2]. Typically,
professionals or decision-makers resolve the problems to assess the data using fuzzy information [3]. To give
just a few examples, numerous researchers have made substantial contributions to the fields of fuzzy sets
(FSs) [4], intuitionistic fuzzy sets (IFSs) [3], cubic intuitionistic fuzzy sets [5], linguistic interval-valued IFSs
[6], and other generalized sets [7, 8, 9, 10, 11, 12], as well as Pythagorean fuzzy set (Py-FS) [13], which
relaxes the IFS limitation 0 ≤ µ + ν ≤ 1 into 0 ≤ µ2 + ν2 ≤ 1. PFSs are more broadly applicable than
IFSs. Using various aggregation operators (AOs), several scholars have presented different sorts of models
in these generalized environments [14, 15, 16]. A mathematical function known as an aggregate operator
turns a collection of inputs or data into a single datum. In the course of making decisions, aggregation
operators are crucial [17, 18] and [19], respectively, creating the ordered weighted averaging (OWA) and
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ordered weighted geometric (OWG) operators, which, according to their ranking order, applied weights to all
values in the collection or data. The weighted averaging operator was developed by [20] for use with IF data,
while the geometric aggregation operators were provided by [21]. The FSs and IFSs environments, however,
only provide partial information on the data set’s components. Picture fuzzy set (PFS) is a novel concept
introduced by [22]. It is distinguished by neutral membership, membership, and non-membership features
that show data on human decisions like yes, refrain, no, and rejection. [23] Also provided some PFS results.
In a PFS environment, [24] proposed WA, OWA, and hybrid averaging operators. The Einstein operations
on PFSs were first introduced by [25]. In [26] the most recently used the Hamachar operators in PFSs.

A noteworthy extended form of Lukasiewicz as well as probabilistic t-norm and t-conorm [27] have emerged
as Frank t-norm and t-conorm [28]. Moreover, they constitute a sufficiently flexible type of the continuous
triangular norm. The Frank models, along with the process of fusion of information, became more adaptable
owing to the fact that a certain parameter is used in them, and the literature is replete with numerous works
[17, 23, 29, 30, 31, 32] related to these models. Frank operators have gained the attention of researchers in a
great number recently [33] Ullah et al used Frank operators to evaluate electric motor cars, and Milosevic et
al [34] used those operators for IFS-IBA logical aggregation. Also to improve the MADM process Seikh et al
[35, 36] used Frank operators in a very efficient manner. For two types comprising commutative, associative,
and growing binary operators, the Alsina and Frank functional equations have skillfully been examined by
[37]. Yager [38] developed a paradigm for approximate reasoning using Frank t-norms by examining the
additive-generating function of these norms. The scalar cardinality related to Frank t-norms was studied in a
novel way by Casasnovas and Torrens [17], who also further established the characteristics of other common
t-norms. Sarkoci [39] came to the conclusion that two separate t-norms, Frank and Hamacher t-norms, are
actually members of the same family. In order to address the MADM issues, Xing et al. [40] presented
aggregation operators pertaining to the PyFs depending on Frank models. Zhou et al. [41] examined a case
study of choosing agriculture socialization and looked into several Frank aggregation operations of interval-
valued neutron-sophic numbers. Aggregation operators of Frank pertaining to triangular interval type2 FSs
were presented by Qin and Liu [42]. Based on Frank t-norm procedures, Qin et al. [43] created more hesitant
fuzzy aggregation operators.

It has been determined that the MADM problems addressed in the aforementioned studies in FSs, IFSs,
and PFSs environments only handle ambiguity as well as vagueness. All of these models are unable to cope
with data insensitivity and periodicity, but a complex data set potentially addresses data periodicity, its
continually changing nature and uncertainty at the same time. To deal with these circumstances, Ramot
[44] and Ramot et al. [45] proposed the noteworthy notion known as a complex fuzzy set (CFS). In a
complex plane, he suggested that a CFS membership degree is expressed as µeiϕµ the range of which is
expanded to a unit disk, where µ ∈ [0, 1] and ϕ ∈ [0, 2], Zhang et al. presented certain CFS operating
rules and characteristics [46]. Since CFSs first appeared in a variety of real-world sectors, such as biometric
procedures, medical investigations, etc., a broad range of applications have been well established. Using the
CF data, Bashir and Akram [47] put out the novel idea of ordered weighted quadratic averaging operators.
In the realm of the CF, Luqman et al.[48], [49] produced outstanding work. Some notable works can also be
found in [50, 51, 52, 53, 54, 55].

The CFS is insufficient to reveal a data set elements inconsistency. Then, Garg and Rani [15], [56] produced
the complex intuitionistic fuzzy set (CIFS) and their aggregation operators, which is a generalization of a
CFS, in which both an element’s membership as well as non-membership were embedded. They provided
definitions for the CIFSs intersection, complement, and union. In order to overcome the MADM challenges
later, AOs utilizing the CIFSs information were presented by Rani and Garg [57]. Ali et al [17] used complex
T-Spherical fuzzy Frank aggregation operators, and yang et al [58] used complex intuitionistic fuzzy Frank
(CIFF) aggregation operators for decision making, However, CIFS is unable to cope with data that has been
somewhat neglected, such as the fact that it only displays the membership and non-membership degrees of
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Table 1: Superiority of CPFS over existing models in literature.

Model
Fuzzy
set

Intuitionistic
fuzzy set

Picture
fuzzy
set

Complex
fuzzy set

Complex
intuitionistic
fuzzy set

Complex
picture fuzzy

set

Uncertainty ✓ ✓ ✓ ✓ ✓ ✓
Falsity × ✓ ✓ × ✓ ✓
Hesitation × × ✓ × × ✓
Periodicity × × × ✓ ✓ ✓
Handles 2-D data × × × × ✓ ✓
Handles 3-D data × × × × × ✓

a data set’s elements in a complex plane and is unable to convey whether a choice was made to abstain
(neutral value) or reject a piece of information. We introduce the complex picture fuzzy set (CPFS), which
is distinguished by membership, neutral membership, and non-membership values in a unit disc of a complex
plane, in response to the absence of information in CIFS theory. By criteria [0, 1] and [0, 2π], respectively,
the amplitude terms and corresponding phase terms of a CPFS are constrained. The set’s applicability is
increased by complex neutral membership grade, which also makes it simpler for a decision maker to be aware
of greater depth as compared to a CIFS. The readers are directed to [59], [60, 61, 49, 48], [22, 2, 43, 44, 57],
and [62] for any additional and useful discussions related to AOs as well as the MADM techniques.

The presence of neutral membership gives a CPFS leverage over a CFS and CIFS: The CPFS has a larger
range as compared to them. Compared to previous models, CPFSs can address uncertainty and periodicity
concurrently and provide significantly more detailed and insightful about an object. The following is a
description of the suggested model’s motivation:

1. A CPFSs membership degrees have complex values made up of terms for amplitude and phase. The
amplitude component of the neutral membership function denotes the abstinence degree. The phase
term for this function, however, offers further details, usually regarding periodicity. In essence, the
neutral degree has boosted the adaptability of CPFS by providing additional details about an object
being evaluated.

2. The CPFS is distinct from the conventional ideas of PFS due to the innovative phase term conception.
This is caused by the fact that PFS only works with one-dimensional data, which causes data loss.
However, when dealing with issues in real-world occurrences, the second dimension must be taken into
account. To remedy it, we incorporated the phase term.

3. The T-norm and t-conorm of Frank [24] appear to be fascinating generalizations extracted from the
t-norm and t-conorm of probabilistics and Lukasiewicz [6], and they constitute a common as well as a
sufficiently compromising branch of these models. Usage of a certain parameter, the robustness of the
Frank models and the information fusion process increase manifold.

The structure of this manuscript can be viewed as follows: In Section 2, several essential ideas that
are important to comprehending this manuscript have been given. The novel conception of a CPFS with
several CPFS attributes and operating rules as well as score and accuracy functions are presented in Section
3. After applying, in the earlier part of section 3, the Frank AOs to the innovative CPFS concept, we
introduced the idea of the CPFHWA and the CPFHWG, complex picture fuzzy Frank hybrid averaging
(CPFFHA), complex picture fuzzy Frank weighted geometric averaging (CPFFWGA), complex picture fuzzy
Frank ordered weighted geometric averaging (CPFFOWG), and complex picture fuzzy Frank hybrid geometric
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averaging (CPFFHGA) operators in the later parts of this section. For these operators, we demonstrate a
few features and outcomes. An MADM technique, along with the method to determining attributes weights,
is put forth in section 4 to determine the most preferable alternative using a specific example and the
creditworthiness to show the relevance of the proposed work. After that, section 5 deals with a numerical
illustration of our proposed work with the help of a real-world problem. To demonstrate our manuscript’s
superiority and influence over other prevalent approaches, we compare the model we have offered in Section 6
of our paper. Finally, in Section 7, we have concluded our approach and have provided some recommendations
for future work as far as this wider and profound area of study is concerned.

2 Preliminaries

This section deals with some of the fundamental definitions and preliminaries.

Definition 2.1. [37] Consider X as a universal set. The CPFS R̄ over X is defined as

R̄ =
{⟨

x, µR̄(x)e
i2πµR̄(x), ηR̄(x)e

i2πηR̄(x), νR̄(x)e
i2πνR̄(x)

⟩
| x ∈ X

}
,

where µR̄(x)e
i2πµR̄(x) : X → [0, 1], ηR̄(x)e

i2πηR̄(x) : X → [0, 1] and νR̄(x)e
i2πνR̄(x) : X → [0, 1] are reffered

to as positive, neutral and negative degrees respectively, such that 0 ≤ µR̄(x)e
i2πµR̄(x) + ηR̄(x)e

i2πηR̄(x) +
νR̄(x)e

i2πνR̄(x) ≤ 1 for every x ∈ X.

Moreover, κR̃(x)e
i2πµR̄(x) =

(
1− µR̃(x)− ηR̄(x)− νR̄(x)

)
ei2πµR̄(x) is reffered to as the degree of hesitancy

for ∈ X. For our convenience, we denote R̄ =
(
µR̄(x)e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
as the representation

of a CPFN.

Definition 2.2. Let R̄ =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
and S̄ =

(
µS̄e

i2πµS̄(x), ηS̄e
i2πηS̄(x), νS̄e

i2πνS̄(x)
)

be CPFNs over a universal set X and ζ > 0 belonging to real number, then following are defined some notable
operations:

1. R̄ ≤ S̄, if µR̄e
i2πµR̄(x) ≤ µS̄e

i2πµS̄(x), ηR̄e
i2πηR̄(x) ≤ ηS̄e

i2πηS̄(x) and νR̄e
i2πνR̄(x) ≥ νS̄e

i2πνS̄(x).

2. R̄
∨

S̄ =

(
max

{
µR̄e

i2πµR̄(x), µS̄e
i2πµS̄(x)

}
,min

{
ηR̄e

i2πηR̄(x), ηS̄e
i2πηS(x)

}
,

min
{
νR̄e

i2πνR̄(x), νS̄e
i2πνS̄(x)

} )
.

3. R̄ ∧ S̄ =

(
min

{
µR̄e

i2πµR̄(x), µS̄e
i2πµS̄(x)

}
,max

{
ηR̄e

i2πηR̄(x), ηS̄e
i2πηS̄(x)

}
,max

{
νR̄e

i2πνR̄(x), νS̄e
i2πνS̄(x)

} )
.

4. R̄c =
(
νR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), µR̄e

i2πνR̄(x)
)
.

5. R̄ ∧ S̄ =

(
min

{
µR̄e

i2πµR̄(x), µS̄e
i2πµR̄(x)

}
,max

{
ηR̄e

i2πηR̄(x), ηS̄e
i2πηR̄(x)

}
,

max
{
νR̄e

i2πvR̄(x), νS̄e
i2πνR̄(x)

} )
.

6. R̄ ∨ S̄ =

(
max

{
µR̄e

i2πµR̄(x), µS̄e
i2πµS̄(x)

}
,min

{
ηR̄e

i2πηR̄(x), ηS̄e
i2πηS̄(x)

}
,

min
{
νR̄e

i2πνR̄(x), νS̄e
i2πνS̄(x)

} )
.

7. R̄⊕ S̄ =

(
µR̄e

i2πµR̄(x) + µS̄e
i2πµS̄(x) − µR̄e

i2πµR̄(x)µS̄e
i2πµS̄(x), ηR̄e

i2πηR̄(x)ηS̄e
i2πηS(x),

νR̄e
i2πνR̄(x)νS̄e

i2πνS̄(x)

)
.

8. R̄⊗ S̄ =

(
µR̄e

i2πµR̄(x)µS̄e
i2πµS̄(x), ηR̄e

i2πηR̄(x) + ηS̄e
i2πηS̄(x) − ηR̄e

i2πηR̄(x)ηS̄e
i2πηS̄(x),

νR̄e
i2πνR̄(x) + νS̄e

i2πνS(x) − νR̄e
i2πνR̄(x)νS̄e

i2πνS(x)

)
.
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9. ζR̄ =
(
1−

(
1− µR̄e

i2πµR̄(x)
)ζ

,
(
ηζ
R̄

)
ei2πηR̄(x), νζ

R̄
ei2πνR̄(x)

)
.

10. R̄ζ =
(
µζ
R̄
ei2πµR̄(x), 1−

(
1− ηR̄e

i2πηR̄(x)
)ζ

, 1−
(
1− νR̄e

i2πνR̄(x)
)ζ)

.

Definition 2.3. For a CPFNR̄ =
(
µR̄(x)e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)

∆(p) =
2 + µR̄e

i2πµR̄(x) − νR̄e
i2πνR̄(x)

4
,

is defined as score function, where ∆(p) ∈ [0, 1].

Definition 2.4. For a CPFNR̄ =
(
µR̄(x)e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)

∇(p) = µR̄e
i2πµR̄(x) + νR̄e

i2πνR̄(x),

is defined as accuracy function, where Ψ(p) ∈ [−1, 1].

According to Definitions 2.3 and 2.4, if R̄ =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
and

S̄ =
(
µS̄e

i2πµR̄(x), ηS̄e
i2πηR̄(x), νS̄e

i2πνR̄(x)
)
are any two CPFNs then

1. If ∆(R̄) > ∆(S̄) then R̄ > S̄.

2. If ∆(R̄) < ∆(S̄) then R̄ < S̄.

3. If ∆(R̄) = ∆(S̄), then

(a) If ∇(R̄) > ∇(S̄), then R̄ > S̄.

(b) If ∇(R̄) = ∇(S̄), then R̄ = S̄.

Definition 2.5. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be CPFNs’ collection.

Then, by using the CPFWAOs, their aggregated value is also a CPFN and CPFWA
(
R̄1, R̄2, . . . , R̄n

)
=

⊕n
k=1

(
wkR̄k

)
=

 1−
∏n

k=1

(
1− µR̄k

e
i2πµR̄k

(x)
)wk

,
(∏n

k=1 ηR̄k
e
i2πηR̄k

(x)
)wk

,(∏n
k=1 νR̄k

e
i2πνR̄k

(x)
)wk

 ,

here w = (w1, w2, . . . , wn)
t denotes the weight-vector of pk(k = 1, 2, . . . , n), wk ∈ [0, 1] and

∑n
k=1wk = 1.

Definition 2.6. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a collection of

CPFNs. A structure pn → p such that,

CPFOWA
(
R̄1, R̄2, . . . , R̄n

)
=

n⊕
k=1

(
wkR̄R̄(k)

)
=

(
1−

n∏
k=1

(
1− µR̄R̄(k)

)wi

,

n∏
k=1

ηR̄R̄(k)
wk,

n∏
k=1

νR̄R̄(k)
wk

)
,

is known as CPFOWA operator and,(ρ(1), ρ(2), . . . , ρ(n)) denotes the permutation related to (k = 1, 2, . . . , n),
satisfying pρ(i−1) ≥ pρ(k); k = 1, 2, . . . , n.

The definition of Frank t-norm and t-conorm is provided as follows:



94 Iftikhar H, Mehmood F. Trans. Fuzzy Sets Syst. 2024; 3(1)

Definition 2.7. [28] For a and b as two real numbers, the functions

Fra(a, b) = logr

(
1 +

(ra − 1)
(
rb − 1

)
r − 1

)
,

and

Fra′(a, b) = 1− logr

(
1 +

(
r1−a − 1

) (
r1−b − 1

)
r − 1

)
,

are defined as Frank t-norm and Frank t-conorm respectively, where (a, b) ∈ [0, 1]× [0, 1] and r ̸= 1.

Following observations should be considered here [63]:

1. Fra′(a, b) → a+ b− ab, when r → 1, also Fra (a, b) → ab when r → 1. Therefore, we conclude that sum
and product of Frank change into sum and product of probabilistic when r → 1.

2. Fra′(a, b) → min{a+ b, 1} when r → ∞ and Fra (a, b) → max{0, a+ b− 1} when r → ∞. Therefore, we
conclude that the sum as well as product of Frank change into sum as well as product of Lukasiewicz,
when r → ∞.

Example 2.8. Let a = 0.33, b = 0.98 and r = 5, then,

Fra(0.33, 0.98) = log4

(
1 +

(
40.33 − 1

) (
40.98 − 1

)
5− 1

)
= 0.3197.

Fra′(0.33, 0.98) = 1− log4

(
1 +

(
41−0.33 − 1

) (
41−0.98 − 1

)
5− 1

)
= 0.9902.

3 Complex Picture Fuzzy Frank Aggregation Operators

By skillfully using the t-norm and t-conorm of Frank, notable operating rules for the CPF environment
have been created in this part. We also recommend the CPFFWA, CPFFOWA, CPFFHWA, CPFFWG,
CPFFOWG, and CPFFHWA aggregation operators utilizing the operational principles we have defined.

Definition 3.1. Let R̄ =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
, S̄ =

(
µS̄e

i2πµJ̄ (x), ηS̄e
i2πηJ̄ (x), νS̄e

i2πνJ̄ (x)
)

and T̄ =
(
µT̄ e

i2πµT̄ (x), ηT̄ e
i2πηT̄ (x), νT̄ e

i2πνT̄ (x)
)
be CPFNs, r > 1, and ζ > 0 is a real number.

Frank t-norm and t-conorm operations for CPFNs are provided as follows:

1. R̄⊕ S̄ =

=



1− logr

1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)(

r1−µS̄e
i2πµS̄(x)

− 1
) 

r−1

 , logr

1 +


(
rηR̄ei2πηR̄(x)

− 1
)(

rηS̄e
i2πηS̄(x)

− 1
) 

r−1

 ,

logr

1 +


(
rνR̄ei2πνR̄(x)

− 1
)(

rνS̄e
i2πνS̄(x)

− 1
) 

r−1





.
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2. R̄⊗ S̄ =

=



logr

1 +


(
rµR̄ei2πµR̄(x)

− 1
)(

rµS̄e
i2πµS̄(x)

− 1
) 

r−1

 , 1− logr

1 +


(
r1−ηR̄ei2πηR̄(x)

− 1
)(

r1−ηS̄e
i2πηS̄(x)

− 1
) 

r−1

 ,

1− logr

1 +


(
r1−νR̄ei2πνR̄(x)

− 1
)(

r1−νS̄e
i2πνS̄(x)

− 1
) 

r−1





.

3. ζR̄

=


1− logr

1 +

(
r1−µR̄e

i2πµR̄(x)
−1

)ζ

(r−1)ζ−1

 , logr

1 +

(
rηR̄e

i2πηR̄(x)
−1

)ζ

(r−1)ζ−1

 ,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)ζ

(r−1)ζ−1



 .

4. R̄ζ

=


logr

1 +

(
rµR̄e

i2πµR̄(x)
−1

)ζ

(r−1)ζ−1

 , 1− logr

1 +

(
r1−ηR̄e

i2πηR̄(x)
−1

)ζ

(r−1)ζ−1

 ,

1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)ζ

(r−1)ζ−1



 .

Example 3.2. Let R̄ =
(
0.5ei2π(0.5), 0.3ei2π(0.1), 0.2ei2π(0.4)

)
and S̄ =

(
0.1ei2π(0.4), 0.5ei2π(0.4), 0.4ei2π(0.2)

)
be

any two CPFNs. Let r = 2 and ζ = 3 in definition 3.1, we get

1. R̄⊕ S̄ =
(
0.5577ei2π(0.7206), 0.1319ei2π(0.0327), 0.0669ei2π(0.06)

)
.

2. R̄⊗ S̄ =
(
0.0422ei2π(0.1793), 0.6680ei2π(0.4672), 0.0.2243ei2π(0.3330)

)
.

3. 5R̄ =
(
0.9348ei2π(0.9860), 0.0012ei2π(0.00001), 0.000015ei2π(0.000015)

)
.

4. R̄4 =
(
0.00003ei2π(0.0034), 0.0975ei2π(0.0876), 0.9216ei2π(0.9216)

)
.

Theorem 3.3. Let R̄ =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
, and S̄ =

(
µS̄e

i2πµS̄(x), ηS̄e
i2πηS̄(x), νS̄e

i2πνS̄(x)
)

and T̄ =
(
µT̄ e

i2πµT̄ (x), ηT̄ e
i2πηT̄ (x), νT̄ e

i2πνT̄ (x)
)
be any three CPFNs. Let r > 1 and ζ, ζ1, ζ2 are positive real

numbers, then

1. R̄⊕ S̄ = S̄ ⊕ R̄.

2. R̄⊗ S̄ = S̄ ⊗ R̄.

3. ζ(R̄⊕ S̄) = ζR̄⊕ ζS̄.
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4. ζ1R̄⊕ ζ2R̄ = (ζ1 + ζ2) R̄.

5. (R̄⊗ S̄)ζ = R̄ζ ⊗ S̄ζ .

6. R̄ζ1 ⊗ R̄ζ2 = R̄ζ1+ζ2.

Proof. For three CPFNs R̄ =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
, S̄ =

(
µS̄e

i2πµS̄(x), ηS̄e
i2πηS̄(x), νS̄e

i2πνS̄(x)
)

and T̄ =
(
µT̄ e

i2πµT̄ (x), ηT̄ e
i2πηT̄ (x), νT̄ e

i2πνT̄ (x)
)
with ζ, ζ1, ζ2 > 0. According to Definition 3.1, we can obtain

1. R̄⊕ S̄ =



1− logr

1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)(

r1−µS̄e
i2πµS̄(x)

− 1
) 

r−1

 , logr

1 +


(
rηR̄ei2πηR̄(x)

− 1
)(

rηS̄e
i2πηS̄(x)

− 1
) 

r−1

 ,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)(
rνS̄e

i2πνS̄(x)
−1

)
r−1





=



1− logr

1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)(

r1−µS̄e
i2πµS̄(x)

− 1
) 

r−1

 , logr

1 +


(
rηR̄ei2πηR̄(x)

− 1
)(

rηS̄e
i2πηS̄(x)

− 1
) 

r−1

 ,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)(
rνS̄e

i2πνS̄(x)
−1

)
r−1




= S̄ ⊕ R̄.

2. R̄⊗ S̄ =



logr

1 +


(
rµS̄e

i2πµS̄(x)

− 1
)(

rµR̄ei2πµR̄(x)

− 1
) 

r−1

 , 1− logr

1 +


(
r1−ηR̄ei2πηR̄(x)

− 1
)(

r1−ηS̄e
i2πηS̄(x)

− 1
) 

r−1


1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)(
r1−νS̄e

i2πνS̄(x)
−1

)
r−1





=



logr

1 +


(
rµS̄e

i2πµS̄(x)

− 1
)(

rµR̄ei2πµR̄(x)

− 1
) 

r−1

 , 1− logr

1 +


(
r1−ηR̄ei2πηR̄(x)

− 1
)(

r1−ηS̄e
i2πηS̄(x)

− 1
) 

r−1


1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)(
r1−νS̄e

i2πνS̄(x)
−1

)
r−1




= S̄ ⊗ R̄.
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3. ζ(R̄⊕ S̄) = ζ



1− logr

1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)(

r1−µS̄e
i2πµS̄(x)

− 1
) 

r−1

 , logr

1 +


(
rηR̄ei2πηR̄(x)

− 1
)(

rηS̄e
i2πηS̄(x)

− 1
) 

r−1

 ,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)(
rνS̄e

i2πνS̄(x)
−1

)
r−1





=



1− logr


1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)ζ(

r1−µS̄e
i2πµS̄(x)

− 1
)ζ


(r−1)2ζ−1


, logr


1 +


(
rηR̄ei2πηR̄(x)

− 1
)ζ(

rηS̄e
i2πηS̄(x)

− 1
)ζ


(r−1)2ζ−1


,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)ζ(
rνS̄e

i2πνS̄(x)
−1

)ζ

(r−1)2ζ−1




.

Now

ζR̄⊕ ζS̄ =


1− logr

1 +

(
r1−µR̄e

i2πµR̄(x)
−1

)ζ

(r−1)ζ

 , logr

1 +

(
rηR̄e

i2πηR̄(x)
−1

)ζ

(r−1)ζ

 ,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)ζ

(r−1)ζ





⊕


1− logr

1 +

(
r1−µS̄e

i2πµS̄(x)
−1

)ζ

(r−1)ζ

 , logr

1 +

(
rηS̄e

i2πηS̄(x)
−1

)ζ

(r−1)ζ

 ,

logr

1 +

(
rνS̄e

i2πνS̄(x)
−1

)ζ

(r−1)ζ





=



1− logr


1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)ζ(

r1−µS̄e
i2πµS̄(x)

− 1
)ζ


(r−1)2ζ−1


, logr


1 +


(
rηR̄ei2πηR̄(x)

− 1
)ζ(

rηS̄e
i2πηS̄(x)

− 1
)ζ


(r−1)2ζ−1


,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)ζ(
rνS̄e

i2πνS̄(x)
−1

)ζ

(r−1)2ζ−1




.

Therefore,
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ζ(R̄⊕ S̄) = ζR̄⊕ ζS̄.

4. ζ1R̄⊕ ζ2R̄ =


1− logr

1 +

(
r1−µR̄e

i2πµR̄(x)
−1

)ζ1

(r−1)ζ1

 , logr

1 +

r
ηR̄e

i2πηR̄(x)−1

)ζ1

(r−1)ζ1


logr

(
1 +

(
rνR̄ei2πνR̄(x)−1

)ζ1
(r−1)ζ1

)



⊕


1− logr

1 +

(
r1−µR̄e

i2πµR̄(x)
−1

)ζ2

(r−1)ζ2

 , logr

1 +

r
ηR̄e

i2πηR̄(x)−1

)ζ2

(r−1)ζ2


logr

(
1 +

(
rνR̄ei2πνR̄(x)−1

)ζ2
(r−1)ζ2

)



=


1− logr

1 +

(
r1−µR̄e

i2πµR̄(x)
−1

)ζ1+ζ2

(r−1)ζ1+ζ2

 , logr

1 +

(
rηR̄e

i2πηR̄(x)
)ζ1+ζ2

(r−1)ζ1+ζ2


, logr

(
1 +

(
rνR̄ei2πνR̄(x)−1

)ζ1+ζ2

(r−1)ζ1+ζ2

)
 .

= (ζ1 + ζ2) R̄.

5.
(
R̄1 ⊗ R̄2

)ζ
=



logr


1 +


(
rµR̄1

e
i2πµR̄1

(x)

− 1

)
(
rµR̄2

e
i2πµR̄2

(x)

− 1

)


r−1


, 1− logr


1 +


(
r1−ηR̄1

e
i2πηR̄1

(x)

− 1

)
(
r1−ηR̄2

e
i2πηR̄2

(x)

− 1

)


r−1



1− logr

1 +

r
1−νR̄1

e
i2πνR̄1

(x)

−1

r
1−νR̄2

e
i2πνR̄2

(x)

−1


r−1





ζ
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=



logr


1 +


(
rµR̄1

e
i2πµR̄1

(x)

− 1

)
(
rµR̄2

e
i2πµR̄2

(x)

− 1

)


ζ

(r−1)2ζ−1


, 1− logr


1 +


(
r1−ηR̄1

e
i2πηR̄1

(x)

− 1

)
(
r1−ηR̄2

e
i2πηR̄2

(x)

− 1

)


ζ

(r−1)2ζ−1



1− logr

1 +

r
1−νR̄1

e
i2πνR̄1

(x)

−1

r
1−νR̄2

e
i2πνR̄2

(x)

−1

ζ

(r−1)2ζ−1





=


logr

1 +

r
µR̄1

e
i2πµR̄1

(x)

−1

ζ

(r−1)ζ

 , 1− logr

1 +

(
r
1−ηR̄1 e

i2πηR̄1
(x)

−1

)ζ

(r−1)ζ

 ,

1− logr

1 +

(
r
1−νR̄1 e

i2πνR̄1
(x)

−1

)
(r−1)ζ




.

6. R̄ζ1 ⊗ R̄ζ2 =


logr

1 +

(
rµR̄e

i2πµR̄(x)
−1

)ζ1

(r−1)ζ1−1

 , 1− logr

1 +

(
r1−ηR̄e

i2πηR̄(x)
−1

)ζ1

(r−1)ζ1−1

 ,

1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)ζ1

(r−1)ζ1−1





⊗


logr

1 +

(
rµR̄e

i2πµR̄(x)
−1

)ζ2

(r−1)ζ2−1

 , 1− logr

1 +

(
r1−ηR̄e

i2πηR̄(x)
−1

)ζ2

(r−1)ζ2−1

 ,

1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)ζ2

(r−1)ζ2−1





=


logr

(
1 +

(
rµei2πµR̄(x)−1

)ζ1+ζ2

(r−1)ζ1+ζ2−1

)
, 1− logr

1 +

r
1−ηR̄e

i2πηR̄(x)
)ζ1+ζ2

(r−1)ζ1+ζ2−1

 ,

1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)ζ1+ζ2

(r−1)ζ1+ζ2−1




= R̄ζ1+ζ2 .

□
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3.1 Complex Picture Fuzzy Frank Arithmetic Aggregation Operators

Definition 3.4. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be CPFNs’ collection.

Then, a function pn → p

CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
=

n⊕
k=1

(
wkR̄k

)
,

is known as the CPFFWA operator with w = (w1, w2, . . . , wn)
t as the weight vector of R̄k(k = 1, 2, . . . , n), wk ∈

[0, 1] and
∑n

k=1wk = 1.

As a result, the following consequential theorem is obtained.

Theorem 3.5. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be CPFNs’ collection,

then the aggregated value is also a CPFN, and

CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
=

n⊕
k=1

(
wkR̄k

)

=

 1− logr

(
1 +

∏n
k=1

(
r
1−µR̄k

ei2πµR̄(x)

− 1

)wk
)
, logr

(
1 +

∏n
k=1

(
r
ηR̄k

ei2πηR̄(x)

− 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
r
νR̄k

ei2πνR̄(x)
)wk

)
 .

Proof. Method of mathematical induction would be used for proving this theorem. We take n = 2, and by
using Frank operations for CPFNs, we get

CPFFWA
(
R̄1, R̄2

)
=

2⊕
k=1

wk = w1R̄1

⊕
w2R̄2

=



1− logr

1 +

r
1−µR̄1

e
i2πµR̄1

(x)

−1

w1

(r−1)w1−1

 , logr

1 +

(
r
ηR̄1

e
i2πηR̄(x)

−1

)w1

(r−1)w1−1

 ,

logr

1 +

r
νR̄1

e
i2πνR̄1

(x)
w1

(r−1)w1−1





⊕



1− logr

1 +

r
1−µR̄2

e
i2πµR̄2

(x)
w2

(r−1)w2−1

 , logr

1 +

r
ηR̄2

e
i2πηR̄2

(x)
)w2

−1

(r−1)w2−1

 ,

logr

1 +

r
νR̄2

e
i2πνR̄2

(x)
−1

)w2

(r−1)w2−1




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=

 1− logr

(
1 +

∏2
k=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)
, logr

(
1 +

∏2
k=1

(
r
ηR̄k

e
i2πµR̄k

(x)

− 1

)wk
)
,

logr

(
1 +

∏2
k=1

(
r
νR̄k

e
i2πνR̄k

(x)

− 1

)wk
)

 .

[
∵

2∑
k=1

wk = 1

]

Therefore, for n = 2, the result is true.

By considering the given result as true for n = s, we have,

CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
=

s⊕
k=1

wkR̄k

=

 1− logr

(
1 +

∏s
k=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)
, logr

(
1 +

∏s
k=1

(
r
ηR̄k

e
i2πηR̄k

(x)

− 1

)wk
)
,

logr

(
1 +

∏s
k=1

(
r
νR̄k

e
i2πνR̄k

(x)

− 1

)wk
)

 .

Now, for n = s+ 1, we have,

CPFFWA
(
R̄1, R̄2, . . . , R̄n+1

)
=

s+1⊕
k=1

wkR̄k =

s⊕
i=1

wkR̄k

⊕
ws+1R̄s+1

=



1− logr

1 +

∏s
k=1

r
1−µR̄k

e
i2πµR̄k

(x)

−1

wk

(r−1)
∑s

i=1
wi−1

 ,

logr

1 +

∏s
k=1

r
ηR̄k

e
i2πηR̄k

(x)

−1

wk


(r−1)
∑s

i=1
wi−1

 ,

logr

1 +

∏s
k=1

r
νR̄k

e
i2πνR̄k

(x)

−1

wk

(r−1)
∑s

i=1
wi−1




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⊕



1− logr

1 +

r
1−µR̄S+1

e
i2πµR̄S+1

(x)

−1

wS+1

(r−1)wS+1−1



logr

1 +

r
ηR̄S+1

e
i2πηR̄S+1

(x)

−1

wS+1
(r−1)wS+1−1



logr

1 +

r
νR̄S+1

e
i2πνR̄S+1

(x)

−1

wS+1

(r−1)wS+1−1





=


1− logr

(
1 +

∏s+1
i=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)
,

logr

(
1 +

∏s+1
i=1

(
r
ηR̄k

e
i2πηR̄k

(x)

− 1

)wk
)
,

logr

(
1 +

∏s+1
i=1

(
r
νR̄k

e
i2πνR̄k

(x)

− 1

)wk
)

 .

as
s+1∑
k=1

wk = 1.

Which shows the result is valid for n = s + 1, if it is valid for n = s. Hence, method of induction shows
the validity of our result, no matter what natural number n is. □

Example 3.6. For R̄1 =
(
0.5ei2π(0.5), 0.3ei2π(0.1), 0.1ei2π(0.4)

)
, R̄2 =

(
0.1ei2π(0.4), 0.5ei2π(0.4), 0.4ei2π(0.2)

)
, R̄3 =(

0.1ei2π(0.1), 0.1ei2π(0.2), 0.7ei2π(0.5)
)
, R̄4 =

(
0.6ei2π(0.2), 0.1ei2π(0.2), 0.3ei2π(0.3)

)
with weights = (0.2, 0.3, 0.1, 0.4)

and r = 2, step by step working of the operator is given as follows:

CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
=


1− logr

(
1 +

∏n
k=1

(
r
1−µR̄k ei2πµR̄(x) − 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
r
ηR̄k ei2πηR̄(x) − 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
r
νR̄k ei2πνR̄(x) − 1

)wk
)



=



1− log2

 1 +
(
21−(0.5)ei2π(0.5) − 1

)0.2
+
(
21−(0.1)ei2π(0.4) − 1

)0.3
+
(
21−(0.1)ei2π(0.1) − 1

)0.1
+
(
21−(0.6)ei2π(0.2) − 1

)0.4
 ,

log2

 1 +
(
2(0.3)e

i2π(0.1) − 1
)0.2

+
(
2(0.5)e

i2π(0.4) − 1
)0.3

+
(
2(0.1)e

i2π(0.1) − 1
)0.1

+
(
2(0.1)e

i2π(0.2) − 1
)0.4

 ,

log2

 1 +
(
2(0.1)e

i2π(0.4) − 1
)0.2

+
(
2(0.4)e

i2π(0.2) − 1
)0.3

+
(
2(0.7)e

i2π(0.5) − 1
)0.1

+
(
2(0.3)e

i2π(0.3) − 1
)0.4




=
(
0.321ei2π(0.321), 0.205ei2π(0.216), 0.330ei2π(0.297)

)
.
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Theorem 3.7. (Idempotent). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a col-

lection of CPFNs which are all identical, i.e., R̄k = R̄ for all k, where R =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), vR̄e

i2πνR̄(x)
)
,

then CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
= R̄.

Proof. As for every R̄k = R̄, therefore,

CPFFWA (p̄1, p̄2, . . . , p̄n) =

=

 1− logr

(
1 +

∏n
k=1

(
r1−µR̄ei2πµR̄ (x) − 1

)wi
)
, logr

(
1 +

∏n
k=1

(
rηR̄ei2πηR̄ (x) − 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
rνR̄ei2πνR̄ (x) − 1

)wk
) 

=

 1− logr

(
1 +

∏n
k=1

(
r1−µR̄ei2πµR̄ (x) − 1

)wk
)
, logr

(
1 +

∏n
k=1

(
rηR̄ei2πηR̄ (x) − 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
rνR̄ei2πνR̄ (x) − 1

)wk
) 

=

 1− logr

(
1 +

∏n
k=1

(
r1−µR̄ei2πµR̄ (x) − 1

)∑n
k=1 wk

)
, logr

(
1 +

∏n
k=1

(
r1−ηR̄ei2πηR̄ (x) − 1

)∑n
k=1 wk

)
,

logr

(
1 +

∏n
k=1

(
r1−νR̄ei2πνR̄ (x) − 1

)∑n
k=1 wk

)


=

 1− logr

(
1 +

∏n
k=1

(
r1−µR̄ei2πµR̄ (x) − 1

))
, logr

(
1 +

∏n
k=1

(
r1−ηR̄ei2πηR̄ (x) − 1

))
,

logr

(
1 +

∏n
k=1

(
r1−νR̄ei2πνR̄ (x) − 1

)) 
=
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), vR̄e

i2πvR̄(x)
)
= R̄.

Hence, it completes the proof. □

Theorem 3.8. (Boundedness). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be

CPFNs’collection. Let R̄− = min
{
R̄1, R̄2, . . . , R̄n

}
, and R̄+ = max

{
R̄1, R̄2, . . . , R̄n

}
. Then,

R̄− ≤ CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
≤ R̄+.

Proof. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n is a collection of CPFN. Let

R̄− = min
{
R̄1, R̄2, . . . , R̄n

}
=
(
µ−

R̄k
e
i2πµR̄k

(x)
, η−R̄k

e
i2πηR̄k

(x)
, ν−R̄k

e
i2πνR̄k

(x)
)
,

and

R̄+ = max
{
R̄1, R̄2, . . . , R̄n

}
=
(
µ+

R̄k
e
i2πµR̄k

(x)
, η+R̄k

e
i2πηR̄k

(x)
, ν+R̄k

e
i2πνR̄k

(x)
)
.

Then, we have,

µ−R̄ke
i2πµR̄k

(x)
=min

k

{
µR̄k

e
i2πµR̄k

(x)
}
, η−R̄k

e
i2πηR̄k

(x)

= max
k

{
ηR̄k

e
i2πηR̄k

(x)
}
, ν−

R̄k
e
i2πνR̄k

(x)
= max

k

{
νR̄k

e
i2πνR̄k

(x)
}

µ+
R̄k

e
i2πµR̄k

(x)
=max

k

{
µR̄k

e
i2πµR̄k

(x)
}
, η+R̄k

e
i2πηR̄k

(x)

= min
k

{
ηR̄k

e
i2πηR̄k

(x)
}
, ν+R̄k

e
i2πνR̄k

(x)
= min

k

{
νR̄k

e
i2πνR̄k

(x)
}
.
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Now,

1− logr

(
1 +

n∏
k=1

(
r
1−
(
µ−R̄ke

i2πµR̄k
(x)
)
− 1

)wk)

≤ 1− logr

(
1 +

n∏
k=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)

≤ 1− logr

(
1 +

n∏
k=1

(
r
1−
(
µ+

R̄k
e
i2πµR̄k

(x)
)
− 1

)wk)
.

logr

(
1 +

n∏
k=1

(
r

(
η+R̄k

e
i2πηR̄k

(x)
)
− 1

)wk))

≤ logr

(
1 +

n∏
k=1

(
r
ηR̄k

e
i2πηR̄k

(x)
−1
)wk

)

≤ logr

(
1 +

n∏
k=1

(
r

(
η−
R̄k

e
i2πηR̄k

(x)
−1

))wk)
.

and

logr

(
1 +

n∏
k=1

(
r

(
ν+R̄k

e
i2πνR̄k

(x)
)
− 1

)wk))

≤ logr

(
1 +

n∏
k=1

(
r
νR̄k

e
i2πνR̄k

(x)

− 1

)wk
))

≤ logr

1 +

n∏
k=1

r

(
ν−R̄

i2πνR̄k
(x)

k

)
− 1

k

 .

Therefore,

R̄− ≤ CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
≤ R̄+.

□

Theorem 3.9. (Monotonicity) Let the two sets R̄k and R̄′
k(k = 1, 2, . . . , n) of CPFNs, if for all k R̄k ≤ R̄′

k,
then CPFFWA

(
R̄1, R̄2, . . . , R̄n

)
≤ CPFFWA

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
.

Proof. Since R̄k ≤ R̄′
k for all k = 1, 2, . . . , n, then, µR̄k

e
i2πµR̄k

(x) ≤ µ′
R̄k

ei2πµ
′R̄k(x), r

ηR̄k e
i2πηR̄k

(x) ≤

η′
R̄k

e
i2πη′

R̄k
(x)

and νR̄k
e
i2πνR̄k

(x) ≥ ν ′
R̄k

ei2πν
′R̄k(x) for all k = 1, 2, . . . , n. Now
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(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk

≥

(
r
1−µ′

R̄k
e
i2πµ′

R̄k
(x)

− 1

)wk

⇒ logr

(
1 +

n∏
k=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)

≥ logr

(
1 +

n∏
i=k

(
r1−µ′R̄ke

i2πµ′R̄k(x)
− 1
)w′

k

)

⇒ 1− logr

(
1 +

n∏
k=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)

≤ 1− logr

(
1 +

n∏
k=1

(
r
1−µ′

R̄k
ei2πµ′

R̄k(x) − 1

)wk
)
.

Similarly, it can be shown that

logr

(
1 +

n∏
k=1

(
r
ηR̄k

e
i2πηR̄k

(x)

− 1

)wk
)

≤ logr

(
1 +

n∏
k=1

(
r
η′
R̄k

e
i2πη′

R̄k (x) − 1

)wk
)
.

And

≥ logr

(
1 +

n∏
k=1

(
rν

′R̄ke
i2πν′

R̄k
(x)

− 1

)wi
)
.

Therefore,

CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
≤ CPFFWA

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
.

Now, the CPFFOWA operator will be introduced.
□

Definition 3.10. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a collection of

CPFNs. The function R̄n → R̄ such that,

CPFFOWA
(
R̄1, R̄2, . . . R̄n

)
=

n⊕
k=1

wkR̄R̄(k),

is defined as the CPFFOWA operator of dimension n with weight vector w = (w1, w2, . . . , wn)
t of

R̄k(k = 1, 2, . . . , n);wk ∈ [0, 1] and
∑n

k=1wk = 1, (R̄(1), R̄(2), . . . , R̄(n)) represents permutation of (k =
1, 2, . . . , n), such that for every k = 1, 2, . . . , n, R̄R̄(k−1) ≥ R̄R̄(k).

By using the above definition, we get the following theorem.

Theorem 3.11. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a collection of

CPFNs. Then, a function R̄n → R̄ containing a weight vector w = (w1, w2, . . . , wn)
t ;wk ∈ [0, 1] and∑n

k=1wk = 1.
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So,

CPFFOWA
(
R̄1, R̄2, . . . , R̄n

)
= ⊕n

wk=1
wkR̄R̄(k)

=


1− logr

(
1 +

∏n
k=1

(
r
1−µR̄R̄(k)e

i2πµR̄k
(x)

− 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
rηR̄(k)e

i2πηR̄k
(x)

− 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
r
νR̄k e

i2πνR̄k
(x) − 1

)wk
))

 ,

is defined as the CPFFOWA operator of dimension n with (R̄(1), R̄(2), . . . , R̄(n)) represents permutation
of (k = 1, 2, . . . , n), such that for every k = 1, 2, . . . , n, R̄R̄(k−1) ≥ R̄R̄(k).

Proof. By using the CPFFOWA operators, the following properties can be easily proved. □

Theorem 3.12. (Idempotent). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a

collection of identical CPFNs, i.e., R̄i = R̄ for all k. Then, CPFFOWA
(
R̄1, R̄2, . . . , R̄n

)
= R̄.

Theorem 3.13. (Boundedness). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be

a collection of CPFNs. Let R̄− = min
{
R̄1, R̄2, . . . , R̄n

}
and R̄+ = max

{
R̄1, R̄2, . . . , R̄n

}
. Then, R̄− ≤

CPFFOWA
(
R̄1, R̄2, . . . , R̄n

)
≤ R̄+.

Theorem 3.14. (Monotonicity). Let R̄k and R̄′
k(k = 1, 2, . . . , n) be any two sets of CPFNs, if R̄k ≤ R̄′

k for
all k. Then, CPFFOWA

(
R̄1, R̄2, . . . , R̄n

)
≤ CPFFOWA

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
.

Theorem 3.15. (Commutativity). Let R̄k and R̄′
k(k = 1, 2, . . . , n) be any two sets of CPFNs, then CPF-

FOWA
(
R̄1, R̄2, . . . , R̄n

)
= CPFFOWA

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
, where R̄′

k denotes the permutation of R̄k(k =
1, 2, . . . , n).

The weights associated with the CPFFWA operator in Definition 3.4 are in the most basic form of a CPF
value, but the weights associated with the CPFFOWG operator in Definition 3.10 are not so. Which tells
the weights associated with the CPFFWAO as well as the CPFFOWAO convey different viewpoints that are
conflicting with one another. However, both viewpoints are intended to be similar in a broad sense. Only to
overcome such a shortcoming, we are now introducing the CPFFHA operator.

Definition 3.16. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) is a collection of

CPFNs. Then, a function R̄n → R̄ such that,

CPFFHA
(
R̄1, R̄2, . . . , R̄n

)
= ⊕n

k=1w̄k
˙̄RR̄(k)

1− logr

(
1 +

∏n
k=1

(
r
1−µ̇R̄R̄(k)e

i2πµR̄k
(x)

− 1

)w̄k
)
,

logr

(
1 +

∏n
k=1

(
r
η̇R̄R̄(k)e

i2πηR̄k
(x)

− 1

)w̄k
)
,

logr

(
1 +

∏n
k=1

(
r
ν̇R̄R̄(k)e

i2πνR̄k
(x) − 1

)w̄k
))


,

is defined as the CPFFHA operator of dimension n with w̄ = (w̄1, w̄2, . . . , w̄n)
t as aggregation associated

weight vector,
∑n

k=1 w̄k = 1, w = (w1, w2, . . . , wn)
t as weight vector of R̄k(k = 1, 2, . . . , n), wk ∈ [0, 1] and
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∑n
k=1wk = 1. R̄R̄(k) represents kth weighted greatest CPF value for ṗk (ṗk = nwkpk, k = 1, 2, . . . , n), and n

being the balancing coefficient.

Remark 3.17. When w =
(
1
n ,

1
n , . . . ,

1
n

)t
, then R̄k = n × 1

n × R̄k = R̄k for k = 1, 2, . . . , n. When this
happens the CPFFHA operator becomes the CPFFOWA operator. CPFFHA operator becomes the CPFFWA
operator, if w̄ =

(
1
n ,

1
n , . . . ,

1
n

)t
. As a result, the CPFFWA and the CPFFOWA operators are particular

varieties of the CPFFHA operators. Therefore, the CPFFHA operator, which indicates the magnitude of the
stated disagreements and their structured situations, appears to be a generalization of both the CPFFWA and
the CPFFOWA operators.

3.2 Complex Picture Fuzzy Frank Geometric Aggregation Operators

Definition 3.18. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a collection of

CPFNs. Then a function pn → p such that

CPFFWG (R1, R2, . . . , Rn) =

n⊗
k=1

(Rk)
wk ,

is defined as the CPFFWG operator with w = (wk, wk, . . . , wk)
t as the weight vector of Rk(k = 1, 2, . . . , n),

wk ∈ [0, 1] and
∑n

k=1wk = 1.

As a result, the following consequential theorem is obtained.

Theorem 3.19. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a collection of

CPFNs, then by using CPFFWG operator, their aggregated value is also a CPFN, and

CPFFWG (R1, R2, . . . , Rn) =
n⊗

k=1

(Rk)
wk

=


logr

(
1 +

∏n
k=1

(
r
µRk

e
i2πµR̄k

(x)
−1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r1−ηRk

e
i2πηR̄k

(x)

− 1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r1−νRk

e
i2πνR̄k

(x)

− 1

)wk
)


.

Proof. This theorem can be proved by using the method of proof of Theorem 3.5. □

Example 3.20. For R̄1 =
(
0.5ei2π(0.5), 0.3ei2π(0.1), 0.1ei2π(0.4)

)
, R̄2 =

(
0.1ei2π(0.4), 0.5ei2π(0.4), 0.4ei2π(0.2)

)
, R̄3 =(

0.1ei2π(0.1), 0.1ei2π(0.2), 0.7ei2π(0.5)
)
, R̄4 =

(
0.6ei2π(0.2), 0.1ei2π(0.2), 0.3ei2π(0.3)

)
with weights = (0.2, 0.3, 0.1, 0.4)

and r = 2, step by step working of the CPFFWG operator is given as follows:

CPFFWG
(
R̄1, R̄2, . . . , R̄n

)
=


logr

(
1 +

∏n
k=1

(
rµRk

e
i2πµR̄k

(x)

− 1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r1−ηRk

e
i2πηR̄k

(x)

− 1

)wk
)

1− logr

(
1 +

∏n
k=1

(
r1−vRk

e
i2πvR̄k

(x)

− 1

)wk


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

log2


1 +

(
2(0.5)e

i2π(0.5)

−1

)0.2

+

(
2(0.1)e

i2π(0.4)

−1

)0.3

(
2(0.1)e

i2π(0.1)

−1

)0.1

+

(
2(0.6)e

i2π(0.2)

−1

)0.4



1− log2


1 +

(
2(0.3)e

i2π(0.1)

−1

)0.2

+

(
2(0.5)e

i2π(0.4)

−1

)0.3

(
2(0.1)e

i2π(0.2)

−1

)0.1

+

(
2(0.1)e

i2π(0.2)

−1

)0.4



1− log2


1 +

(
2(0.1)e

i2π(0.4)

−1

)0.2

+

(
2(0.4)e

i2π(0.2)

−1

)0.3

(
2(0.7)e

i2π(0.5)

−1

)0.1

+

(
2(0.3)e

i2π(0.3)

−1

)0.4




=
(
0.239ei2π(0.263), 0.272ei2π(0.221), 0.425ei2π(0.357)

)
.

The CPFFWG operator makes it simple to prove the following properties:

Theorem 3.21. (Idempotent). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be

identical CPFNs’ collection, i.e., for every k,Rk = R. So, CPFFWG (R1, R2, . . . , Rn) = R.

Theorem 3.22. (Boundedness). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n)

be CPFNs’ collection. Take R− = min{R1, R2, . . . , Rn} an R+ = max{R1, R2, . . . , Rn}. Then R− ≤
CPFFWG(R1, R2, . . . , Rn) ≤ R+.

Theorem 3.23. (Monotonicity Property). Let the sets Ri and R′
k(k = 1, 2, . . . , n) of CPFNs, if for every

k,Ri ≤ R′
k, we have CPFFWG (R1, R2, . . . , Rn) ≤ CPFFWG (R′

1, R
′
2, . . . , R

′
n).

At this point, CPFFOWG operator has been introduced.

Definition 3.24. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be CPFNs’ collec-

tion. The n-dimensional CPFFOWG operator takes the form of a function Rn → R such that,

CPFFOWG (R1, R2, . . . Rn) =

n⊗
k=1

(
Rρ(k)

)wk ,

where w = (w1, w2, . . . , wn)
t is a representation of weight vector for Rk(k = 1, 2, . . . , n), wk ∈ [0, 1];∑n

k=1wk = 1. Moreover, (ρ(1), ρ(2), . . . , ρ(n)) appear to be representation of permutation of (k = 1, 2, . . . , n),
such that for every k = 1, 2, . . . , n, Rρ(k−1) ≥ Rρ(k).

On the basis of Frank product operation on CPFN utilizing CPFFOWG operators, the following theorem
is constructed.

Theorem 3.25. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) is CPFNs’ collection.

The n-dimensional CPFFOWG operator takes the form of a function Rn → R. So,

CPFFOWG (R1, R2, . . . Rn) = ⊗n
k=1

(
Rρ(k)

)wk
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=


logr

(
1 +

∏n
k=1

(
r
µRρ(k)

ei2πµRk(x)

− 1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r
1−ηRρ(k) − 1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r
1−νRρ(k) − 1

)wk
)

 .

Here w = (w1, w2, . . . , wn)
t is weight vector satisfying wk ∈ [0, 1];

∑n
k=1wk = 1. Moreover, (ρ(1), ρ(2), . . . , ρ(n))

appear to be representation of permutation of (k = 1, 2, . . . , n), such that for every k = 1, 2, . . . , n,Rρ(k−1) ≥
Rρ(k).

The CPFFOWG operator can be used to investigate the properties provided below.

Theorem 3.26. (Idempotent). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a

collection of identical CPFNs, i.e., R̄k = R̄ for all k. Then, CPFFOWG
(
R̄1, R̄2, . . . , R̄n

)
= R̄.

Theorem 3.27. (Boundedness). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n)

be a collection of CPFN. Let R̄− = min{R̄1, R̄2, . . . , R̄n} an R̄+ = max{R̄1, R̄2, . . . , R̄n}. Then R̄− ≤
CPFFOWG(R̄1, R̄2, . . . , R̄n) ≤ R̄+.

Theorem 3.28. (Monotonicity). Let the sets R̄k and R̄′
k(k = 1, 2, . . . , n) of CPFNs, if for every k, R̄k ≤ R̄′

k,
then CFFFOWG

(
R̄1, R̄2, . . . , R̄n

)
≤ CPFFOWAG

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
.

Theorem 3.29. (Commutativity). Let the sets R̄k and R̄′
k(k = 1, 2, . . . , n) of CPFNs, then CPFFOWG(

R̄1, R̄2, . . . , R̄n

)
= CPFFOWG

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
, where R̄′

k denotes the permutation of R̄k(k = 1, 2, . . . , n).

The weights associated with the CPFFWG operator in Definition 3.18 are in the most basic form of a
PF value, but the weights associated with CPFFOWG operator in Definition 3.24 are in the real form of the
ordered locations of CPF values. The weights given in CPFFWG and CPFFOWG operators convey different
viewpoints that are conflicting with one another in this way. However, both viewpoints are intended to be
similar in a broad sense. Only to overcome such a shortcoming, we are now introducing CPFFHG operator.

Definition 3.30. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(where k varies from 1 to n ) be the

CPFNs’ collection. Then, a function R̄n → R̄ such that,

CPFFHG
(
R̄1, R̄2, . . . , R̄n

)
=

n⊗
k=1

(
R̄ρ(k)

)w̄k


logr

(
1 +

∏n
k=1

(
r
1−µ̇R̄ρ(k)

ei2πµρk
(x)

− 1

)w̄k
)
,

1− logr

(
1 +

∏n
k=1

(
r
1−η̇R̄ρ(k)

ei2πηρk
(x)

− 1

)w̄k
)
,

1− logr

(
1 +

∏n
k=1

(
r
1−νR̄ρ(k)ei2πνρk (x) − 1

)w̄k
)

 ,

is defined as the CPFFHG operator of dimension n with w̄ = (w̄1, w̄2, . . . , w̄n)
t as aggregation associated

weight vector,
∑n

k=1 w̄k = 1, w = (w1, w2, . . . , wn)
t as weight vector of R̄k(k = 1, 2, . . . , n), wk ∈ [0, 1] and∑n

k=1wk = 1. R̄R̄(k) represents kth weighted greatest CPF value for ṗk (ṗk = nwkpk, k = 1, 2, . . . , n), and n
being the balancing coefficient.
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Remark 3.31. When w =
(
1
n ,

1
n , . . . ,

1
n

)t
, then R̄k = n× 1

n×R̄k = R̄k for k = 1, 2, . . . , n. When this happens,
the CPFFHG operator becomes the CPFFOWG operator. The CPFFHG operator becomes the CPFFWG
operator, if w̄ =

(
1
n ,

1
n , . . . ,

1
n

)t
. As a result, the CPFFWG and the CPFFOWG operators are particular

varieties of the CPFFHG operators. Therefore, the CPFFHG operator, which indicates the magnitude of the
stated disagreements and their structured situations, appears to be a generalization of both the CPFFWG and
the CPFFOWG operators.

4 Model for the MADM Using Complex Picture Fuzzy Data

The purpose of this part is to discuss an effective strategy for solving the MADM process, as well as a method
that may be used to identify the attribute weights that are necessary.

4.1 An Overview of the DM Issue

An innovative method to MADM problems has been proposed in this part, in which we will use CPF
information along with manipulation of the CPFFWA and CPFFWG operators. For this purpose, let P =
{P1, P2, . . . , Pm} represent a discrete collection of m alternatives to be chosen and Q = {Q1, Q2, . . . , Qn}
represent an order of attributes to be evaluated. Also, the weight vector is w = {w1, w2, . . . , wn} related
to attributes Hj(j = 1, 2, . . . , n) where wk(k = 1, 2, 3, . . . , n) ∈ R such that wk > 0;

∑n
k=1wk = 1. We let

P = (πij)m×n = ((µij , ηij , vij))m×n as the CPF decision matrix, where πij is the possible value for which the
alternative Fi satisfies the attribute Hj with the condition µij + ηij + vij ≤ 1 and µij , ηij , vij ∈ [0, 1]. The
illustration of this algorithm has been given following:

4.2 Determination of the Attribute Weights

During the decision-making process, DM challenges inevitably include numerous attributes. They don’t have
to give each other the same amount of weight. Take, for example, a decision where, in one case, the product’s
price is more important than its functionality; in another, the product’s functionality may be more important
than its price, reliability, or other considerations. This means that while solving a problem, various attributes
play a role, each with its relevance. For DM to be very effective, selecting the appropriate attribute weights
is crucial. Following is the method that can be taken into account for computing the attributes’ weights
accurately.

For a CPFN, R̄ =
(
µR̄(x)e

i2πµR̄(x), ηR̄e
i2πηR̄(x), vR̄e

i2πvR̄(x)
)
, its hesitation degree has been given as:

τ(p) = 2−
(
µR̄e

i2πµR̄(x) + νR̄e
i2πνR̄(x)

)
.

Cases involving DM always require an algorithm which has a lesser hesitancy degree due to the fact
that attribute plays an important role during making process. Simply, we can say that an algorithm with
lesser hesitancy degree would be more accurate than the one having a greater hesitancy degree. As a result
the object would be more important when the hesitancy degree is lesser as compared to when hesitancy is
greater. Keeping this in consideration, the following hesitancy matrix R has been constructed for the given
alternatives

R =


τR̄11

τR̄12
· · · τR̄1n

τR̄21
τR̄22

· · · τR̄2n
...

...
. . .

...
τR̄m1

τR̄m2
· · · τR̄mn

 .
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Each τR̄pq
has been calculated by using hesitation function. Hence, the weight vector Ŵj is determined

as

Ŵj =
2−

(
1
m

∑m
i=1 τR̄ij

)
∑n

j=1

(
2−

(
1
m

∑m
i=1 τR̄ij

)) .

Algorithm

Following is a presentation of the proposed MADM problem using CPF data related to the proposed CPFFWA
and CPFFWG operators:

Step I: Construction of the CPF decision matrix P = (πij)m×n = ((µij , ηij , vij))m×n.

Step II: Transformation of the matrix P = (πij)m×n = ((µij , ηij , vij))m×n into a normalize PF matrix

P ′ =
(
π′
ij

)
m×n

=
((

µ′
ij , η

′
ij , v

′
ij

))
m×n

by Equation (1).

π′
ij =

{
(µij , ηij , vij) , if Hj a benefit attribute

(vij , ηij , µij) , if Hj a cost attribute
(1)

Step III: Determination of attribute weights of alternatives by using hesitation function, and the following

Ŵj =
2−

(
1
m

∑m
i=1 τR̄ij

)
∑n

j=1

(
2−

(
1
m

∑m
i=1 τR̄ij

)) .
Step IV: Calculation of the information σk, which is collective, for the alternative Ak with the aid of

following equation:

σf = CPFFWA
(
π′
f
′
′, π

′
f2f

, . . . , J ′
fn

)
=

n⊕
k=1

(wkπfk)

=

 1− logr

(
1 +

∏n
k=1

(
r1−µ′pfk − 1

)wk
)
, logr

(
1 +

∏n
k=1

(
rη

′pfk − 1
)wk

)
,

logr

(
1 +

∏n
k=1

(
rv

′pfk − 1
)wk

)  . (2)

And

σf = CPFFWG
(
πf1

′, πf2
′, . . . , π′

fn

)
=

n⊗
k=1

(γfk)
wk

=

 logr

(
1 +

∏n
k=1

(
rµ

′pfk − 1
)wk

)
, 1− logr

(
1 +

∏n
k=1

(
r1−η′pfk − 1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r1−v′pfk − 1

)wk

 . (3)

Step V: Usage of definition 2.3 to calculate the score value for each alternative.

Step VI: The optimal decision is to select Fk if ∆ (σf ) = maxl {∆(σl)}.
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Figure 2: Sequential representation of the algorithm.

5 Numerical Illustration

In order to show the potential assessment of commercialization with the aid of PF data, we are prepared to
draw a numerical problem in this part.

A BDGF is of great importance for companies since it regulates the rules under which data flows through
different streams and appropriate access is granted to the users. Most of the companies work very much
on improving their data assets but fail to understand that a robust data governance framework is needed
in which segregation of users’ access to sensitive data, access to the data within the organization among
stakeholders in hierarchical order is of primary importance, and the responsibilities of the employees are well
organized. Failing to have this type of robust framework can lead to uncertain results for the company, hence
making the company’s survival vulnerable.

Suppose a renowned international organization has come up with the idea of utilizing a handsome amount
from its net annual profit in order to improve the company’s reputation. Due to increasing risks and mal-
functioning in their data assets, the company decides to use the amount in an optimized implementation of
its BDGF.

BDGF covers more than one area to be focused on, and also cost attributes and benefit attributes
spread uncertainty among decision makers. This brings them to think: In what order the BDGF should be
implemented? What area of the BDGF should be focused on very first, followed by the next and so on. Hence
an MADM problem arises to be solved for true implementation of the framework so that the company could
get the most benefit and make its data assets more profitable. Following are the alternative choices/focus
areas of the BDGF which have gained managing board’s attention:

1. A1 : Policy and Standards

2. A2 : Data Quality

3. A3 : Data Privacy and Security

4. A4 : Architecture
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Table 2: Decision matrix containing information about alternatives and attributes.

B1 B2

A1

(
0.5ei2π(0.5), 0.3ei2π(0.1)0.2ei2π(0.4)

)
A1

(
0.1ei2π(0.4), 0.5ei2π(0.4)0.4ei2π(0.2)

)
A2

(
0.6ei2π(0.2), 0.2ei2π(0.3)0.1ei2π(0.4)

)
A2

(
0.2ei2π(0.6), 0.4ei2π(0.2)0.3ei2π(0.1)

)
A3

(
0.5ei2π(0.5), 0.3ei2π(0.1)0.2ei2π(0.4)

)
A3

(
0.3ei2π(0.3), 0.3ei2π(0.4)0.2ei2π(0.1)

)
A4

(
0.3ei2π(0.6), 0.1ei2π(0.1)0.3ei2π(0.2)

)
A4

(
0.4ei2π(0.2), 0.2ei2π(0.4)0.3ei2π(0.4)

)
A5

(
0.2ei2π(0.7), 0.4ei2π(0.1)0.4ei2π(0.1)

)
A5

(
0.5ei2π(0.3), 0.1ei2π(0.1)0.1ei2π(0.6)

)
B3 B4

A1

(
0.7ei2π(0.5), 0.1ei2π(0.2)0.1ei2π(0.1)

)
A1

(
0.6ei2π0.2, 0.1ei2π(0.2)0.3ei2π(0.3)

)
A2

(
0.4ei2π(0.1), 0.1ei2π(0.1)0.1ei2π(0.7)

)
A2

(
0.2ei2π0.3, 0.6ei2π(0.3)0.1ei2π(0.3)

)
A3

(
0.6ei2π(0.4), 0.1ei2π(0.5)0.1ei2π(0.1)

)
A3 0.5ei2π(0.1), 0.2ei2π0.1

(
0.2ei2π(0.1)

)
A4

(
0.5ei2π(0.5), 0.2ei2π(0.1)0.2ei2π(0.2)

)
A4

(
0.4ei2π(0.4), 0.3ei2π(0.4)0.2ei2π(0.1)

)
A5

(
0.8ei2π(0.2), 0.1ei2π(0.2)0.1ei2π(0.2)

)
A5

(
0.5ei2π(0.2), 0.4ei2π(0.2)0.1ei2π(0.1)

)
5. A5 : Data Warehouse and Business Intelligence (BI)

As it is difficult to choose amongst the options because they each meet distinct criteria, the problem of
making a decision arises. Keeping this in view, the governing board has therefore established the following
noteworthy attributes:

1. B1 : Profit enhancement.

2. B2 : Benefits of the clients.

3. B3 : Maintenance cost.

4. B4 : Mangement support.

Given that each alternative claims to maximize a distinct attribute, making a decision in this situation is
challenging. A1, A2, A3, A4 and A5 are focus areas of the BDGF.Moreover, B1, B2, B4 are related to benefit
attributes, and B3 is related to cost attributes. Let P = (πij)m×n = ((µij , ηij , vij))m×n, a CPF matrix, be
the representation of the alternative Ai with respect to the attributes Bi. Table 2 shows the assessment of
the alternatives.

We use the CPFFWA and the CPFFWG operators to create an MADM theory with CPF data for the
sake of choosing the best alternative Ai(i = 1, 2, 3, 4, 5) by the following way:

Step I: The CPF decision matrix P = (πij)m×n = ((µij , ηij , vij))m×n has been created as follows:

Step II: By a careful exploitation of Equation (1), the CPF matrix of table 1 has been normalized as

P ′ =
(
π′
ij
′
)
m×n

=
((

µ′
ij , η

′
ij , v

′
ij

))
m×n

given as follows:

Step III: Now we determine the weights of attributes by using the hesitancy function and

Ŵj =
2−

(
1
m

∑m
i=1 τR̄ij

)
∑n

j=1

(
2−

(
1
m

∑m
i=1 τR̄ij

)) .
The resultant attributes weights are obtained:

Ŵ = (0.268012, 0.259366, 0.242075, 0.230548).
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Table 3: Transformed decision matrix.

B1 B1

A1

(
0.5ei2π(0.5), 0.3ei2π(0.1), 0.2ei2π(0.4)

)
A1

(
0.1ei2π(0.4), 0.5ei2π(0.4), 0.4ei2π(0.2)

)
A2

(
0.6ei2π(0.2), 0.2ei2π(0.3), 0.1ei2π(0.4)

)
A2

(
0.2ei2π(0.6), 0.4ei2π(0.2), 0.3ei2π(0.1)

)
A3

(
0.5ei2π(0.5), 0.3ei2π(0.1), 0.2ei2π(0.4)

)
A3

(
0.3ei2π(0.3), 0.3ei2π(0.4), 0.2ei2π(0.1)

)
A4

(
0.3ei2π(0.6), 0.1ei2π(0.1), 0.3ei2π(0.2)

)
A4

(
0.4ei2π(0.2), 0.2ei2π(0.4), 0.3ei2π(0.4)

)
A5

(
0.2ei2π(0.7), 0.4ei2π(0.1), 0.4ei2π(0.1)

)
A5

(
0.5ei2π(0.3), 0.1ei2π(0.1), 0.1ei2π(0.6)

)
B3 B4

A1

(
0.1ei2π(0.1), 0.1ei2π(0.2), 0.7ei2π(0.5)

)
A1

(
0.6ei2π(0.2), 0.1ei2π(0.2), 0.3ei2π(0.3)

)
A2

(
0.1ei2π(0.7), 0.1ei2π(0.1), 0.4ei2π(0.1)

)
A2

(
0.2ei2π(0.3), 0.6ei2π(0.3), 0.1ei2π(0.3)

)
A3

(
0.1ei2π(0.1), 0.2ei2π(0.5), 0.6ei2π(0.4)

)
A3

(
0.5ei2π(0.1), 0.2ei2π(0.1), 0.2ei2π(0.1)

)
A4

(
0.2ei2π(0.2), 0.2ei2π(0.1), 0.5ei2π(0.5)

)
A4

(
0.4ei2π(0.4), 0.3ei2π(0.4), 0.2ei2π(0.1)

)
A5

(
0.1ei2π(0.2), 0.1ei2π(0.2), 0.8ei2π(0.2)

)
A5

(
0.5ei2π(0.2), 0.4ei2π(0.2), 0.1ei2π(0.1)

)
Table 4: Aggregated vales.

CPFFWA CPFFWG

σ1
(
0.35ei2π(0.32), 0.20ei2π(0.20), 0.36ei2π(0.33)

)
σ1

(
0.23ei2π(0.26), 0.27ei2π(0.23), 0.42ei2π(0.35)

)
σ2

(
0.30ei2π(0.48), 0.26ei2π(0.20), 0.18ei2π(0.18)

)
σ2

(
0.23ei2π(0.40), 0.34ei2π(0.22), 0.23ei2π(0.23)

)
σ3

(
0.36ei2π(0.27), 0.24ei2π(0.21), 0.26ei2π(0.20)

)
σ3

(
0.30ei2π(0.20), 0.25ei2π(0.29), 0.31ei2π(0.26)

)
σ4

(
0.32ei2π(0.37), 0.18ei2π(0.20), 0.31ei2π(0.25)

)
σ4

(
0.31ei2π(0.31), 0.19ei2π(0.25), 0.33ei2π(0.31)

)
σ5

(
0.34ei2π(0.39), 0.20ei2π(0.13)0.24ei2π(0.19)

)
σ5

(
0.27ei2π(0.31), 0.26ei2π(0.14)0.42ei2π(0.28)

)
It is worth noting that

∑n
j=1 Ŵj = 1

Step IV: By taking r = 2, and using the CPFFWA and the CPFFWG operators, the collective values
σf (f = 1, 2, 3, 4, 5) alternatives Ai ’s have been obtained as follows:

Step V: The definition 2.3 has been used to compute score values ∆ (σi) (i = 1, 2, 3, 4, 5) of the overall
CPFNσi(1, 2, 3, 4, 5) as follows:

Note 3: There may occur many instances, although the probability is somewhat very low, that the score
values of two or more alternatives becomes equal. In that case the order of the alternatives is decided by
their accuracy values.

Step VI: Finally, we can say that the company should select A2 as the most preferable alternative in both
the cases. So the enterprise should: first consider focusing on Data Quality, then on Data Warehouse and
Business Intelligence (BI), followed by Data Privacy and Security, Architecture, and Policy and Standards

5.1 Analysis of Changing the Parameter r on the Outcome of Decision-making:

Various values, for the sake of ranking our considered alternatives, of operational parameter r could be applied
in our proposed method. Keeping this in consideration, we set numerous r values for classifying the innovative

Table 5: Order of alternatives for implementation.

Operators ∆ (σ1) ∆ (σ2) ∆ (σ3) ∆ (σ4) ∆ (σ5)
Alternatives’

Ranking/Order

CPFFWA 0.5096 0.6018 0.5540 0.5445 0.5851 A2 > A5 > A3 > A4 > A1

CPFFWG 0.4300 0.5413 0.4820 0.4963 0.4701 A2 > A5 > A3 > A4 > A1
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Figure 3: Score values obtained by CPFFWA and CPFFWG operators.

Table 6: Behavior of alternative with changing values of r in the CPFFWA operator.

r ∆(σ1) ∆ (σ2) ∆ (σ3) ∆ (σ4) ∆ (σ5) Order of ranking
Optimal

alternative

2 0.4958 0.6033 0.5428 0.5330 0.5741 A2 > A5 > A3 > A4 > A1 A2

3 06819 0.7497 0.7115 0.7053 0.7313 A2 > A5 > A3 > A4 > A1 A2

4 0.7495 0.8016 0.7714 0.7665 0.7870 A2 > A5 > A3 > A4 > A1 A2

10 0.8482 0.8805 0.8623 0.8594 0.8718 A2 > A5 > A3 > A4 > A1 A2

30 0.8972 0.9191 0.9068 0.9048 0.9132 A2 > A5 > A3 > A4 > A1 A2

numerical MADM example in order to investigate the adaptability and sensitivity of the parameter r.

From table 6 and figure 4, it is evident that if 2 ≤ r ≤ 30 although the obtained aggregated outcomes
of the alternatives Ai(i = 1, 2, 3, 4, 5) are different yet the order of ranking does not change. The order of
ranking of the alternatives is in this case is depicted to be A2 > A5 > A3 > A4 > A1. Moreover, the figure
3 depicts that the value of alternatives keeps on becoming refined as the value of parameter r increases. For
example, the value of alterative 2 starts from 0.6033 and reaches 0.9191 as the value of r reaches 30, hence
showing a refined behavior. The similar trend can also be observed for the remaining alternative from the
figure 3.

From table 7 and figure 5, it is evident that if ≤ r ≤ 30, altought the obtained aggregated outcomes of
the alternatives Ai(i = 1, 2, 3, 4, 5) are different yet the order of ranking does not change. The order of raking

Table 7: Behavior of alternative with changing values of r in the CPFFWG operator.

r ∆(σ1) ∆ (σ2) ∆ (σ3) ∆ (σ4) ∆ (σ5) Order of ranking
Optimal

alternative

2 0.4300 0.5413 0.4820 0.4963 0.4701 A2 > A5 > A3 > A4 > A1 A2

3 0.2713 0.3415 0.3041 0.3131 0.3257 A2 > A5 > A3 > A4 > A1 A2

4 0.2150 0.2706 0.2410 0.2481 0.2350 A2 > A5 > A3 > A4 > A1 A2

10 0.1294 0.1629 0.1451 0.1494 0.1415 A2 > A5 > A3 > A4 > A1 A2

30 0.0876 0.1103 0.0982 0.1011 0.0958 A2 > A5 > A3 > A4 > A1 A2
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Figure 4: Departure of value of alternatives from their initial values to the finest value as r increases.

Figure 5: The value of alternatives keeps on becoming refined as the value of parameter r increases.

of the alternatives is in this case is depicted to be A4 > A3 > A5 > A1 > A2. It is to be noted that although
order of ranking of the alternatives are different, yet the best alternative is the same i.e., A2. Moreover, the
figure 5 depicts that the value of alternatives keeps on becoming refined as the value of parameter r increases.
For example, the value of alterative 2 starts from 0.5413 and reaches 0.1103 - depicting the maximum refining-
as the value of r reaches 50, hence showing a refined behavior. The similar trend can also be observed for
the remaining alternative from the figure 5.

Generally, we can say that our proposed method has enough flexibility and accessibility which clearly
allows decision makers to take the value of parameters based upon their choice.

It should be noted that CPFFWG operator has shown more flexible behavior than CPFFWA operator in
our proposed MADM method by giving more refinement in the score values of the alternatives. Contrary to
CPFFWG, the CPFFWA does not show that much flexibility. Therefore, it can be concluded that CPFFWG
operator has responded more to variation in values of r than CPFFWA in this MADM problem and becomes
more important for smoothly solving this type of MADM problem while keeping variations in values of r
according to the decision maker’s choice.
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Table 8: Comparison of our suggested operators.

Aggregation
Operators Score values Ranking/Order

A1 A2 A3 A4 A5

Current work 0.4958 0.6033 0.5428 05330 0.5741 A2 > A5 > A3 > A4 > A1

Current work 0.5494 0.6396 0.5791 0.5744 0.6018 A2 > A5 > A3 > A4 > A1

CPFHWA[64] -0.4151 -0.4934 -0.3868 -0.3376 -04312 A2 > A5 > A3 > A4 > A1

CPFHWG[64] -0.4969 -0.3737 -0.3545 -0.3174 -0.479 A2 > A5 > A3 > A4 > A1

PFHWA[62] 0.5029 0.5640 0.5546 0.5085 0.5519 A2 > A5 > A3 > A4 > A1

PFHWG[62] 0.4002 0.4956 0.4865 0.4892 0.4192 A2 > A5 > A3 > A4 > A1

CIFWA[15] 0.36284 0.4516 0.4371 0.4216 0.4501 A2 > A5 > A3 > A4 > A1

6 Comparative Studies

We contrast our suggested Frank aggregation operators with other current, well-known aggregation operators
in the CPF context to ensure their usefulness and to explore their merits. Table 3 presents the comparison
outcomes.

6.1 Comparison with Picture Fuzzy (PF) Operators:

We contrast our suggested approach with PFSs operators. When compared to the PFHWG and PFHWA
operators given by Wei [62], we can see that in the presence of parameter r they appear to be mere particular
incidences of our suggested operators. Moreover, these operators also suffer from the absence of a periodicity
function due to which they just become very particular cases of our suggested operators when periodicity
functions are taken to be zero. Furthermore owing to the fact the order of alternatives (sequence of im-
plementation of the BDGF) remains unaltered, our approach becomes more consistent. These observations
incline us to state that our newly established techniques are therefore more broadly applicable.

6.2 Comparison with CIF Operators:

We compare the operators of CIFSs with our proposed method. In contrast to the CIFWA operators [15],
we can observe that they seem to be just specific instances of our proposed operators when parameter r is
present. Moreover, these operators lack a hesitation function, which makes them special instances of our
proposed operators when the hesitancy functions are assumed to be zero. Furthermore, our method becomes
more consistent because the alternatives’ order (sequence of implementation of the BDGF doesn’t change.
These findings lead us to the following conclusion: When compared to CIF operators, our recently developed
methods are therefore more widely applicable.

6.3 Comparison with CPF Operators:

We contrast our suggested approach with CPFSs operators. When compared to the CPFHWA and CPFHWG
operators [64] we can see that the ranking of the alternatives does not change. The score values obtained
by these operators are compared with our suggested operators and are shown in Table 8, the ranking order
(sequence of implementation of the BDGF has been shown in Table 9.

Additionally, our observation is also that some AOs [65] and [56] are not capable of dealing with our
decision matrix. Our suggested operators, which are based on the t-norm and t-conorm of Frank, are more
sophisticated and may take into account the link between different arguments. Our suggested operators also
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Table 9: Comparison of our suggested operators.

Aggregation Operators Framework Ranking/Order

CPFFWA (our proposed) CPFSs A2 > A5 > A3 > A4 > A1

CPFFWG (our proposed) CPFSs A2 > A5 > A3 > A4 > A1

CPFHWA[64] CPFSs A2 > A5 > A3 > A4 > A1

CPFHWF[64] CPFSs A2 > A5 > A3 > A4 > A1

CIFWA[15] CIFSS A2 > A5 > A3 > A4 > A1

CPyFWA[65] CPyFs Failed
CIVFWA[56] CIVFSs Failed
PFHWA[62] PFSs A2 > A5 > A3 > A4 > A1

PFHWG[62] PFSs A2 > A5 > A3 > A4 > A1

display Lukasiewicz sum and product as the parameter gets closer to infinity. In light of the various values of
r, we have come to the conclusion that practically all of the arithmetic and geometric aggregation operations
related to CPFNs are, in fact, a part of CPF Frank aggregating operator.

Figure 6: comparison with CPFHWA and CPHWG operators.

7 Conclusion

In conclusion, our study has developed a novel approach, CPFSs, which extends standard PFSs and IFSs. The
study concentrated on the MADM problems, demonstrating the versatility and usefulness of CPFSs through
the use of multiple aggregation approaches. Our research revealed compelling findings, demonstrating the
stability and superiority of complicated CPFFA operators. Specifically, the use of the CPFFWA, CPFFWG,
CPFFHA, and CPFFOWA operators has enhanced the applicability of CPFSs for MADM problems. In
aggregating complex judgment criteria, Frank weighted geometric performed admirably. The methodological
approach, which included Frank techniques for aggregation, gave a methodical framework for addressing
MADM problems more rigorously than in the frameworks of PFSs, IFSs, CIFS etc. This research article has
enabled decision makers to make more sound and appealing decisions for their maximum benefit. Despite
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these encouraging outcomes, it is critical to recognize some limits. The study concentrated on a specific
set of aggregation approaches and may not cover the complete range of options. The use of CPFSs in real-
world applications necessitates additional validation and testing. To address the aforementioned limitations
and extend the impact of our findings, future research directions should explore the following: Investigate
extensions of CPFSs, such as complex q-rung picture fuzzy sets, to enhance the scope and applicability of the
proposed model. Extend the application of CPFSs to various decision-making techniques beyond MADM,
including but not limited to COPRAS [66], and VIKOR[67]. Explore and develop additional complex picture
fuzzy aggregation operators utilizing different t-norms and t-conorms to enhance the flexibility and robustness
of the proposed model. Conduct extensive empirical studies to validate the proposed CPFS-based model in
diverse real-world decision-making scenarios, ensuring their practical relevance and reliability. Our method
also finds its applications in some notable problems such as plastic waste management [68], electric vehicle
charging station site selection problems[69], and bio-medical waste management[70] etc. By focusing on
the results obtained and providing a detailed methodological overview, we aim to offer a comprehensive
understanding of the capabilities and limitations of CPFSs, facilitating their practical adoption in decision-
making processes.
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Abstract. In this paper, the notion of the commutator of elements of a Hilbert algebra are introduced and some
properties are given. The notions of involution element and Engel element in Hilbert algebras are introduced.
Many different characterizations of them are given. Then, left (right) k-Engel elements as a natural generalization
of commutators are introduced, and we discuss Engel elements, which are defined by left and right commutators.
Finally, we will also study the relationships between these elements.
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1 Introduction

Hilbert algebras are important tools for certain investigations in algebraic logic, since they can be considered
as fragments of any propositional logic containing a logical connective implication and the constant 1 which is
considered as the logical value true. Following the introduction of Hilbert algebras by L. Henkin in the early
50-ties and A. Diego [1], the algebra and related concepts were developed by D. Busneag [2]. Y.B. Jun gave
characterizations of deductive systems in Hilbert algebras [3], introduced the notion of commutative Hilbert
algebras and gave some characterizations of a commutative Hilbert algebra.
A. Diego [1] proved that Hilbert algebras form a variety that is locally finite. They were studied from various
points of view. Concerning congruence properties it is shown in [4] that Hilbert algebras form a congruence
distributive variety the congruences which are in a one to one correspondence with ideals [5].
The present author introduced the commutator of two elements in a BCI-algebra, and used this notion to
define a solvable BCI-algebra and considered solvable BCI-algebras using commutators. Then we gave a
new definition for solvability, nilpotency, centralizer and pseudo-center in a BCI-algebra and considered their
properties (see [6]).
In this paper, we present a definition for the notion of Engel elements in Hilbert algebras based on commuta-
tors. We define also the notions of left k-Engel elements and right k-Engel elements as a natural generalization
of commutators in Hilbert algebra, give several characterizations of them and prove that a Hilbert algebra
is commutative if and only if 1 is only commutator of it. So, the class of commutative Hilbert algebras and
1-Engel BCI-algebras are equal. One of the most important concepts in the study of groups is the notion of
nilpotency. Finally, we present a definition for the involution elements in Hilbert algebras. We give several
characterizations of them and we illustrate also these notions with some examples.
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2 Preliminaries

We include some elementary aspects of Hilbert algebras that are necessary for this paper, and for more details
we refer to [1–5, 7].
By a Hilbert algebra, we main an algebra (H,→, 1) of type (2, 0), where H is a non-empty set, → is a binary
operation on H, 1 ∈ H is an element such that the following three axioms are satisfied for every x, y, z ∈ H:
(H1) x → (y → x) = 1,
(H2) (x → (y → z)) → ((x → y) → (x → z)) = 1,
(H3) if x → y = y → x = 1, then x = y.
In a Hilbert algebra H, the following properties hold:
(P1) x → 1 = 1, 1 → x = x and x → x = 1,
(P2) x → (y → z) = (x → y) → (x → z),
(P3) x → (y → z) = y → (x → z)
If H is a Hilbert algebra, then the relation x ≤ y iff x → y = 1 is a partial order on H, called the natural
ordering on H. With respect to this ordering 1 is the greatest element of H and the following property is
satisfied.
(P4) x ≤ y implies z → x ≤ z → y and y → z ≤ x → z.
For any x and y in a Hilbert algebra H, define x ∨ y as (y → x) → x. A Hilbert algebra H is said to be
commutative, if for all x, y ∈ H,

(y → x) → x = (x → y) → y i.e., x ∨ y = y ∨ x.

Note that x∨y is the least upper bound of x and y, hence each commutative Hilbert algebra H is a semilattice
with respect to ∨ (see [2]) and hence ∨ is commutative and associative. A non empety subset S of a Hilbert
algebra H is called a subalgebra of H, if x → y ∈ S, whenever x, y ∈ S. A bounded Hilbert algebra is a
Hilbert algebra H with an element 0 ∈ H such that 0 → x = 1, for every x ∈ H. In a bounded Hilbert
algebra H we define a unary operation ∗ as x∗ = x → 0, for each x ∈ H.
A Hilbert algebra is prelinear if (x → y) ∨ (y → x) = 1, for all x, y ∈ H. We say that an element x of H is
minimal if y ≤ x (i.e., y → x = 1) implies x = y, for any y ∈ H.

Example 2.1. [1] It is of great importance that every partially ordered set (P,→, 1) with the greatest element
1 can be regarded as a Hilbert algebra, namely, if for any x, y ∈ P we define:

x → y =

{
1 if x ≤ y

y otherwise.

then (P, →, 1) is a Hilbert algebra the natural ordering on which coincides with the relation ≤.

Lemma 2.2. [8] If H is a bounded Hilbert algebra and x, y ∈ H, then
i) 1∗ = 0 and 0∗ = 1,
ii) x ≤ x∗∗,
iii) x∗∗∗ = x∗,
iv) x → y∗ = y → x∗,
v) if x ≤ y, then y∗ ≤ x∗.

From now on, (H,→, 1) or simply H is a Hilbert algebra, unless otherwise specified.

3 Commutators of Two Elements

In this section, we introduce commutators of two elements of a Hilbert algebra and investigate some of their
properties.
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Definition 3.1. For elements x and y of a Hilbert algebra H, we define the commutator of x and y by
(y ∨ x) → (x ∨ y) denoted by [x, y], Namely,

[x, y] = (y ∨ x) → (x ∨ y) = ((x → y) → y) → ((y → x) → x)

For every x ∈ H, we obtain [x, x] = (x ∨ x) → (x ∨ x) = x → x = 1. Also, since 1 is the greatest element
of H, [1, x] = (x∨1) → (1∨x) = 1 → 1 = 1. Similarity [x, 1] = 1. The set of all the commutators of elements
of H is denoted by Com(H) or K(H). Obviously, 1 ∈ K(H).

Example 3.2. Let H = {0, a, b, c, 1}, with 0 < a, b < c < 1, and a, b are incompatible, be a Hilbert algebra
in which → operation is defined by the left table and the commutators of elements of H are calculation in
the right table

→ 0 a b c 1

0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

[, ] 0 a b c 1

0 1 1 1 1 1
a 1 1 1 1 1
b 1 1 1 1 1
c c c c 1 1
1 1 1 1 1 1

Lemma 3.3. For any x, y, z ∈ H, z → [x, y] = [z → x, z → y].

Proof.

[z → x, z → y] =(((z → x) → (z → y)) → (z → y))

→(((z → y) → (z → x)) → (z → x))

=((z → (x → y)) → (z → y)) → ((z → (y → x)) → (z → x))

=(z → ((x → y) → y)) → (z → ((y → x) → x))

=z → (((x → y) → y) → ((y → x) → x))

=z → [x, y]

In this proof we use (P2) in Lines 3, 4 , 5. □
In the following theorem, we will show that [x, y] is an upper bound for x and y, but in Example 4.5 we show
that it is not a supremum of x, y, in general.

Theorem 3.4. For all x, y ∈ H, we have
i) x ≤ [x, y] and y ≤ [x, y],
ii) if x ≤ y, then [x, y] = 1,
iii) [x → y, x] = [x, y → x] = 1,
iv) x → y ≤ [x, y],
v) [x, y] = y if and only if y = 1.

Proof. i) As x → [x, y] = [x → x, x → y] = [1, x → y] = 1, then x ≤ [x, y]. Also y → [x, y] = [y → x, y →
y] = [y → x, 1] = 1, then y ≤ [x, y].
ii) Let x ≤ y, then x → y = 1. By use definition of [x, y] and property P3, we obtain

[x, y] =((x → y) → y) → ((y → x) → x)

=(1 → y) → ((y → x) → x)

=y → ((y → x) → x)

=(y → x) → (y → x) = 1.
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iii)

[x → y, x] =(((x → y) → x) → x) → ((x → (x → y)) → (x → y))

=(((x → y) → x) → x) → (((x → x) → (x → y)) → (x → y))

=(((x → y) → x) → x) → (((1 → (x → y)) → (x → y))

=(((x → y) → x) → x) → ((x → y) → (x → y))

=(((x → y) → x) → x) → 1 = 1.

Since x ≤ y → x, by (ii), we have [x, y → x] = 1.
iv)

(x → y) → [x, y] =(x → y) → (((x → y) → y) → ((y → x) → x))

=((x → y) → y) → ((x → y) → ((y → x) → x))

=(x → y) → (y → ((y → x) → x))

=(x → y) → ((y → x) → (y → x))

=(x → y) → 1 = 1.

v) Let [x, y] = y. Then y = (y∨x) → (x∨y) ≥ (x∨y) ≥ y. Hence x∨y = y. Therefore x → y = x → (x∨y) = 1,
because x ≤ (x ∨ y). So x → y = 1 and hence x ≤ y and by (ii), we obtain [x, y] = 1. Thus y = 1.
Conversely, if y = 1, then [x, y] = [x, 1] = 1. □
By Example 3.2 we see that [x, y] ̸= [y, x], in general. Also, in this example we see [c, b] = c, so [x, y] = x it
cannot be said that x = 1, in general.

Theorem 3.5. If H is a bounded Hilbert algebra and x, y ∈ H, then
i) [x, 0] = x∗∗ → x,
ii) [0, x] = 1,
iii) [x∗, x] = 1.

Proof. i)

[x, 0] =((x → 0) → 0) → ((0 → x) → x)

=(x∗ → 0) → (1 → x)

=x∗∗ → x.

ii) Since 0 ≤ x for every x ∈ H, by Theorem 3.4 part (ii), we have [0, x] = 1.
iii)

[x∗, x] =((x∗ → x) → x) → ((x → x∗) → x∗)

=((x∗ → x) → x) → ((x → (x → 0)) → x∗)

=((x∗ → x) → x) → (((x → x) → (x → 0)) → x∗)

=((x∗ → x) → x) → ((1 → x∗) → x∗)

=((x∗ → x) → x) → (x∗ → x∗)

=((x∗ → x) → x) → 1

=1.

□
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Theorem 3.6. H is commutative if and only if [x, y] = 1, for every x, y ∈ H.

Proof. Let H be a commutative Hilbert algebra. Then for every x, y ∈ H, y ∨ x = x ∨ y. Hence [x, y] =
(y ∨ x) → (x ∨ y) = 1.
Conversely, let for every x, y ∈ H, we have [x, y] = [y, x] = 1. Form [x, y] = (y ∨ x) → (x∨ y) = 1, we deduce
y∨x ≤ x∨ y. But [y, x] = (x∨ y) → (y∨x) = 1, so x∨ y ≤ y∨x. Therefore x∨ y = y∨x, for every x, y ∈ H.
Hence H is a commutative Hilbert algebra. □

Theorem 3.7. Let H be a finite Hilbert algebra of order n with n ≥ 2 and x, y ∈ H. Then [x, y] is not a
minimal element of H.

Proof. Suppose that there exist x and y in H such that [x, y] is a minimal element of H. Then [x, y] = y, as
y ≤ [x, y]. Hence by Theorem 3.4 (v) we deduce y = 1. Whence [x, y] = [x, 1] = 1. This is a contradiction.
Because, if 1 is a minimal element of H, then from x ≤ 1 we deduce H = {1}. □

4 Engel Elements in Hilbert Algebras

In this section, we introduce the notion of the Engel element of n elements of a Hilbert algebra.
Let x1, ..., xn be elements of H. For all positive integer n we define inductively [x1, ..., xn] as follows: [x1] = x1
and

[x1, ..., xn] = ([x1, ..., xn−1] ∨ xn) → (xn ∨ [x1, ..., xn−1])

If x2 = x3 = ... = xn, then we denote [x1, ..., xn] by [x1, nx2]. Note that [x1] = [x1, 0x2] = x1.

Definition 4.1. Suppose that x, y ∈ H. For a non-negative integer n we define inductively the n-Engel left
commutator [x, ny] as follows:

[x, 0y] = x, ..., [x, ny] = [[x, n−1y], y]

Also the n-Engel right commutator [nx, y] of the pair (x, y) is defined by induction as follows:

[0x, y] = y, ..., [nx, y] = [x, [n−1x, y]].

Especially, [x, 1y] = [1x, y] = [x, y] = (y ∨ x) → (x ∨ y).

For a positive integer k, an element x of H is called a right k-Engel element of H whenever [x, ky] = 1,
for all y ∈ H. An element x of H is called a right Engel element if it is right k-Engel for some non-negative
integer k.
We denote by R(H) and Rk(H) the set of right Engel elements and right k-Engel elements, respectively. So

Rk(H) = {x ∈ H : [x, ky] = 1, ∀y ∈ H}.

and

R(H) =
∪
k∈N

Rk(H).

Notice that the variable element y appears on the right of bracket and if n can be chosen independently of
y, then x is a right n-Engel element of H. Left Engel elements are defined in a similar way.
For a positive integer k, an element x of H is called a left k-Engel element of H whenever [y, kx] = 1 for all
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y ∈ H. Also x is said to be a left Engel element of H if it is left k-Engel for some non-negative integer k.
We denote by L(H) and Lk(H) the set of left Engel elements and left k-Engel elements, respectively.

Lk(H) = {x ∈ H : [y, kx] = 1, ∀y ∈ H}.

and

L(H) =
∪
k∈N

Lk(H).

Where the variable y is on the left of bracket. Also, since [x, 1] = [1, x] = 1, for every x ∈ H, 1 ∈ R(H)∩L(H).
An element x of H that is both the left and right Engel element is said to be an Engel element.
The set of all Engel elements of H is denoted by En(H). Obviously, 1 is an Engel element in any Hilbert
algebra. Since x, y ≤ [x, y], for every x, y ∈ H,

[x, 0y] = x ≤ [x, 1y] = [x, y] ≤ [x, 2y] = [[x, y], y] ≤ [x, 3y] = [[x, 2y], y] ≤ ...

Also

[0x, y] = y ≤ [1x, y] = [x, y] ≤ [2x, y] = [x, [x, y]] ≤ [3x, y] = [x, [2x, y]] ≤ ...

According to the above inequalities, we immediately have the following theorems.

Theorem 4.2. Let x, y ∈ H and m,n be non-negative integers. If m ≤ n, then [x,m y] ≤ [x,n y] and
[mx, y] ≤ [nx, y].

Theorem 4.3.

R1(H) ⊆ R2(H) ⊆ R3(H) ⊆ .... ⊆ R(H).

L1(H) ⊆ L2(H) ⊆ L3(H) ⊆ .... ⊆ L(H).

Example 4.4. By simple calculation, for Hilbert algebra H in Example 3.2 we see that
[c, 0a] = c, [c, 1a] = [c, a] = c, [c, 2a] = [[c, a], a] = [c, a] = c. So [c, na] = c for n ≥ 2, also [0c, a] = a, [1c, a] =
c, [2c, a] = [c, [c, a]] = [c, c] = 1, so [nc, a] = 1, for any n ≥ 2.

R1(H) = {x ∈ H : [x, y] = 1, ∀y ∈ H} = {0, a, b, 1}.

R2(H) = {x ∈ H : [x, 2y] = 1, ∀y ∈ H} = {0, a, b, 1}.

Also, for every n ≥ 2 we have

Rn(H) ={x ∈ H : [x, ny] = 1, ∀y ∈ H} = {0, a, b, 1}.

and

R(H) =
∪
k∈N

Rk(H) = {0, a, b, 1}.

Also

L1(H) = {x ∈ H : [y, x] = 1, ∀y ∈ H} = {c, 1}.
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and for any n ≥ 2 we obtain

Ln(H) = {x ∈ H : [y, nx] = 1, ∀y ∈ H} = {c, 1}.

Therefore

L(H) =
∪
k∈N

Lk(H) = {c, 1}.

Then En(H) = R(H) ∩ L(H) = {1}.

Example 4.5. Let H = {a, b, c, 1} be a Hilbert algebra in which → operation is defined by the left table and
the commutators of elements of H are calculation in the right table

→ a b c 1

a 1 a a 1
b 1 1 a 1
c 1 1 1 1
1 a b c 1

[, ] a b c 1

a 1 1 1 1
b 1 1 a 1
c 1 1 1 1
1 1 1 1 1

By simple calculation, we see that [a, 0b] = a, [a, 1b] = 1, [a, 2b] = 1 and so [a, nb] = 1, also [b, 0c] = b, [b, 1c] =
a, [b, 2c] = [[b, c], c] = [a, c] = 1 and so [b, nc] = 1, for any n ≥ 2.
[0c, a] = a, [1c, a] = 1, [2c, a] = [c, [c, a]] = [c, 1] = 1, so [nc, a] = 1, for any n ≥ 3.

R1(H) = {a, c, 1}.

for every n ≥ 2

Rn(H) = {a, b, c, 1}.

L1(H) = {a, b, 1}.

and for any n ≥ 2 we obtain

Ln(H) = {a, b, c, 1}.

Then En(H) = R(H) ∩ L(H) = {a, b, c, 1}.

In Example 4.5 we see that c ≤ b ≤ a ≤ 1 and [b, c] = a. Hence [b, c] is an upper bound for b and c, but
it is not supremum.

Lemma 4.6. Let x, y ∈ H. Then for each n ∈ N the following assertions hold:
i) [nx, y] = 1, for every n ≥ 2.
ii) if H is a Hilbert algebra with |H| ≥ 2, then [x, ny] and [nx, y] are not minimal elements.

Proof. i) For any x, y ∈ H, since x ≤ [x, y], we obtain

[2x, y] =[x, [x, y]] = 1.

But

1 = [2x, y] ≤ [3x, y] ≤ [4x, y] ≤ [5x, y] ≤ ...

Hence [3x, y] = [4x, y] = [5x, y] = ... = 1.
ii) We proceed by induction on n. For n = 1, [x, y] is not a minimal element of H, by Theorem 3.7.
Now assume that for n ∈ N , [x, ny] and [nx, y] are not minimal elements of H. Since [x, n+1y] = [[x, ny], y] ≥
[x, ny], [x, n+1y] is not minimal. Also [n+1x, y] = [x, [nx, y]] ≥ [nx, y]. Since [nx, y] is not a minimal element
of H, [n+1x, y] is not too. Hence the result holds for n+ 1 in both cases. □
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5 Involution Elements

In this section, at first, we define the involution element in a bounded Hilbert algebra, and then we investigate
the relationships of these elements with commutators.

Definition 5.1. For a bounded Hilbert algebra H, if an element x satisfies x∗∗ = x, then x is called an
involution of H.

The set of all involution elements of a bounded Hilbert algebra H is denoted by S(H). The smallest
element 0 and the greatest element 1 are two involutions of H, because 0∗∗ = 1∗ = 0 and 1∗∗ = 0∗ = 1. Since
the elements 0 and 1 are contained in S(H). Hence S(H) is not empty.

Example 5.2. It is easy to see that (H,→, 1) in Example 3.2 is a bounded Hilbert algebra with unit 1. We
obtain S(H) = {0, a, b, 1}. In this example c /∈ S(H), because c∗∗ = 0∗ = 1 ̸= c. We saw that K(H) = {c, 1}
and En(H) = {1}. Hence En(H), S(H) and K(H) are the separate sets from each other, in general.
Also, if we choose P = [0, 1] in Example 2.1, we obtain, S(P ) = {0, 1} and for any 0 < x ≤ 1, we get
[x, 0] = [x,2 0] = [x,3 0] = ... = x. So En(P ) = K(P ) = (0, 1].

Theorem 5.3. In a bounded Hilbert algebra H, we have

x∗ → y =y∗ → x

for all x and y in S(H).

Proof. Let x, y ∈ S(H). Then x∗ → y = x∗ → y∗∗ = y∗ → x∗∗ = y∗ → x. □

Theorem 5.4. For any bounded Hilbert algebra H, S(H) is a bounded subalgebra of H.

Proof. Let x, y ∈ S(H). Then by Lemma 2.2 and Theorem 5.3,

(x → y)∗∗ → (x → y) =(x → y)∗∗ → (x → y∗∗)

=(x → y)∗∗ → (y∗ → x∗)

=y∗ → ((x → y)∗∗ → x∗)

=y∗ → (x∗∗ → (x → y)∗∗∗)

=y∗ → (x → (x → y)∗)

=y∗ → ((x → y) → x∗)

=(x → y) → (y∗ → x∗)

=(x → y) → (x → y∗∗)

=(x → y) → (x → y)

=1.

Therefore (x → y)∗∗ ≤ (x → y). But (x → y) → (x → y)∗∗ = (x → y) → (((x → y) → 0) → 0) = ((x →
y) → 0) → ((x → y) → 0) = 1. Hence x → y ≤ (x → y)∗∗. We deduce (x → y)∗∗ = (x → y), which says
x → y ∈ S(H), and consequently S(H) is closed with respect to the binary operation →. Also 0, 1 ∈ S(H),
namely, S(H) is a bounded subalgebra of H. □

Theorem 5.5. Let x, y ∈ S(H). Then for all x, y ∈ H we have
i) x → y = y∗ → x∗,
ii) x ≤ y∗ implies y ≤ x∗.
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Proof. i) Since x, y ∈ S(H), we have x∗∗ = x and y∗∗ = y. Hence by Lemma 2.2 part (iv), x → y = x →
y∗∗ = y∗ → x∗.
ii) Let x ≤ y∗, we get x → y∗ = 1. Hence by Lemma 2.2 part (iv), 1 = x → y∗ = y → x∗. So, y ≤ x∗. □
In the following theorem, we express the relationship between an involution element and the commutators.

Theorem 5.6. Let H be a bounded Hilbert algebra, then for x ∈ H, [x, 0] = 1 if and only if x ∈ S(H).

Proof. Let H be a bounded Hilbert algebra. Let x ∈ H and suppose that [x, 0] = 1. Since [x, 0] = x∗∗ → x,
we get x∗∗ → x = 1, so x∗∗ ≤ x. But x ≤ x∗∗ and therefore x∗∗ = x. Thus x ∈ S(H).
Conversely, let x ∈ S(H), for bounded Hilbert algebra H. Then x∗∗ = x. So, we obtain [x, 0] = x∗∗ → x =
x → x = 1. □

6 Conclusion

In the present paper, we have introduced the concepts of Engel elements in Hilbert algebras and investigated
some of their properties. To develop the theory of Hilbert algebras, one of the most encouraging ideas could
be investigating the Engel degree of Hilbert algebras and finding a relation diagram between subclasses of
Hilbert algebras. For instance, 1-Engel Hilbert algebras are strictly commutative Hilbert algebras. It is hoped
that this work contributes to further studies. Therefore, we think that the results presented in this paper
and the forthcoming works can pave the way for a bright future for the theory of the Hilbert algebras. The
major goal of Engelś theory in Hilbert algebras can be stated as follows: to find conditions on H which will
ensure that L(H) and R(H) are subalgebras or ideals, if possible.
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Abstract. Decision-Making (DM) is one of the most important components of human cognition. Starting with a
review of the traditional criteria for DM, this work presents also a method for the verification of a decision, a step
of the DM process which, due to its special interest, is usually examined separately from its other steps. Frequently
in everyday life, however, the data of a DM problem are vague and characterized by uncertainty. In such cases the
traditional techniques for DM, which are based on principles of the bivalent logic (yes-no), cannot help effectively
in making the right decision. The first who introduced principles of the fuzzy sets theory in DM were Bellman
and Zadeh in 1970 and an example is given here illustrating their fuzzy criterion for DM. Also, among the several
fuzzy methods proposed later by other researchers for a more effective DM, a hybrid method is developed here for
parametric multiple-criteria DM using soft sets and grey numbers (or intuitionistic fuzzy sets, or neutrosophic sets)
as tools, which improves an earlier method proposed by Maji et al. in 2002. All the DM approaches presented in
this paper are illustrated with everyday practical examples.
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1 Introduction

Decision-making (DM), one of the most important components of human cognition, is the process of choosing
a solution between two or more alternatives for the purpose of achieving the optimal result for a given problem.
Obviously DM has sense if, and only if, there exists more than one feasible solution, together with one or
more suitable criteria helping the decision maker to choose the best among these solutions. We recall that
a solution is characterized as feasible, if it satisfies all the restrictions imposed onto the real system by the
statement of the problem as well as all the natural restrictions imposed onto the problem by the real system;
e.g. if x denotes the quantity of stock of a product, we must have x ≥ 0. The choice of the suitable criterion,
especially when the results of DM are affected by random events, depends upon the desired goals of the
decision maker; e.g. optimistic or conservative criterion, etc.

The rapid technological progress, the impressive development of transportation means, the globalization
of human society, the continuous changes appearing in the local and international economies, and other
related reasons, led during the last 60-70 years to a continuously increasing complexity of the problems of
our everyday life. As a result the DM process became in many cases a very difficult task, which is impossible
to be based on the decision makers experience, intuition and skills only, as it usually happened in the past.
Thus, from the beginning of 1950 a progressive development started of a systematic methodology for the DM
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process, termed Statistical Decision Theory, which is based on principles of Probability Theory, Statistics,
Economics, Psychology and of other related scientific sectors [1].

The DM process involves the following steps:

• d1 : Analysis of the decision problem, i.e. understanding, simplifying and reformulating the problem
in a form permitting the application of the standard DM techniques it.

• d2 : Collection and interpretation of all the necessary information related to the problem.

• d3 : Determination of all the feasible solutions.

• d4 : Choice of the best solution in terms of the suitable, according to the decision-makers goals, criterion
(-ia).

One could add one more step to the DM process, the verification of the chosen decision according to the
results obtained by applying it in practice. However, this step is extended to areas which, due to their depth
and importance, have become autonomous. Therefore, it is usually examined separately from the other steps
of the DM process.

Note that the first three steps of the DM process are continuous, in the sense that the completion of
each one of them usually needs some time, during which the decision- maker’s reasoning is characterized by
transitions between hierarchically neighbouring steps. In other words, the DM process, the flow diagram of
which is represented in Figure 1, cannot be characterized as a linear process.

Figure 1: The flow diagram of the DM process

For facilitating the DM process, at the step of analysis a decision problem is usually represented by a
decision matrix, otherwise termed as the matrix of the pay-offs. Each row of this matrix corresponds to
an event and each column of it corresponds to a decision. The events are all the possible outcomes of the
corresponding DM problem, whereas the entries of the matrix correspond to the results of each decision
(pay-offs). Mathematically speaking, in a DM problem with n events and m possible decisions the decision
matrix is an n x m matrix of the form [aij ], where aij denotes the pay-off corresponding to the event Ei

and the decision Dj . Table 1, for example, represents the decision matrix of the classical DM problem of the
judge.

Table 1: Decision matrix of the DM problem of the judge

Events Decisions of the judge

INNOCENT GUILTY

INNOCENT An innocent is decided to be innocent An innocent is decided to be guilty

GUILTY A guilty is decided to be innocent A guilty is decided to be guilty

An alternative way to represent a DM problem is the use of a decision tree, which has the form of a logical
diagram. The decision tree of the DM problem of the judge, for example, is shown in Figure 2.
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Figure 2: The decision tree of the DM problem of the judge

The use of a decision tree is usually preferred in the case of composite and complicated DM problems.

In this review paper, starting from the traditional criteria for DM, based on principles of the bivalent
logic [2, 3], we also present a method for studying the verification of a decision, based on the calculation of
the GPA index. Next the criterion of Bellman and Zadeh is presented for DM under fuzzy conditions [4] and
a parametric method for multiple criteria DM is developed [5–8], which improves an earlier DM of Maji et
al. [9] using soft sets as tools.

2 Traditional Criteria for Decision-Making

According to the existing information, a decision is made under conditions of certainty, risk, uncertainty
or complete ignorance. In the first case the DM is obviously an easy task, whereas the complete lack of
information is something that happens very seldom. Uncertainty in the field of Management is understood to
be a situation in which all the possible outcomes of future action are known, but not the probabilities of the
appearance of each outcome. On the contrary, in a situation of risk both the outcomes of an action and the
probabilities of them to happen are known. The turn of a coin, for example, is a situation of risk, whereas
the color of the first car that will pass in front of an observer is a situation of uncertainty.

As already mentioned in the previous section, a necessary condition for the DM is the existence of at least
one suitable criterion helping the decision-maker to make the right decision. When the pay-offs are numerical
quantities, the most commonly used decision criteria among those reported in the literature [2, 3], are the
following:

• Maximization of the minimal pay-offs (maxi min pay-offs)
Using this criterion, the decision-maker considers the minimal pay-offs corresponding to each possible decision
and chooses the maximal among them. This criterion, otherwise known as the criterion of Wald, is based
on the law of Murphy, according to which the worst that could happen will happen. It is, therefore, a
conservative criterion, which is frequently used when the decision-maker knows that he/she has no chance to
make a wrong estimation. On the other end, the maximization of the maximal pay-offs (maxi max pay-offs)
is a super optimistic criterion, which is used very rarely, because it involves a great risk.

• Minimization of the maximal lost opportunities (mini max lost opportunities)
The lost opportunity xij is defined to be the difference of the maximal pay-off corresponding to the event Ei,
minus the pay-off aij , for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. To apply this criterion, one forms the n x m
matrix of the lost opportunities {xij} and chooses the column (and therefore the decision) corresponding to
the minimal among the maximal lost opportunities. This criterion, also known as the regret criterion because
of the decision-makers disappointment with the lost opportunities, is more optimistic than the criterion of
Wald.

• Maximization of the expected pay-offs
Let pi be the probability of appearance of the event Ei, i = 1, 2, . . . , n, then the expected pay-off aj corre-
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sponding to the possible decision j, j = 1, 2, . . . ,m, is defined by

aj =

n∑
i=1

piaij . (1)

According to this criterion, which obviously can be applied when the decision is made under conditions of
risk, the right decision corresponds to the max(a1, a2, . . . , am). For applying this criterion under conditions
of uncertainty, i.e. when the probabilities pi are not known, one may assume that all of them are equal to
each other, a simplification which is not always true in practice. In this case equation (1) takes the form

aj =
1

n

n∑
i=1

aij . (2)

In this form the criterion is known as the criterion of Laplace.
• Minimization of the expected lost opportunities

Under conditions of risk, if pi denotes the probability of realization of the event Ei, i = 1, 2, . . . , n, the
expected lost opportunity xj corresponding to the possible decision Dj , j = 1, 2, . . . ,m, is defined by

xj =

n∑
i=1

pixij . (3)

According to this criterion, the right decision corresponds to the min(x1, x2, . . . , xm). In case of uncertainty

one may set again pi =
1

n
.

Remark 2.1. On the basis of the definition of the lost opportunities it becomes evident that the criteria
of the maximization of the expected pay-offs and of the minimization of the expected lost opportunities are
equivalent, leading always to the same decision, e.g. see below the case (iii) of Example 2.2.

• Criterion of optimism - pessimism
In this criterion an optimism index qj is assigned to the maximal pay-off, say tj , of each decision Dj , j =
1, 2, . . . ,m. Also the pessimism index 1qj is assigned to the minimal pay-off, say sj , of the same decision.
The index qj either depends on the personal goals of the decision-maker, or it is determined with the help of
existing statistical data. Then the expected pay-off aj of the possible decision j, j = 1, . . . ,m, is calculated
by the formula

aj = qjtj + (1− qj)sj , (4)

and the right decision corresponds to the max(a1, a2, . . . , am). This criterion is also referred to as the criterion
of Hurwicz.

Example 2.2. The management of an industry must choose the optimal among three methods, say A1, A2,
A3, for the production of a good, which will be put on sale at a price of 100 euros per unit. The application
of A1 requires an initial capital of one million euros for buying and setting the necessary equipment, plus 50
euros per unit for the production expenses. The corresponding amounts of money are 1.6 million, 40 euros
for A2 and 3 million, 30 euros for A3 respectively. The markets research has shown that the probability for a
low demand of the good (25000 units) is 10%, for a mediocre demand (100000 units) is 70% and for a high
demand (150000 units) is 20%. Further, the optimistic indices for each method of production were estimated
to be q1 = q2 = 0.6 and q3 = 0.8 respectively.
Find which the optimal choice for the industry is by applying the criteria:

i) Maxi min pay-offs,
ii) Mini max lost opportunities,
iii) Maximization of the expected pay-offs or minimization of the expected lost opportunities.
iv) Optimism pessimism.
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Solution: Denote by E1, E2 and E3 the events of low, mediocre and high demand of the good respectively.
i) The pay-offs aij are equal to the revenue from the sale of the good minus the initial capital and the

expenses for the production of the good. In case of the event E1 and the method A2, for example, one finds
that a12 = 25000.100−(1600000+25000.40) = −100000 euros. The matrix of pay-offs (in thousands of euros)
is the following:

A1 A2 A3

E1

E2

E3

 250 −100 −1250
4000 4400 4000
6500 7400 7500


The minimal pay-offs corresponding to each method of production are 250, −100 and −1250 respectively and
the maximal pay-off among them is 250. Therefore, the industry must choose the method A1.

ii) With the help of the matrix of pay-offs one calculates the lost opportunities; for example, x32 =
7.500−7.400 = 100, x33 = 7.500−7.500 = 0, The matrix of the lost opportunities is, therefore, the following:

A1 A2 A3

E1

E2

E3

 0 350 1500
400 0 400
1000 100 0


The maximal lost opportunities for each method of production are 1000, 350 and 1500, with min(1.000, 350, 1500) =
350. Therefore, the industry must choose the method A2. This decision is more optimistic than the decision
made with the help of the previous criterion, since it corresponds to a maximum possible pay-off of 7.400.000
euros, in comparison to the 6.500.000 euros corresponding to the previous decision.

iii) From the problems data it turns out that p1 = 0.1, p2 = 0.7 and p3 = 0.2. Therefore, equation (1)
gives that the expected payoffs for each decision are a1 = (0.1).250 + (0.7).4000 + (0.2).6500 = 4125 and
similarly a2 = 4450, a3 = 4175. Therefore, since max(4125, 4450, 4175) = 4450, the industry must choose the
method A2.

Also, with the help of equation (3) one finds that the expected lost opportunities for each method of
production are x1 = 0.(0.1) + 400.(0.7) + 1000.(0.2) = 480 and similarly x2 = 55 and x3 = 430. Therefore,
since min(x1, x2, x3) = 55, the industry must choose again the method A2 (see Remark 2.1).

iv) The maximal pay-off of the method A1 is 6500 and the minimal is 250. Therefore, equation (4)
gives that a1 = (0.6).6500 + (1 − 0.6).250 = 4000 and similarly a2 = 4400, a3 = 3500. Therefore, since
max(a1, a2, a3) = 4400, the industry must choose the method A2.

3 Verification of a Decision

As it was already mentioned, the verification of a decision is a step of the DM process, which is usually
examined separately from its other steps. A method will be presented here for investigating this important
step of the DM process by using the Grade Point Average (GPA) index.

It is recalled that the GPA index is a weighted mean which is frequently used for assessing a groups
quality performance (since greater coefficients are assigned to the higher grades) during a certain activity.
For this, consider the qualitative grades A = excellent, B = very good, C = good, D = satisfactory and
F = unsatisfactory (failed). Then the GPA index is calculated by the formula

GPA =
0nF + nD + 2nC + 3nB + 4nA

n
. (5)
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In formula (5) n denotes the total number of the groups members and nA, nB, nC, nD and nF denote the
numbers of the groups members that demonstrated excellent, very good, good, satisfactory and unsatisfactory
performance respectively [10, Chapter 6]. In case of the worst performance (nF = n), formula (5) gives that
GPA = 0, whereas in case of the ideal performance (nA = n) it gives that GPA = 4. Therefore, we have in
general that 0 ≤ GPA ≤ 4.

Our method is illustrated with the help of the following example:

Example 3.1. The car industry circulates a new car in the market in two different types, the luxury (L) Class
and the regular (R) Class. Six months after the purchase with their cars, the customers were asked to complete
a written questionnaire concerning the degree of their satisfaction for their cars. Their answers were divided
by the industrys marketing department into the following five categories: A = Fully satisfied customers,
B = Very well satisfied customers, C = Satisfied customers, D = Rather satisfied customers and E =
Unsatisfied customers. The data collected from the customers answers are depicted in Table 2. What is the
general conclusion obtained by the car industry concerning the degree of satisfaction of its customers for their
new cars?

Table 2: Questionnaires data

Customers L R
Categories Class Class

A 60 60

B 30 90

C 30 45

D 30 45

E 20 15

Total 170 255

Solution: Replacing the data of Table 2 to formula (5) one finds that the GPA index concerning the

degree of satisfaction of the owners of the L Class and the R Class is equal to
42

17
≈ 2.47 and

43

17
≈ 2.529

respectively. Taking into account that 0 ≤ GPA ≤ 4, this means that the owners were satisfied with their

cars at a percentage of
2.47x100

4
≈ 61.75% for the L Class and

2.529x100

4
≈ 63.22% for the R Class.

4 Criterion of Bellman and Zadeh for Decision-Making under Fuzzy Con-
ditions

Frequently in everyday life the data of a DM problem are fuzzy; e.g. when a company wants to employ as
a sales manager a well-experienced person whose residence is not very far from the companys place. In such
cases the traditional techniques of DM, which are based on principles of bivalent logic (yes-no), cannot help
effectively in making the right decision. On the contrary, fuzzy sets (FSs) and their extensions, due to their
nature of including multiple values, offer a rich field of resources for this purpose; e.g. see [4, 11–18], etc.

It is recalled that Zadeh in 1965 extended the concept of the crisp set to that of a FS by replacing the
characteristic with the membership function as follows [19]:

Definition 4.1. A FS, say A, in the universal set of the discourse U is of the form A = {(x,m(x)) : x ∈ U},
where m : U → [0, 1] is its membership function. The value m(x) is called the membership degree of x in A,
for all x in U . The closer m(x) to 1, the better x satisfies the characteristic property of A.
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For example, if A is the FS of the high mountains and m(x) = 0.7, then x is a rather high mountain, if
m(x) = 0.4, then x is a rather low mountain, etc.
Bellman and Zadeh were the first, in 1970, who applied principles of FS theory to DM, their method being
known as Criterion of Bellman and Zadeh for DM [4].

A DM problem under fuzzy conditions is characterized by its fuzzy goal (G) and by the fuzzy constraints
Ci, i = 1, 2, . . . , n, where n is a positive integer. The steps of the method of Bellman and Zadeh are the
following:

• Choice of the universal set of the discourse U
• Fuzzification of the decision problems data

In this step the fuzzy goal G and the fuzzy constraints Ci are expressed as fuzzy sets (FSs) in U by defining
properly the corresponding membership functions mG and mCi .

• Evaluation of the fuzzy data
The fuzzy decision F , expressed as a fuzzy set in U , is equal to the intersection of the FSs G and Ci of U
Therefore, the membership function mF of F is defined by

mF (x) = mG ∩mC1 ∩ . . . ∩mCi(x) = min{mG(x),mC1(x), . . . ,mC2(x)}, (6)

for all x in U .
• Defuzzification

The solution of the problem corresponds to the element x of U having the highest membership degree in F .
The following example illustrates the DM model of Bellman and Zadeh in practice:

Example 4.2. A company is willing to employ as a sales manager the candidate with the best qualifications
(G), provided that his/her salary demand is not very high (C1) and that his/her residence is in a close
distance from the companys central offices (C2). There are four candidates for this position, say , , C and D,
with annual salary demands of 29050, 25000, 14050, and 6250 euros respectively. Who of them is the best
choice for the company under the fuzzy constraints C1 and C2?

Solution: In this problem the universal set of the discourse is the set U = {A,B,C,D} of the four
candidates. In order to express the fuzzy goal and the fuzzy constraints as FSs in U , one must properly
define the corresponding membership functions.

For example, having in mind that there is not any general criterion available for the definition the mem-
bership functions, the membership function mC1 : U → [0, 1] of the fuzzy constraint C1, may be defined by
mC1 = 1 for s(x) < 6000, mC1(x) = 1 − 2x10−5xs(x) for 6000 ≤ s(x) ≤ 30000 and mC1(x) = 0 for s(x) >
30000, where s(x) denotes the salary of the candidate x, for all x in U . Then mC1(A) = 1−2x0.2905 = 0.419
and similary mC1(B) = 0.5, mC1(C) = 0.719 and mC1(D) = 0.875. Consequently, the constraint C1 can be
written as a FS in U in the form C1 = {(A, 0.419), (B, 0.5), (C, 0.719), (D, 0.875)}.

Assume further that in an analogous way the fuzzy goal G and the fuzzy constraint C2 were expressed as
fuzzy sets in U in the formG = {(A, 0.9), (B, 0.6), (C, 0.8), (D, 0.6)} and C2 = {(A, 0.1), (B, 0.9), (C, 0.7), (D, 1)}
respectively. Therefore, with the help of equation (6) it is straightforward to check that F can be written as
a FS in U in the form F = {(A, 0.1), (B, 0.5), (C, 0.7), (D, 0.6)}. The highest membership degree in F is 0.7
and corresponds to C. Therefore the candidate C is the best choice for the company.

The fuzzy model of Bellman and Zadeh can be suitably modified to accommodate the relative importance
that could exist for the goal and constraints by using weighting coefficients, whose sum is always equal to 1.
The following example illustrates this case:

Example 4.3. Revisit Example 4.2 and assume that the management of the company, taking into account
the existing companys budget and the results of the oral interviews of the four candidates, decided to attach
weights w = 0.5, w2 = 0.2 and w3 = 0.3 to the goal G and to the constraints C1 and C2 respectively. Which
will be the best companys choice under these new conditions?
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Solution: In this case the membership function of the fuzzy decision F is defined as a linear combination
of the weighted goal and constraints of the form

mF (x) = w1xmG(x) + w2xmC1(x) + w3xmC2(x), (7)

where mG(x), mC1(x), mC2(x) are the membership degrees in G, C1 and C2 respectively of each x in U (see
Example 4.2) and the coefficients w1, w2 and w3 are the weights attached to the fuzzy goal and to the fuzzy
constraints C1 and C2 respectively. Therefore, the membership degree of candidate A in the fuzzy decision
F is equal to mF (A) = 0.5x0.9+0.2x0.419+0.3x0.1 = 0.638. In the same way one finds that mF (B) = 0.67,
mF (C) = 0.7538 and mF (D) = 0.775. Therefore, candidate D is the companys best choice in this case.

5 MultipleCriteria Parametric Decision-Making

Following the criterion of Bellman and Zadeh, several other methods were proposed by other researchers for
DM in fuzzy environments; e.g. [11–18], etc. Here we will present a hybrid, parametric, multiple-criteria DM
method using soft sets, grey numbers and intuitionistic fuzzy sets as tools.

5.1 Decision-Making with Soft Sets

Molodstov introduced in 1999 the concept of soft set (SS) for tackling the uncertainty in a parametric manner,
not needing, therefore, the definition of a membership function. Namely, a SS is defined as follows [20]:

Definition 5.1. Let E be a set of parameters, let A be a subset of E, and let f be a map from A into
the power set P (U) of the universe U . Then the SS (f,A) in U is defined as the set of the ordered pairs
(f,A) = {(e, f(e)) : e ∈ A}. In other words, an SS is a parametric family of subsets of U . The term ”soft”
was introduced due to the fact that the form of (f,A) depends on the parameters of A. A FS in U with
membership function y = m(x) is a SS in U of the form (f, [0, 1]), where f(a) = {x ∈ U : m(x) ≥ a} is the
corresponding a-cut of the FS, for each a in [0, 1]. Consequently the concept of SS is a generalization of the
concept of FS. Most notions and operations defined on FSs are extended in a natural way to SSs.

Maji et al. [9] utilized the tabular form of a SS as a tool for DM in a parametric manner. Here this
method is illustrated with the following example:

Example 5.2. Let V = {H!,H2,H3,H4,H5,H6} be a set of houses and let Q = {e1, e2, e3, e4} be the set of
the parameters e1 = beautiful, e2 = wooden, e3 = in the country and e4 = cheap. Assume that H1, H2, H6

are beautiful, H2, H3, H5, H6 are wooden, H3, H5 are the houses in the country and H4 is the unique cheap
house. Assume further that one is interested in buying a beautiful, wooden and cheap house in the country
choosing among the previous six houses. Which is the best choice for the candidate buyer?

Solution: Consider the map g : Q → P (V ) defined by g(e1) = {H1,H2,H6}, g(e2) = {H2,H3,H5,H6},
g(e3) = {H3,H5} and g(e4) = {H4} and the

SS (g,Q) = {(e1, {H1,H2,H6}), (e2, {H2,H3,H5,H6}), (e3, {H3,H5}), (e4, {H4})}.

The tabular representation of the SS (g,Q), which is shown in Table 3, is formed by assigning the binary
elements 1, 0 to each of the houses having (not having) the property described by the corresponding parameter

The choice value of each house is calculated by adding the binary elements of the corresponding row of the
tabular matrix containing it. The houses H1 and H4, therefore, have choice value 1 and all the other houses
have choice value 2. Consequently, the buyer must choose one of the houses H2, H3, H5 or H6.
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Table 3: Tabular form of the soft set (g,Q)

e1 e2 e3 e4
H1 1 0 0 0

H2 1 1 0 0

H3 0 1 1 0

H4 0 0 0 1

H5 0 1 1 0

H6 1 1 0 0

5.2 Decision-Making Using Grey Numbers in the Decision Matrix

The decision of Example 5.2 was not very helpful for the candidate buyer, since it excluded only two among
the six available for sale houses. This gave us the hint to modify the DM method of Maji et al. by using grey
numbers (GNs) in the tabular form of the corresponding SS [6].

Definition 5.3. A GN is understood to be a real number with known boundaries whose exact value is
unknown. A GN, say G, is represented with the help of a closed real interval. Namely, we write G ∈ [a, b],
with a, b in the set R of real numbers. Frequently, however, G is accompanied by a whitenization function
g : [a, b] → [0, 1], such that the closer g(x) to 1, the more x approximates the exact value of G, for all x in
[a, b].

It is recalled that GNs are used as tools for performing all the necessary calculations in the theory of
grey systems introduced by Deng in 1982 [21] as an alternative to Zadehs FSs for tackling the existing in
real world uncertainty. The known arithmetic of the real intervals [22] is used for performing the arithmetic
operations between GNs. Here we will make use of the addition of GNs and the scalar multiplication of a
positive number with a GN, which are defined as follows:

Definition 5.4. Let G1 ∈ [a1, b1], G2 ∈ [a2, b2] be two given GNs and let k be a positive number. Then the
sum G1 +G2 ∈ [a1 + a2, b1 + b2] and the scalar product kG1 ∈ [ka1, kb1]. When no whitenization function is
assigned to G ∈ [a, b], then the real number

W (G) =
a+ b

2
, (8)

is used for approximating the unknown exact value of G.

Revisiting now Example 5.2 one observes that the parameters e1 and e4 do have not a bivalent texture.
In fact, how beautiful a house is depends on the subjective criteria of each observer, whereas its low or high
price depends on the financial ability of the candidate buyer. For this reason, the characterization of the
parameters e1 and e4 in Table 3 by using the binary elements 0, 1 is not the suitable one. One way to tackle
this problem, is to replace the binary elements 0, 1 corresponding to the parameters e1 and e5 with GNs.
This is illustrated with the following example.

Example 5.5. Revisit Example 5.2 and assume that the candidate buyer, after studying more carefully the
existing information about the six available houses, decided to use Table 4 instead of Table 3 for making the
final decision, where G1 ∈ [0.85, 1], G2 ∈ [0.6, 0.74], G3 ∈ [0.5, 0.59] and G4 ∈ [0, 0.49] are the GNs replacing
the binary elements 0, 1 in the columns of e1 and e3. Which will be the optimal decision in this case?
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Table 4: Revised tabular form of the soft set (g,Q) using grey numbers

e1 e2 e3 e5
H1 G1 0 0 G2

H2 G1 1 0 G4

H3 G2 1 1 G2

H4 G3 0 0 G1

H5 G4 1 1 G3

H6 G1 1 0 G4

Solution: In Table 4 one calculates the choice value Vi of the house Hi, i = 1, 2, 3, 4, 5, 6 with the help

of Definition 5.3 and equation (8) as follows: V1 = W (G1 + G2) = W ([1.45, 1.74]) =
1.45 + 1.74

2
= 1.595

and similarly V2 = 1 + W (G1 + G4) = 2.17, V3 = 2 + W (G2 + G2) = 3.34, V4 = W (G3 + G1) = 1.47,
V5 = 2 +W (G4 +G3) = 3.215, V6 = 1 +W (G1 +G4) = 2.47. Therefore, the optimal decision is to buy the
house H3. A second way for tackling this problem is to use triangular fuzzy numbers (TFNs) instead of GNs
[5]. These two methods are equivalent, providing always the same outcomes.

5.3 Decision-Making Using Intuitionistic Fuzzy Pairs in the Decision Matrix

As we have seen in the previous example, the use of the GNs instead of the binary elements 0, 1 for charac-
terizing the fuzzy parameters that exist in the tabular decision matrix, helps the decision-maker to make a
better decision. DM situations, however, appear frequently in everyday life, in which the decision-maker is
not sure about the accuracy of these characterizations. In such cases, one way to perform the DM process is
to use intuitionistic fuzzy pairs instead of GNs in the tabular matrix of the corresponding soft set [8].

It is recalled that Atanassov in 1986, in order to tackle more effectively the existing in real life uncertainty,
added to Zadehs membership degree the degree of non-membership and extended the concept of FS to the
concept of intuitionistic FS (IFS) as follows [23]:

Definition 5.6. An IFS, say A, in the universe U is of the form A = {(x,m(x), n(x)) : x ∈ U, 0 ≤
m(x)+n(x) ≤ 1}, where m : U → [0, 1] and n : U → [0, 1] are its membership and non-membership functions
of A respectively.

For example, if A is the set of the high mountains and m(x) = 0.6, n(x) = 0.2, then there is a 60% belief
that x is a high mountain, but at the same time there is a 20% belief that I is not a high mountain. For
brevity an IFS is denoted here by A = ⟨n,m⟩ and its elements are written in the form of intuitionistic fuzzy
pairs (IFPs) (m,n), with m+ n ≤ 1. For the needs of the present work we define the addition of IFPs and
the scalar multiplication of a positive number with an IFP in the same way as for the ordinary ordered pairs,
i.e. as follows:

Definition 5.7. Let A = ⟨m,n⟩ be an IFS, let (m1, n1), (m2, n2) be elements of A and let k be a positive
number. Then:

i) The sum (m1, n1) + (m2, n2) = (m1 +m2, n1 + n2)

ii) ii) The scalar product k(m1, n1) = (km1, kn1).
It becomes evident that the above defined sum and the scalar product are not closed operations in A, since
it can be either (m1 +m2) + (n1 + n2) > 1 or (and) km1 + kn1 > 1.

We also define the mean value of a finite number of IFPS of A in the following way:
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Definition 5.8. Let A = ⟨m,n⟩ be an IFS and let (m1, n1), (m2, n2), . . . , (mk, nk) be a finite number of

elements of A. Then the mean value of these elements is defined to be (m,n) =
1

k
[(m1, n1)+ (m2, n2)+ . . .+

(mk, nk)]. It becomes evident that (m,n) is always an element of A.

The use of IFPs in the decision matrix will be illustrated with the following example:

Example 5.9. A company wants to employ a person among six candidates, say A1, A2, A3, A4, A5 and
A6. The ideal qualifications for the new employee are to have satisfactory previous experience (p1), to hold
a university degree (p2), to have a driving license (p3) and to be young (p4). Assume that A2, A3, A5, A6

are the holders of a university degree and that A3, A5 are the holders of a driving license. Assume further
that the company has difficulty assigning accurate characterizations to the six candidates with respect to the
fuzzy parameters p1 and p4. It was decided, therefore, to use IFPs instead of the binary elements 0, 1 in the
tabular decision matrix. For this, the analysts of the company considered the IFSs of the candidates with
satisfactory previous experience and of the young candidates, as well as the trivial IFSs of the holders of a
university degree and of a driving license and represented their elements in the form of IFPs. As a result the
tabular decision matrix took the form of Table 5.

Table 5: Tabular representation of the DM process using IFPs

p1 p2 p3 p4
A1 (1, 0) (0, 1) (0, 1) (0.6, 0.1)

A2 (1, 0) (1, 0) (0, 1) (0.2, 0.6)

A3 (0.5, 0.1) (1, 0) (1, 0) (0.6, 0.2)

A4 (0.5, 0.3) (0, 1) (0, 1) (1, 0)

A5 (0.5, 0.4) (1, 0) (1, 0) (0.6, 0.1)

A6 (1, 0) (1, 0) (0, 1) (0.4, 0.2)

Which will be the best choice for the company?

Solution: In this case the choice value of each candidate Ai, i = 1, 2, 3, 4, 5, 6, is equal the mean value of
the IFPs contained in the row of Ai. With the help of Definitions 5.7 and 5.8, therefore, one finds that the
choice value of A1 is equal to

1

4
[(1, 0) + 2(0, 1) + (0.6, 0.1)] =

1

4
(1.6, 2.1) = (0.4, 0.525).

In the same way the choice values of A2, A3, A4, A5 and A6 can be find to be equal to (0.55, 0.4), (0.775, 0.075),
(0.375, 0.575), (0.775, 0.125) and (0.6, 0.3) respectively. The company now may use either an optimistic
criterion by choosing the candidate with the greatest membership degree, or a conservative criterion by
choosing the candidate with the lower non-membership degree, i.e. one of the candidates A3 and A5 in the
first case, or the candidate A3 in the second case. A combination of the two criteria leads finally to the choice
of the candidate A3.

5.4 Decision-Making Using Neutrosophic Triplets in the Decision Matrix

An alternative way for tackling the previous DM problem is to use neutrosophic sets (NSs) instead of
IFSs writing their elements in the form of neutrosophic triplets (NTs) in the tabular decision matrix [7].
In fact, Smarandache in 1995, inspired by the frequently appearing in the everyday life neutralities, like
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⟨tall,medium, short⟩, ⟨friend, neutral, enemy⟩,⟨win, draw, defeat⟩, etc., introduced the degree of indeter-
minacy or neutrality and extended the notion of IFS to the notion of NS [24]. The simplest form a NS, known
as a single-valued NS (SVNS) is defined in the following way [25]:

Definition 5.10. A SVNS, say A, in the universe U has the form

A = {(x,m(x), i(x), n(x)) : x ∈ U, m(x), i(x), n(x) ∈ [0, 1], 0 ≤ m(x) + i(x) + n(x) ≤ 3}.

In the SVNS A m(x) is the degree of membership (or truth), i(x) is the degree of indeterminacy (or
neutrality) and n(x) is the degree of non-membership (or falsity) of x in A, for all x in U . When 0 ≤
m(x) + i(x) + n(x) ≤ 1, then the data about x in A are characterized by incomplete information, when
m(x)+ i(x)+n(x) = 1 by complete and when m(x)+ i(x)+n(x) > 1 by inconsistent (contradiction relevant)
information. A NS may contain simultaneously elements characterized by all these types of information. For
brevity we write A = ⟨m, i, n⟩ and the elements of A as NTs in the form (m, i, n), with 0 ≤ m + i + n ≤ 3.
For example, if A is the NS of the high mountains and (0.6, 0.3, 0.2) ∈ A, then there exists a 60% belief that
x is a high mountain, but at the same time a 30% belief that x is neither a high nor a low mountain and a
20% belief that it is a low mountain.
The sum of NTSs, the scalar product of a positive number cross a NT and the mean value of a finite number
of NTs of a NS are defined similarly with the corresponding operations for IFPs (see Definitions 5.7 and
5.8). The advantage of using NTs instead of IFPs in the decision matrix is that they enable one to handle
data connected incomplete and/or inconsistent information. The following example illustrates this situation.

Example 5.11. Revisiting Example 5.9 assume that the company, due to the existence of incomplete and
inconsistent information for some candidates, decided to use NSs instead of IFSs for the formation of the
decision matrix. Thus, considering the NSs of the candidates with satisfactory previous experience and of
the young candidates, as well as the trivial NSs of the holders of a university degree and of the holders of a
driving license and representing their elements in the form of NTs formed the decision matrix shown in Table
6. Which is the best choice for the company in this case?

Table 6: Tabular representation of the DM process using NTs

p1 p2 p3 p4
A1 (1, 0, 0) (0, 0, 1) (0, 0, 1) (0.6, 0.3, 0.1)

A2 (1, 0, 0) (1, 0, 0) (0, 0, 1) (0.2, 0.2, 0.7)

A3 (0.5, 0.4, 0.2) (1, 0, 0) (1, 0, 0) (0.6, 0.2, 0.1)

A4 (0.5, 0.2, 0.2) (0, 0, 1) (0, 0, 1) (1, 0, 0)

A5 (0.5, 0.1, 0.4) (1, 0, 0) (1, 0, 0) (0.6, 0.3, 0.1)

A6 (1, 0, 0) (1, 0, 0) (0, 0, 1) (0.4, 0.3, 0.2)

Solution: In this case the choice value of the candidate A1 is equal to
1

4
[(1, 0, 0)+2(0, 0, 1)+(0.6, 0.3, 0.1)] =

1

4
(1.6, 0.3, 2.1) = (0.4, 0.075, 0.525) and in the same way the choice values of A2, A3, A4, A5 and A6

are approximately equal to (0.55, 0.07, 0.425), (0.775, 0.15, 0.075), (0.375, 0.05, 0.55), (0.775, 0.13, 0.125) and
(0.6, 0.075, 0.3) respectively. Consequently, applying the optimistic criterion the company must choose one of
the candidates A3 or A5, whereas applying the conservative criterion it must choose the candidate A3. The
final choice of the company, therefore, must be again the candidate A3, although the indeterminacy degree
of candidate A5 is slightly smaller (0.13 < 0.15).
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5.5 Weighted Parametric Decision-Making

Cases appear frequently in DM in which the decision-makers goals are not equally important. In such cases,
weight coefficients, whose sum is equal to 1, are assigned to each parameter. Assume, for instance, that the
weight coefficients 0.4, 0.3, 0.2 and 0.1 have been assigned to the parameters p1, p2, p3 and p4 respectively of
Example 5.9. Then the weighted choice value of the candidate A1 is equal to

1

4
[0.4(1, 0) + 0.3(0, 1) + 0.2(0, 1) + 0.1(0.6, 0.1)] =

1

4
(0.46, 0.51) = (0.115, 0.1275).

In the same way one finds that the choice values of the candidates A2, A3, A4, A5 and A6 are (0.18, 0.065),
(0.19, 0.015), (0.075, 0.115), (0.19, 0.0425) and (0.185, 0.055) respectively. The combination of the two criteria,
therefore, shows again that the best decision for the company is to employ the candidate A3.

Remark 5.12. (i) The parametric DM method presented in this work is of a general character, therefore
it can be applied to all the analogous cases of multiple-criteria DM. Other examples that have been already
presented in earlier works of the present author are related to decisions for buying a car [5], choosing a new
player for a football team [7], etc.
(ii) There is no objective criterion for defining the membership function of a FS, its definition depends on the
personal criteria of each observer. The same problem exists for all the extensions of FSs involving membership
functions and in particular for the membership, non-membership and indeterminacy functions of the IFSs
and of the NSs. As a result, the characterization of the fuzzy parameters p1 and p4 in Examples 5.9 and 5.11
using IFPs and NTs respectively was purely based on the companys analysts personal criteria. An analogous
problem appears when using GNs (or TFNs) for characterizing the fuzzy parameters in the decision matrix
(see Section 5.2), although no whitenization function was used for the corresponding GNs. This is, therefore,
a general limitation of the parametric DM method presented in this work.

6 Conclusion

Frequently in everyday life the goal and/or the constraints of a DM problem are expressed in a vague way,
characterized by uncertainty. The first who studied DM problems under fuzzy conditions were Bellman
and Zadeh in 1970. Since then, several DM methods have been proposed by other researchers using FSs
or their extensions as tools. In this work, starting from the traditional DM criteria of bivalent logic and
continuing with the fuzzy criterion of Bellman and Zadeh, we also presented a hybrid model for multiple-
criteria parametric DM in fuzzy environments. This model improves a DM method of Maji et al. using SSs
as tools, by replacing the binary elements 0, 1 in the tabular matrix of the corresponding SS either with GNs
(or TFNs), or by IFPs, or by NTs, depending on the form of the corresponding DM problem. In addition, a
method was presented, based on the calculation of the GPA index, for the verification of a decision, a step
of the DM process, which, due to its special importance, is usually examined separately from its other steps.
All the DM methods presented in this work are illustrated by suitable examples, connected to everyday life
situations. It seems that suitable combinations of two or more theories related to FS (e.g. SSs with GNs or
with IFSs or with NSs in this work) provide better results than each one of these theories alone does. This
is, therefore, a promising area for further research.
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Abstract. Residuated lattices are the major algebraic counterpart of logics without contraction rule, as they
are more generalized logic systems including important classes of algebras such as Boolean algebras, MV-algebras,
BL-algebras, Stonean residuated lattices, MTL-algebras and De Morgan residuated lattices among others, on which
filters and ideals are sets of provable formulas. This paper presents a meaningful exploration of the topological
properties of prime ideals of residuated lattices. Our primary objective is to endow the set of prime ideals with
the stable topology, a topological framework that proves to be more refined than the well-known Zariski topology.
To achieve this, we introduce and investigate the concept of pure ideals in the general framework of residuated
lattices. These pure ideals are intimately connected to the notion of annihilator in residuated lattices, representing
precisely the pure elements of quantales. In addition, we establish a relation between pure ideals and pure filters
within a residuated lattice, even though these concepts are not dual notions. Furthermore, thanks to the concept of
pure ideals, we provide a rigorous description of the open sets within the stable topology. We introduce the i-local
residuated lattices along with their properties, demonstrating that they coincide with local residuated lattices. The
findings presented in this study represent an extension beyond previous work conducted in the framework of lattices,
and classes of residuated lattices.
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1 Introduction

It is well known that non-classical logic is a formal and useful technique for computer science to deal with
fuzzy and uncertain information in classification problems, artificial intelligence, data organization, and formal
concept analysis. In this way, several algebraic structures such as MV-algebras, BL-algebras, Gödel algebras,
MTL-algebras, De Morgan residuated lattices, and residuated lattices (see [1–4]) have been introduced, and
provide an algebraic framework to fuzzy logic and fuzzy reasoning. Among these structures, Pavelka showed
in [5] that residuated lattices are more generalized logic systems on which filters and ideals are sets of provable
formulas. The study of their algebraic properties is therefore deciphered through the notions of ideal and
filter.

In the framework of residuated lattices, previous works, such as [3, 6–9], were more focused on
filters. In [9], Busneag et al. endowed the set of prime filters with the spectral topology and used the concepts
of co-annihilator as well as pure filter to study the stable topology. On the other hand, the notion of ideal was
recently introduced in residuated lattices by Busneag et al. in [10], generalizing the one in BL-algebras. A
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year later, Luo ([11]) pursued this by bringing in another definition for ideals of residuated lattices, with which
he introduced a congruence relation associated with ideals. That congruence relation was later on revised
by Liu et al. ([12]), who set forth the concept of fuzzy ideals. In [2], Holdon established the equivalence
between Luo’s and Busneag’s definition of an ideal of a residuated lattice, providing additional properties on
ideals of residuated lattices. Motivated by the fact that the Zariski topology allows tools from topology to be
used to interpret algebraic varieties, Dana Piciu ([13]) introduced the Zariski topology on ideals of residuated
lattices. One can observe that in that topology, clopen sets are stable, that is, they are simultaneously stable
under ascent and descent. The question that arises: does it exist stable sets other than clopen sets? If so,
how can we describe them?

To answer this question, we introduce and study pure ideals in residuated lattices, based on the notion
of annihilator in residuated lattices which generalize the one done in De Morgan residuated lattices [14] and
MV-algebras ([15, 16]).

The paper is organized as follows: in Section 2, we recall basic notions of residuated lattices and
describe some properties that will be needed in the sequel. In Section 3, we introduce the concept of pure
ideal in residuated lattices and provide some of its properties. Moreover, we discuss the relationship between
pure ideals and pure filters of a residuated lattice. Section 4 is devoted to the characterization of open stable
sets by the means of pure ideals of a residuated lattice, setting up the stable topology.

2 Preliminaries

A residuated lattice ([4, 9, 11, 12]) is an algebraic structure (L;∨,∧,⊙,→, 0, 1) of type (2, 2, 2, 2, 0, 0), where:

(L1) (L;∨,∧, 0, 1) is a bounded lattice;

(L2) (L;⊙, 1) is a commutative ordered monoid;

(L3) For every x, y, z ∈ L, x ≤ y → z iff x⊙ y ≤ z.

In what follows, unless otherwise specified, by L we denote a residuated lattice (L; ∨, ∧, ⊙, →, 0, 1).
A subset X of L is proper if X ̸= L. Every residuated lattice L has the negation operation defined by
x′ := x → 0, for all x ∈ L.

We will use the notations

xn := x⊙ · · · ⊙ x︸ ︷︷ ︸
n times

, for any x ∈ L and n ≥ 1;

X ′ := {x′ : x ∈ X}, for any X ⊆ L.

Recall from [2, 8] that a residuated lattice L is called:

(i) a De Morgan residuated lattice if the De Morgan law (x ∧ y)′ = x′ ∨ y′, for all x, y ∈ L holds;

(ii) an MTL-algebra if it satisfies (x → y) ∨ (y → x) = 1, for all x, y ∈ L (prelinearity);

(iii) a BL-algebra if it is an MTL-algebra where x ∧ y = x⊙ (x → y), for all x, y ∈ L (divisibility);

(iv) an MV-algebra if it is a BL-algebra that verifies x′′ = x, for all x ∈ L (double negation).

When x′′ = x for all x in L, we say that L is regular.

The following rules of calculus in residuated lattices shall be needed in the sequel.

Proposition 2.1. [2, 4, 8–10] Let L be a residuated lattice. Then, for all x, y, z ∈ L, we have:
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(P1) x ≤ y iff x → y = 1, x⊙ y ≤ x ∧ y, x⊙ y ≤ x → y;

(P2) x → (y → z) = (x⊙ y) → z = y → (x → z);

(P3) x → y ≤ (x⊙ y′)′, x⊙ (y → z) ≤ y → (x⊙ z) ≤ (x⊙ y) → (x⊙ z);

(P4) If x ≤ y, then y → z ≤ x → z , z → x ≤ z → y, x⊙ z ≤ y ⊙ z, y′ ≤ x′;

(P5) x⊙ (x → y) ≤ y, x ≤ (x → y) → y and ((x → y) → y) → y = x → y;

(P6) 1 → x = x, x → x = 1, x → 1 = 1, x ≤ y → x,
x → y ≤ y′ → x′, x ≤ x′′, x′′′ = x′;

(P7) x⊙ x′ = 0, x⊙ y = 0 iff x ≤ y′;

(P8) (x⊙ y)′ = x → y′ = y → x′ = x′′ → y′, (x ∧ y)′ ≥ x′ ∨ y′,
(x ∨ y)′ = x′ ∧ y′, 0′ = 1 and 1′ = 0;

(P9) x⊙ (y ∨ z) = (x⊙ y)∨ (x⊙ z), x⊙ (y ∧ z) ≤ (x⊙ y)∧ (x⊙ z), x∨ (y⊙ z) ≥ (x∨ y)⊙ (x∨ z) and hence
(x ∨ y)mn ≤ xm ∨ yn, for every n,m ≥ 1;

(P10) x → (y ∧ z) = (x → y) ∧ (x → z), (x ∨ y) → z = (x → z) ∧ (y → z),
(x ∧ y) → z ≥ (x → z) ∨ (y → z), x → (y ∨ z) ≥ (x → y) ∨ (x → z);

(P11) x′ ⊙ y′ ≤ (x⊙ y)′, x′′ ⊙ y′′ ≤ (x⊙ y)′′, x′ ⊙ y′ ≤ (x′ → y)′ and x, y ≤ (x′ ⊙ y′)′;

(P12) x ∨ y = 1 implies x⊙ y = x ∧ y and xn ∨ yn = 1, for every n ≥ 1.

The operation ⊕ defined on L by x⊕y = (x′⊙y′)′ = x′ → y′′, for all x, y ∈ L is commutative, associative,
and compatible with the order [10].

For any x ∈ L, nx := x⊕ · · · ⊕ x︸ ︷︷ ︸
n times

, n ≥ 1.

Recall from [13, 17] that

(P13) For every m,n ≥ 2,

[(x′)n]′ = nx, x ∧ (ny) ≤ n(x′′ ∧ y′′) and (mx) ∧ (ny) = (mn)(x′′ ∧ y′′).

The operation ⊘ defined for every x, y ∈ L by x⊘ y := x′ → y is neither associative nor commutative and
is called the pseudo-addition (see [11]). We shall have in mind that it is compatible with the order.

Remark 2.2. We easily see that the operation ⊘ verifies x⊘ (y ∧ z) = (x⊘ y) ∧ (x⊘ z) and x⊘ (y ⊘ z) =
y ⊘ (x⊘ z), for every x, y, z ∈ L.

We recall that a nonempty subset F of L is called a filter ([9]) if it verifies:
(F1) For every x, y ∈ L, if x ≤ y and x ∈ F , then y ∈ F ;
(F2) For every x, y ∈ F , x⊙ y ∈ F .
A filter F of L is proper if F ̸= L (i.e., 0 /∈ F ).

A deductive system of a residuated lattice L is a nonempty subset F of L containing 1 such that for all
x, y ∈ L, x → y ∈ F and x ∈ F imply y ∈ F.

It is known that in a residuated lattice, filters and deductive systems coincide.

A filter M of L is called a maximal filter if it is a maximal element of the set of all proper filters of L. A
residuated lattice L is called local if it has a unique maximal filter ([9]).
From [11], a nonempty subset I of a residuated lattice L is said to be an ideal of L if the following properties
hold:
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(I1) For every x, y ∈ I, x⊘ y ∈ I;

(I2) For every x, y ∈ L, if x ≤ y and y ∈ I, then x ∈ I.

An ideal I of L is proper if I ̸= L (i.e., 1 /∈ I). I is a maximal ideal of L if it is not contained in any other
proper ideal of L ([13]). A residuated lattice is called i-local if it has a unique maximal ideal.
Holdon proved the following proposition.

Proposition 2.3. [2] A nonempty subset I of a residuated lattice L is an ideal of L if and only if:

(I’1) For every x, y ∈ I, x⊕ y ∈ I;

(I2) For every x, y ∈ L, if x ≤ y and y ∈ I, then x ∈ I.

We denote by I(L) the set of ideals of L. We shall notice that {0} and L are trivial ideals of L, and each
ideal of L contains 0.

Proposition 2.4. [2] Let L be a residuated lattice, and I an ideal of L. Then, x ∈ I iff x′′ ∈ I, for every
x ∈ L.

We recall that an algebraic structure (L;∧,∨,⊙, 0, 1) is a quantale if (L;∧,∨, 0, 1) is a complete lattice and
(L;⊙) a semigroup such that the operator ⊙ verifies the infinite distributive laws: a⊙

∨
X =

∨
{a⊙x : x ∈ X},

for all a ∈ L and X ⊆ L ([18, 19]). An element a ∈ L is said to be compact if for every X ⊆ L such that
a ≤

∨
X, there is a finite subset X1 ⊆ X such that a ≤

∨
X1.

Recall also from [20] that a Heyting algebra is a lattice (L;∧,∨) with 0 in which for every x, y ∈ L, there
is an element x → y :=

∨
{a : a ∧ x ≤ y} ∈ L, called the pseudocomplement of x with respect to y. We

say that L is pseudocomplemented if every element of L is pseudocomplemented with respect to 0. For any
x ∈ L, we will denote by x∗ the pseudocomplement of x with respect to 0. Note that a complete Heyting
algebra is a quantale in which the operators ⊙ and ∧ coincide [21]. It is also known that a residuated lattice
L is a Heyting algebra iff x⊙ y = x ∧ y, for every x, y ∈ L (see [2]).

An element x of a quantale L is called pure if for every compact element a of L, a ≤ x implies x∨ a∗ = 1
(see [18, 22]).

Given a nonempty subset X of L, the least ideal of L containing X (called the ideal generated by X) will
be denoted ⟨X⟩, and for all x ∈ L, ⟨{x}⟩ will be denoted ⟨x⟩.

Proposition 2.5. [13] Let L be a residuated lattice and x ∈ L. Then,

(i) ⟨X⟩ := {a ∈ L : a ≤ x1 ⊕ ...⊕ xn, for some n ≥ 1 and x1, x2, ..., xn ∈ X}. Particularly, ⟨x⟩ = {a ∈ L :
a ≤ nx, for some n ≥ 1}.

(ii) For any I ∈ I(L) , if x /∈ I, then
⟨I ∪ {x}⟩ = {a ∈ L : a ≤ i⊕ nx, for some i ∈ I and n ≥ 1}.

(iii) (I(L),∧,∨,→) is a complete Heyting algebra

where I ∧ J := I ∩ J ,
I ∨ J = ⟨I ∪ J⟩ := {x ∈ L : x ≤ i⊕ j, i ∈ I, j ∈ J} and
I → J := {x ∈ L : ⟨x⟩ ∩ I ⊆ J}, for I, J ∈ I(L).

Definition 2.6. [12, 13] Let P be a proper ideal of a residuated lattice L. Then,

(i) P is called a prime ideal of L if P is a prime element of (I(L),∧,∨,→), that is, if I, J are ideals of L
and I ∩ J ⊆ P , then I ⊆ P or J ⊆ P .
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(ii) P is a prime ideal of the second kind of L if for every x, y ∈ A, x ∧ y ∈ P implies x ∈ I or y ∈ P .

(iii) We say that P is a prime ideal of third kind of L if for all x, y ∈ L, (x → y)′ ∈ P or (y → x)′ ∈ P.

(iv) A prime ideal P which is minimal in the poset of prime ideals containing an ideal I is called a minimal
prime ideal belonging to I. A minimal prime ideal belonging to {0} is called minimal prime ideal. In
other words, P is a minimal prime ideal if P is prime, and for every prime ideal Q, if Q ⊆ P , then
P = Q.

We denote by MaxId(L), SpecId(L), and by MinId(L) the set of maximal ideals of L, the set of all prime
ideals of L, and the set of minimal prime ideals of L, respectively. Note that MaxId(L) ⊆ SpecId(L), and
MinId(L) ⊆ SpecId(L) (see [13]).

Proposition 2.7. [2, 13] Let M be a proper ideal of L. Then, the following are equivalent:

(i) M ∈ MaxId(L)

(ii) For any x ∈ L , x /∈ M iff (nx)′ ∈ M , for some natural number n ≥ 1

(iii) For all x /∈ M there is y ∈ M and n ≥ 1 such that y ⊕ (nx) = 1

It follows from Zorn’s lemma that every proper ideal of a residuated lattice is contained in a maximal ideal.

The next proposition characterizes prime ideals of residuated lattices.

Proposition 2.8. [13] Let P be a proper ideal of L. Then, the following are equivalent:

(i) P is prime.

(ii) x′′ ∧ y′′ ∈ P implies x ∈ P or y ∈ P , for all x, y ∈ A

(iii) If I, J ∈ I(L) and I ∩ J = P , then I = P or J = P .

Obviously, every prime ideal of third kind of L is a prime ideal of second kind of L. The converse, however,
is not true, see [12].

Moreover, every prime ideal of second kind of L is also a prime ideal of L. But the converse is not always
guaranteed. Nevertheless, these three types of prime ideals coincide in a De Morgan residuated lattice (see
[13]).

Consequently, the results presented in this study, using prime ideals of residuated lattices, constitute an
extension of what was done with prime ideals of the second kind in [2, 23].

Before stating the prime ideal theorem, recall that a nonempty subset F of L is a lattice filter (or ℓ-filter)
of L if:

(i) ∀x, y ∈ F, x ∧ y ∈ F ;

(ii) ∀x ∈ F, ∀y ∈ L, x ≤ y ⇒ y ∈ F .

If F is a filter of L, then F is also a lattice filter of L. But the converse is not always true ([9]).

Theorem 2.9. (Prime ideal theorem) [17] Let L be a residuated lattice. If I is an ideal and F is a lattice
filter of L such that I ∩ F = ∅, then there exists a prime ideal P of L such that I ⊆ P and P ∩ F = ∅.

As a direct consequence of the prime ideal theorem, for any proper ideal I of L, we have I = ∩{P ∈
specId(L) : I ⊆ P}.
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Proposition 2.10. [13] For every ideal I of L and x ∈ A \ I, there is a minimal prime ideal P such that
I ⊆ P and x /∈ P . Singularly, for every x ∈ L, there exists a minimal prime ideal P such that x /∈ P ,
whenever x ̸= 0.

For any nonempty subset X of L, the ideal

X⊥ := {a ∈ L : x′′ ∧ a′′ = 0, for all x ∈ X}

is called the annihilator of X in L (see moi, moi2). For all x ∈ L, {x}⊥ will simply be denoted x⊥.
Recall that for any ideal I of L, I⊥ is the pseudocomplement of I in (I(L);∧,∨,→), that is I⊥ = I∗.

Recall also that the set {a ∈ L : x ∧ a = 0, for all x ∈ X} is not always an ideal of L as shown in [24].
However, the above definition of annihilator in residuated lattices has the benefit of generalizing the existing
one in subclasses of residuated lattices such as De Morgan residuated lattices, MTL-algebras, BL-algebras,
MV-algebras.

Below are some properties of annihilators in residuated lattices.

Lemma 2.11. [24] Let x, a, b ∈ L. Then, we have:

(i) 1⊥ = {0} , 0⊥= L;

(ii) If a ≤ b, then b⊥ ⊆ a⊥;

(iii) a⊥ ∩ b⊥ = (a ∨ b)⊥;

(iv) a⊥ ∪ b⊥ ⊆ (a ∧ b)⊥;

(v) If x ∈ a⊥, then a ≤ x′ and x ≤ a′.

In order to make the paper self-contained, we recall the following result.

Theorem 2.12. [24] Let X,Y be nonempty subsets of L. Then,

(i) X ⊆ Y implies Y ⊥ ⊆ X⊥;

(ii) X⊥ is an ideal. In addition if X ̸= {0}, then X⊥ is a proper ideal;

(ii) L⊥ = {0};

(iii) X ⊆ X⊥⊥;

(iv) X⊥ = X⊥⊥⊥;

(v) X ∩X⊥ ⊆ {0};

(vi) X⊥ ∪ Y ⊥ ⊆ (X ∩ Y )⊥;

(vii) (X ∪ Y )⊥ = X⊥ ∩ Y ⊥;

(viii) ⟨X⟩⊥ = X⊥. Particularly, ∅⊥ = L;

(ix) If X ⊆ L, then ⟨X⟩ ∩X⊥ = {0};

(x) X⊥ = ∩
x∈X

x⊥.

Let Ann(L) = {X⊥, X ⊆ L} be the set of annihilators of L. Since X⊥ = ⟨X⟩⊥, we have Ann(L) =
{I⊥, I ∈ I(L)}. Then, (Ann(L),∧,∨Ann(L),

⊥ , {0}, L) is a complete boolean algebra where I ∧J := I ∩J and

I ∨Ann(L) J := (I ∪ J)⊥⊥, for all I, J ∈ Ann(L) (see [25]).
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3 Pure Ideals of Residuated Lattices

The notion of pure ideal has been studied in rings by De Marco ([26]), in distributive lattices by Georgescu
and Voiculescu ([27]), as well as in MV-algebras by Cavaccini et al. ([15]), and in De Morgan residuated
lattices by Holdon ([23]) and Mihaela ([14]). In this section, we introduce the notion of pure ideal in residuated
lattices using the concept of annihilator and explore some of its properties.

For any ideal I of a residuated lattice L = (L;∨,∧,⊙,→, 0, 1), we define

σ(I) := {x ∈ L : there are a ∈ I and b ∈ x⊥ such that a⊕ b = 1}.

Proposition 3.1. Let I be an ideal of L, σ(I) is an ideal of L and σ(I) ⊆ I.

Proof. Since 0 ∈ I, 1 ∈ 0⊥ and 0⊕ 1 = 1, we obtain 0 ∈ σ(I). Thus σ(I) ̸= ∅.
Let x1, x2 ∈ L, such that x1 ≤ x2 and x2 ∈ σ(I). Then, there are a2 ∈ I , b2 ∈ x⊥2 such that a2 ⊕ b2 = 1.
From Lemma 2.11 (ii), x1 ≤ x2 implies that x⊥2 ⊆ x⊥1 . Then, b2 ∈ x⊥1 and x1 ∈ σ(I).

In addition, if x1, x2 ∈ σ(I), then, there are a1, a2 ∈ I , b1 ∈ x⊥1 , b2 ∈ x⊥2 such that a1 ⊕ b1 = 1 = a2 ⊕ b2.

Consider a = a1 ⊕ a2 and b = b1 ∧ b2. Then, a ∈ I from Proposition 2.3 (I’1).
Let us show that b ∈ (x1 ⊘ x2)

⊥ and a⊕ b = 1.

(x1 ⊘ x2)
′′ ∧ b′′ = [(x′1 → x2)

′ ∨ b′]′, from (P8)

= [(x′1 → x2)
′ ∨ (b1 ∧ b2)

′]′,

≤ [(x′1 → x2)
′ ∨ (b′1 ∨ b′2)]

′, from (P4) and (P8)

≤ [(x′1 ⊙ x′2) ∨ (b′1 ∨ b′2)]
′, from (P4) and (P11)

≤ [((b′1 ∨ b′2) ∨ x′1)⊙ ((b′1 ∨ b′2) ∨ x′2)]
′, from (P4) and (P9)

= ((b′1 ∨ b′2) ∨ x′1) → ((b′1 ∨ b′2) ∨ x′2)
′, from (P8)

= ((b′1 ∨ b′2) ∨ x′1) → ((b′1 ∨ b′2)
′ ∧ x′′2), from (P8)

= ((b′1 ∨ b′2) ∨ x′1) → ((b′′1 ∧ b′′2) ∧ x′′2), from (P8)

= ((b′1 ∨ b′2) ∨ x′1) → ((x′′2 ∧ b′′2) ∧ b′′1),

= ((b′1 ∨ b′2) ∨ x′1) → 0, since b2 ∈ x⊥2

= ((b′1 ∨ b′2) ∨ x′1)
′,

= (b′1 ∨ b′2)
′ ∧ x′′1, from (P8)

= (b′′1 ∧ b′′2) ∧ x′′1, from (P8)

= (b′′1 ∧ x′′1) ∧ b′′2,

= 0.

Therefore, (x1 ⊘ x2)
′′ ∧ b′′ = 0, which means that b ∈ (x1 ⊘ x2)

⊥.
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Also,

a⊕ b = (a1 ⊕ a2)⊕ (b1 ∧ b2),

= a1 ⊕ (a2 ⊕ (b1 ∧ b2)), since ⊕ is associative

= a1 ⊕ (a′2 ⊙ (b1 ∧ b2)
′)′,

= a1 ⊕ (a′2 → (b1 ∧ b2)
′′), from (P8)

≥ a1 ⊕ (a′2 → (b1 ⊙ b2)
′′), from (P1) and (P4)

≥ a1 ⊕ (a′2 → (b′′1 ⊙ b′′2)), from (P11) and (P4)

≥ a1 ⊕ (b′′1 ⊙ (a′2 → b′′2)), from (P3)

= a1 ⊕ (b′′1 ⊙ (a2 ⊕ b2)),

= a1 ⊕ (b′′1 ⊙ 1), from hypothesis

= a1 ⊕ b′′1

and we obtain a⊕ b ≥ a1⊕ b1 = 1 because ⊕ is compatible with the lattice order and from the hypothesis.
Thus, a⊕ b = 1, and it follows that (x1 ⊘ x2) ∈ σ(I). Hence, σ(I) is an ideal of L.

Now, let us show that σ(I) ⊆ I.
Let x ∈ σ(I). Then, there are a ∈ I, b ∈ x⊥ (i.e., x′′ ∧ b′′ = 0) such that a⊕ b = 1. We have: x′′ = x′′ ∧ 1 =

x′′ ∧ (a ⊕ b) = x′′ ∧ (a′ ⊙ b′)′
(P8)
= [x′ ∨ (a′ ⊙ b′)]′

(P4), (P9)

≤ [(x′ ∨ a′) ⊙ (x′ ∨ b′)]′
(P8)
= (x′ ∨ a′) → (x′ ∨ b′)′

(P8)
=

(x′ ∨ a′) → (x′′ ∧ b′′) = (x′ ∨ a′) → 0 = (x′ ∨ a′)′
(P8)
= (x′′ ∧ a′′), i.e., x′′ ≤ x′′ ∧ a′′. Thus, x′′ = x′′ ∧ a′′, which

implies that x′′ ≤ a′′. Since a′′ ∈ I, then x′′ ∈ I. Therefore, x ∈ I. □
The following lemma highlights some properties of the ideal σ(I).

Lemma 3.2. Let L be a residuated lattice and I, J two ideals of L. Then,

(i) I ⊆ J implies σ(I) ⊆ σ(J);

(ii) σ(I ∩ J) = σ(I) ∩ σ(J);

(iii) σ(I) ∨ σ(J) ⊆ σ(I ∨ J);

(iv) σ(σ(I)) = σ(I).

Proof.

(i) Straightforward.

(ii) From (i) we obtain σ(I ∩ J) ⊆ σ(I) ∩ σ(J).
On the other hand, let x ∈ σ(I) ∩ σ(J). Then, there are a1 ∈ I, a2 ∈ J , and b1, b2 ∈ x⊥ such that
a1 ⊕ b1 = 1 = a2 ⊕ b2. Set a = a1 ∧ a2, and b = b1 ⊕ b2. Since x⊥, I and J are ideals, it follows that
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b ∈ x⊥, a ∈ I ∩ J . Moreover, we have:

a⊕ b = b⊕ a, since ⊕ is commutative

= (b1 ⊕ b2)⊕ (a1 ∧ a2),

= b1 ⊕ (b2 ⊕ (a1 ∧ a2)), since ⊕ is associative

= b1 ⊕ (b′2 ⊙ (a1 ∧ a2)
′)′,

= b1 ⊕ (b′2 → (a1 ∧ a2)
′′), from (P8)

≥ b1 ⊕ (b′2 → (a1 ⊙ a2)
′′), from (P1) and (P4)

≥ b1 ⊕ (b′2 → (a′′1 ⊙ a′′2)), from P (11) and (P4)

≥ b1 ⊕ (a′′1 ⊙ (b′2 → a′′2)), from (P3)

= b1 ⊕ (a′′1 ⊙ (b2 ⊕ a2)), from the definition of ⊕
= b1 ⊕ (a′′1 ⊙ 1), since b2 ⊕ a2 = 1

= b1 ⊕ a′′1,

≥ b1 ⊕ a1, since ⊕ is compatible with the lattice order

= 1, from hypothesis

Then, a⊕ b = 1. Therefore, there are b ∈ x⊥, a ∈ I ∩J such that a⊕ b = 1. It follows that x ∈ σ(I ∩J).
Hence, σ(I) ∩ σ(J) ⊆ σ(I ∩ J).

(iii) Straightforward from (i) and the fact that σ(I) ∨ σ(J) = ⟨σ(I) ∪ σ(J)⟩.

(iv) It follows from Proposition 3.1 that σ(σ(I)) ⊆ σ(I).
Conversely, let x ∈ σ(I). Then, there are a ∈ I and b ∈ x⊥ such that a⊕ b = 1. We have

x⊕b = b′ → x′′
(P4)

≥ b′ → (x⊙a)′′
(P4), (P11)

≥ b′ → (x′′⊙a′′)
(P3)

≥ x′′⊙(b′ → a′′) = x′′⊙(b⊕a) = x′′⊙1 = 1.
Therefore, x⊕ b = 1 with x ∈ σ(I) and b ∈ x⊥. Hence, x ∈ σ(σ(I)).

□
In light of Proposition 3.1, we define the concept of pure ideal in residuated lattices.

Definition 3.3. Let L be a residuated lattice. Then, I is a pure ideal of L if I is an ideal of L such that
σ(I) = I.

Remark 3.4. We observe that {0} and L are trivial pure ideals of L.

We denote by Iσ(L) the set of pure ideals of L. As an illustration of Definition 3.3, we have this example.

Example 3.5. Consider the residuated lattice L1 = (L;∨,∧,⊙,→, 0, 1) where the underlying poset is de-
picted in Figure 1, and the operations → and ⊙ are given in Table 1 ([28])

The only proper ideals of L1 are I = {0, d} and J = {0, a, b, c}. We have: 0⊥ = L, a⊥ = b⊥ = c⊥ = {0, d},
d⊥ = {0, a, b, c}, e⊥ = {0}, f⊥ = {0}, 1⊥ = {0}. Thus, σ(I) = {0, d} = I, and σ(J) = {0, a, b, c} = J . Hence
I and J are pure ideals of L1.

The next example shows that not all ideals of residuated lattices are pure ideals.

Example 3.6. Let L2 = (L;∨,∧,⊙,→, 0, 1) be the residuated lattice ([29]) whose associated Hasse diagram
is depicted in Figure 2, and the operations → and ⊙ given in Table 2.

For I = {0, d, e, f}, we have σ(I) = {0} ̸= I, meaning that I is not a pure ideal of L2.
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Figure 1: Hasse diagram of L1

Table 1: Operation tables of → and ⊙ for L1 in Example 3.5

→ 0 a b c d e f 1

0 1 1 1 1 1 1 1 1
a d 1 1 1 d 1 1 1
b d f 1 1 d f 1 1
c d e f 1 d e f 1
d c c c c 1 1 1 1
e 0 c c c d 1 1 1
f 0 b c c d f 1 1
1 0 a b c d e f 1

⊙ 0 a b c d e f 1

0 0 0 0 0 0 0 0 0
a 0 a a a 0 a a a
b 0 a a b 0 a a b
c 0 a b c 0 a b c
d 0 0 0 0 d d d d
e 0 a a a d e e e
f 0 a a b d e e f
1 0 a b c d e f 1

The set of pure ideals is closed under the infimum and supremum as shown below.

Proposition 3.7. If I and J are pure ideals of L, then I ∩ J and I ∨ J are pure ideals of L.

Proof. Let I and J be pure ideals of L. Then σ(I) = I and σ(J) = J .
According to Proposition 3.1, we have σ(I ∩ J) ⊆ I ∩ J .
Now I ⊆ σ(I) and J ⊆ σ(J) imply that I ∩ J ⊆ σ(I)∩ σ(J). Moreover, σ(I)∩ σ(J) = σ(I ∩ J) from Lemma
3.2. It follows that σ(I ∩ J) = I ∩ J . Hence, I ∩ J is a pure ideal of L.

In addition, applying Proposition 3.1 and Lemma 3.2, we have σ(I) ∨ σ(J) ⊆ σ(I ∨ J) ⊆ I ∨ J . This
implies that I ∨ J ⊆ σ(I ∨ J) ⊆ I ∨ J . Therefore, σ(I ∨ J) = I ∨ J .
□

The next result is a characterization of pure ideals of residuated lattices.

Proposition 3.8. An ideal I of L is pure if and only if ⟨I ∪ x⊥⟩ = L, for all x ∈ I.

Proof. Assume I is pure, that is I = σ(I). Let x ∈ I = σ(I). Then, there are a ∈ I and b ∈ x⊥ such that
a ⊕ b = 1. This means that 1 = a ⊕ b ∈ ⟨I ∪ x⊥⟩, and it follows that ⟨I ∪ x⊥⟩ = L. Hence, for all x ∈ I,
⟨I ∪ x⊥⟩ = L.
Conversely, suppose ⟨I ∪ x⊥⟩ = L, for every x ∈ I. It suffices to show that I ⊆ σ(I).
Let x ∈ I. From ⟨I ∪ x⊥⟩ = L, we have 1 ∈ ⟨I ∪ x⊥⟩; then, by Proposition 2.5, there are i ∈ I and j ∈ x⊥

such that 1 ≤ i ⊕ j. This means that there are i ∈ I and j ∈ x⊥ such that i ⊕ j = 1; i.e., x ∈ σ(I). Then,
I ⊆ σ(I). □

The characterization obtained in 3.8 clearly shows that a pure ideal I of L is exactly a pure element of
the quantale I(L).
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Figure 2: Hasse diagram of L2

Table 2: Operation tables of → and ⊙ for L2 in Example 3.6

→ 0 a b c d e f 1

0 1 1 1 1 1 1 1 1
a d 1 a a f f f 1
b e 1 1 a f f f 1
c f 1 1 1 f f f 1
d a 1 1 1 1 1 1 1
e b 1 a a a 1 1 1
f c 1 a a a a 1 1
1 0 a b c d e f 1

⊙ 0 a b c d e f 1

0 0 0 0 0 0 0 0 0
a 0 c c c 0 d d a
b 0 c c c 0 0 d b
c 0 c c c 0 0 0 c
d 0 0 0 0 0 0 0 d
e 0 d 0 0 0 d d e
f 0 d d 0 0 d d f
1 0 a b c d e f 1

Recall from [30] that a mapping g : L −→ L on a bounded lattice that associates to any element a from
L its image g(a) ∈ L is an interior operator of L if it verifies the following properties for all a, b ∈ L:

(i) a ≤ b implies g(a) ≤ g(b);

(ii) g(a) ≤ a;

(iii) g2(a) = g(a);

(iv) g(1) = 1.

The set O := {a ∈ L : g(a) = a} is the set of fixed elements of L by g.
As a direct consequence of Proposition 3.1, Lemma 3.2 (i), (iv), and Remark 3.4, we have the following

proposition.

Proposition 3.9. Let L be a residuated lattice. Then, the operator σ is an interior operator on (I(L),⊆).

We easily observe that Iσ(L) is the set of fixed elements of I(L) by σ.
Now, since the notions of ideal and filter in (non-regular) residuated lattices are not perfectly dual, we

analyze the relation between pure ideals and pure filters studied in [9, 31]. We first of all recall some useful
properties.
Let (L;∧,∨,⊙,→, 0, 1) be a residuated lattice and X a nonempty subset of L. The set of elements of L
having their negation in X is denoted and defined by:

N(X) := {x ∈ L : x′ ∈ X}.
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The following properties of the operator N shall be needed.

Remark 3.10. [29] Let F be a filter and I an ideal of L. Then,

(i) N(I) is a filter of L, and I = N(N(I));

(ii) N(F ) is an ideal of L, and F ⊆ N(N(F )).

Proposition 3.11. [32] Let L be a residuated lattice.

(i) If I is a maximal ideal of L, then N(I) is a maximal filter of L;

(ii) If F is a maximal filter of L, then N(F ) is a maximal ideal of L.

For all x ∈ L, the set
⊥x := {y ∈ L : x ∨ y = 1}

which is called the co-annihilator of x is a filter. Also, for any filter F of L, the set

δ(F ) := {x ∈ L : there are f ∈ F and z ∈ ⊥x such that f ⊙ z = 0}

is a filter of L and δ(F ) ⊆ F ( see [9]). Moreover, a filter F of L is called pure filter of L if δ(F ) = F (i.e.,
F ⊆ δ(F )).

Example 3.12. [9] Consider the residuated lattice L3 with the Hasse diagram of the underlying poset pictured
in Figure 3, and the operations → and ⊙ defined in Table 3. Then, {1}, {1, d}, {1, a, c} and {0, a, b, c, d, 1}
are pure filters.
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Figure 3: Hasse diagram of L3

Table 3: Operation tables of → and ⊙ for L3 in Example 3.12

→ 0 a b c d 1

0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

⊙ 0 a b c d 1

0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

The following proposition establishes a relation between pure ideals and pure filters of a residuated lattice.

Proposition 3.13. Let L be a residuated lattice.



Stable topology on ideals for residuated lattices. Trans. Fuzzy Sets Syst. 2024; 3(1) 163

(i) If F is a pure filter of L, then N(F ) is a pure ideal of L;

(ii) If I is a pure ideal of L, then N(I) is not necessarily a pure filter of L.

Proof.

(i) Assume that F is a pure filter of L; it suffices to show that N(F ) ⊆ σ(N(F )).
For all x ∈ N(F ), we have x′ ∈ F = δ(F ), since F is pure. This implies that, there are f ∈ F and
y ∈ ⊥(x′) such that f ⊙ y = 0. We deduce that f ′ ∈ F ′ ⊆ N(F ).
In addition, since x′∨y = 1, we obtain 1 = x′∨y = x′′′∨y ≤ x′′′∨y′′. Then, x′′′∨y′′ = 1, which implies
that (x′′′ ∨ y′′)′ = 0. Thus, x′′′′ ∧ y′′′ = 0, and hence y′ ∈ (x′′)⊥.

We also have f ⊙ y = 0, which implies that f ′′ ⊙ y′′
(P11)

≤ (f ⊙ y)′′ = 0. Therefore, f ′′ ⊙ y′′ = 0, and
then (f ′′ ⊙ y′′)′ = 1, i.e., f ′ ⊕ y′ = 1.
Thus, there are f ′ ∈ N(F ) and y′ ∈ (x′′)⊥ such that f ′ ⊕ y′ = 1, which means that x′′ ∈ σ(N(F )).
Since σ(N(F )) is an ideal, it becomes clear that x ∈ σ(N(F )). Hence, σ(N(F )) = N(F ).

(ii) From Example 3.5, we have I1 = {0, d} is a pure ideal. But N(I1) = {a, b, c, e, f, 1} is not a pure filter,
since δ(N(I1)) = {1, c} ̸= N(I1).

□

Remark 3.14. If I is a pure ideal of a regular residuated lattice L, then N(I) is a pure filter of L.

Indeed, assume that I is a pure ideal of a regular residuated lattice L. It suffices to show that N(I) ⊆
δ(N(I)).
For all x ∈ N(I), x′ ∈ I = σ(I) since I is pure. Then, there are a ∈ I and b ∈ (x′)⊥ such that a ⊕ b = 1.
We obtain that a′ ∈ I ′ ⊆ N(I). Since x′′′ ∧ b′′ = 0, we have (x′′′ ∧ b′′)′ = 1, i.e., (x′′ ∨ b′)′′ = 1, from (P8). It
follows from the regularity of L that x′′ ∨ b′ = 1, and then x ∨ b′ = 1. Hence, b′ ∈ ⊥x.

Moreover, since a ⊕ b = 1, i.e., (a′ ⊙ b′)′ = 1, we deduce that a′ ⊙ b′ = 0. Thus there are a′ ∈ N(I) and
b′ ∈ ⊥x such that a′ ⊙ b′ = 0. Hence, x ∈ δ(N(I)), as required.

The symbol ord(x) which stands for the order of nilpotence or simply order of an element x ∈ L is the
smallest number n ∈ N⋆ such that xn = 0, i.e., x⊙ · · · ⊙ x︸ ︷︷ ︸

n times

= 0. If there is no such n, then the order of

x is infinite, i.e., ord(x) = ∞. Obviously, we always have ord(1) = ∞. For every x, y ∈ L, if x ≤ y and
ord(y) < ∞, then ord(x) < ∞. Similarly, if x ≤ y and ord(x) = ∞ then ord(y) = ∞.

Proposition 3.15. [9] A residuated lattice L is local if and only if ord(x) < ∞ or ord(x′) < ∞, for every
x ∈ L.

We say that a residuated lattice L is locally finite if ord(x) < ∞ for all x ̸= 1 in L.

Proposition 3.16. [14] For any x ∈ L,

(i) There exists a proper ideal I of L such that x ∈ I iff ord(x′) = ∞;

(ii) ⟨x⟩ is proper iff ord(x′) = ∞;

(iii) ord(x′) < ∞ iff x /∈ P for every prime ideal P .
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For any residuated lattice L, we consider the set ℜ := {x ∈ L : ord(x′) = ∞} = {x ∈ L : (x′)n ̸=
0, for all n ≥ 1}.

Proposition 3.17. Let L be a residuated lattice. In case ℜ is an ideal of L, if x, y ∈ ℜ, then (x′)n⊕(y′)n ̸= 0,
for all n ≥ 1.

Proof. Let xn, yn ̸= 0 for all n ≥ 1, as x, y ∈ ℜ. Then, x ⊕ y ∈ ℜ, since ℜ is an ideal by hypothesis. This

implies that [(x ⊕ y)′]n ̸= 0. But, 0 ̸= [(x ⊕ y)′]n = [(x′ ⊙ y′)′′]n
P (11)

≤ [(x′ ⊙ y′)n]′′ = [(x′)n ⊙ (y′)n]′′
P (11)

≤
[((x′)n)′ ⊙ ((y′)n)′]′ = (x′)n ⊕ (y′)n. Hence, (x′)n ⊕ (y′)n ̸= 0, for all n ≥ 1. □

A residuated lattice is called i-local if it has a unique maximal ideal.
We recall some characterizations of i-local residuated lattices.

Proposition 3.18. [14] The following statements are equivalent:

(i) ℜ is an ideal of L.

(ii) ⟨ℜ⟩ is a proper ideal of L.

(iii) L is i-local.

(iv) ℜ is the only maximal ideal of L.

The next proposition shows that the notions of local and i-local residuated lattices are equivalent.

Proposition 3.19. A residuated lattice L is local if and only if it is i-local.

Proof. Assume that L is local, that is, L has only one maximal filter F . From Proposition 3.11 (ii), N(F )
is a maximal ideal of L.
Let I be a maximal ideal of L. Then, from Proposition 3.11 (i), N(I) is a maximal filter of L. This
implies that N(I) = F , by the uniqueness of the maximal filter. By applying Remark 3.10 (i), it yields that
I = N(N(I)) = N(F ). Therefore, N(F ) is the unique maximal ideal of L, that is, L is i-local.

Conversely, if L is i-local, then it has a unique maximal ideal I. Applying Proposition 3.11 (i), N(I) is a
maximal filter of L.
Consider a maximal filter F of L. We deduce from Proposition 3.11 (ii) that N(F ) is a maximal ideal of L.
Since L is i-local, then N(F ) = I. Thus, from the maximality of F and applying Remark 3.10 (ii), yields we
obtain F = N(N(F )) = N(I). Hence, L has only one maximal filter N(I), that is, L is local. □

Corollary 3.20. A residuated lattice L is i-local if and only if ord(x) < ∞ or ord(x′) < ∞, for every x ∈ L.

Since the notion of ideal of residuated lattices is also defined from the commutative and associative
operation ⊕, we now introduce the concept of ⊕-order of an element, from which we will provide a new
characterization of i-local residuated lattices.

Definition 3.21. Let L be a residuated lattice, and x ∈ L. Then, the ⊕-order of x denoted ord⊕(x) is the
smallest number n ∈ N⋆ such that nx = 1. When there is no such n, we say that the ⊕-order of x is infinite,
that is, ord⊕(x) = ∞.

In the example below, we compute the ⊕-order of some elements of the residuated lattice L2 from Example
3.6.

Example 3.22. In the residuated lattice L2 of Example 3.6, we have:
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• ord⊕(a) = 1 < ∞ = ord(a);

• ord(d) = 1 < ∞ = ord⊕(d);

• ord(e) = 2 < ∞ = ord⊕(e).

Proposition 3.23. A residuated lattice L is i-local if and only if ord⊕(x) < ∞ or ord⊕(x
′) < ∞, for every

x ∈ L.

Proof. Assume that L is i-local, that is L has a unique maximal ideal I. Suppose by contrary that there is
x ∈ L such that ord⊕(x) = ∞ = ord⊕(x

′). Then, ⟨x⟩ is proper; otherwise, if ⟨x⟩ = L, then from Proposition
2.5 (i) there exists n ∈ N⋆ such that nx = 1, which is a contradiction.

Similarly, ⟨x′⟩ is proper. Since I is the unique maximal ideal of L, we deduce that ⟨x⟩, ⟨x′⟩ ⊆ I, which
implies that x, x′ ∈ I. Thus, 1 = x⊕ x′ ∈ I, a contradiction. Hence, ord⊕(x) < ∞ or ord⊕(x

′) < ∞.

Conversely, assume that ord⊕(x) < ∞ or ord⊕(x
′) < ∞, for every x ∈ L. Suppose by contrary that

there are two distinct maximal ideals I and J of L. Then, for any y ∈ I \ J , there is n ∈ N⋆ such that
(ny)′ ∈ J , from Proposition 2.7 (ii). Set a = ny; then, a′ ∈ J , which implies that ma′ ∈ J for all m ∈ N.
Thus, ord⊕(a

′) = ∞, implying from hypothesis that ord⊕(a) < ∞. This means that there is k ∈ N⋆ such
that ka = 1, that is, kny = 1. Since y ∈ I, we have kny ∈ I, that is, 1 = kny ∈ I which contradicts the fact
that I is maximal. Therefore, L has only one maximal ideal, and hence is i-local. □

4 Stable Topology for Ideals of Residuated Lattices

Piciu in [13] endowed the set of prime ideals of a residuated lattice L with the Zariski topology. Let X be
a nonempty subset of L and D(X) := {P ∈ SpecId(L) : X ⊈ P}. The following proposition presents some
properties of D(X).

Proposition 4.1. [13] Let x, y ∈ L, and X,X1, X2, {Xγ}γ∈Γ ⊆ L. Then,

(i) X1 ⊆ X2 implies D(X1) ⊆ D(X2);

(ii) D(X) = SpecId(L) if and only if ⟨X⟩ = L. Particularly, D(x) = SpecId(L) if and only if ⟨x⟩ = L;

(iii) D(X) = ∅ if and only if X = {0} or X = ∅. In particular, D(x) = ∅ if and only if x = 0;

(iv) D(1) = D(L) = SpecId(L) and D({0}) = D(∅) = ∅;

(v) ∪
γ∈Γ

D(Xγ) = D( ∪
γ∈Γ

Xγ);

(vi) D(X) = D(⟨X⟩);

(vii) D(X1) ∪D(X2) = D(⟨X2⟩ ∪ ⟨X1⟩) and D(X1) ∩D(X2) = D(⟨X2⟩ ∩ ⟨X1⟩);

(viii) ⟨X1⟩ = ⟨X2⟩ if and only if D(X1) = D(X2);

(ix) D(x) ∪D(y) = D(x ∨ y) = D(x⊕ y); D(x) ∩D(y) = D(x′′ ∧ y′′).

The family {D({x})}x∈L where D(x) = {P ∈ SpecId(L) : x /∈ P}, for all x ∈ L, is a basis for a topology
τL := {D(X) : X ⊆ L} on SpecId(L). The topological space (SpecId(L), τL) is called the prime ideals space
of L.
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One can observe that for any ideal I of L, D(I) is an open set and V (I) := {P ∈ SpecId(L) : I ⊆ P} is
a closed set for (SpecId(L), τL). The set D(I) is stable under descent, that is, if P ∈ D(I), Q ∈ SpecId(L)
and Q ⊆ P , then Q ∈ D(I). Moreover, V (I) is stable under ascent, that is, if P ∈ V (I), Q ∈ SpecId(L)
and P ⊆ Q, then Q ∈ V (I). Therefore, the sets that are simultaneously open and closed (called clopen) are
stable, that is, they are stable under ascent and descent.
The stable topology for L is the collection SL of open stable subsets D(I) of SpecId(L) defined by SL :=
{D(I) : I ∈ I(L) and D(I) is stable under ascent}.

In what follows, we characterize open stable sets by means of pure ideals.

Theorem 4.2. Let L be a residuated lattice and I an ideal of L. Then, I is pure iff D(I) is stable in
SpecId(L).

Proof. For the first implication, let us show that D(I) is stable under ascent. To this end, assume that I
is pure and let P,Q be prime ideals of L such that P ⊆ Q and P ∈ D(I). Then, I ⊈ P , which implies that
there is x ∈ I \ P . From the fact that x ∈ I = σ(I), there are a ∈ I and b ∈ x⊥ such that a ⊕ b = 1. But
b ∈ x⊥ implies that b′′ ∧ x′′ = 0 ∈ P . Since P is prime and x /∈ P , we deduce that b ∈ P ⊆ Q. It yields
that Q ∈ D(I), otherwise we will have I ⊆ Q, implying that a ∈ Q and 1 = a ⊕ b ∈ Q, contradicting the
assumption that Q is proper.

On the other hand, assume that D(I) is stable in SpecId(L) and suppose by contrary that I is not a
pure ideal of L, that is, σ(I) ⊊ I. Then, there exists x ∈ I \ σ(I). Applying Proposition 2.10, there exists a
minimal prime ideal P of L such that σ(I) ⊆ P and x /∈ P . This implies that I ⊈ P , that is, P ∈ D(I).

Applying Proposition 3.8, I is not pure iff x⊥ ∨ I ̸= L, which implies that x⊥ ∨ I is proper. Thus, from
the prime ideal theorem (see Theorem 2.9), there exists a prime ideal Q such that x⊥ ∨ I ⊆ Q. This implies
that I ⊆ Q, and therefore Q /∈ D(I). But σ(I) ⊆ I ⊆ Q, and by the minimality of P , we have P ⊆ Q. Since
D(I) is stable and P ∈ D(I), it follows that Q ∈ D(I), which is a contradiction. Hence, I is a pure ideal of
L.
□

Corollary 4.3. For a residuated lattice L, the assignment I ⇝ D(I) is a bijection between the set of pure
ideals of L and the set of open stable subsets of SpecId(L).

Theorem 4.2 yields the following separation property.

Theorem 4.4. Let I be a pure ideal of L, let P1, P2 be minimal ideals and P a prime ideal of L such that
P1, P2 ⊆ P . Then, I ⊆ P1 iff I ⊆ P2.

Proof. Suppose by contrary that I ⊆ P1 and I ⊈ P2. Then, P2 ∈ D(I). Since I is pure, we deduce from
Theorem 4.2 that D(I) is stable. Thus, from P2 ⊆ P and P2 ∈ D(I) it follows that P ∈ D(I), which means
that I ⊈ P . But, I ⊆ P1 and P1 ⊈ P imply that I ⊆ P , which is a contradiction. □

For any maximal ideal M of L, we set M̂ := {P ∈ SpecId(L) : P ⊆ M}.

Corollary 4.5. For any pure ideal I and any maximal ideal M of L, either I ⊆ P for every P ∈ M̂ , or
I ⊈ P for every P ∈ M̂ .

Proof. Assuming by contrary that there are P1, P2 ∈ M̂ such that I ⊆ P1 and I ⊈ P2, is in contradiction
with Theorem 4.4.
□

To investigate the stable topology on i-local residuated lattices, we need the following results.
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Proposition 4.6. Let I be an ideal of L. If σ(I) ̸= {0}, then there is an element a ∈ I such that ord(a′′) = ∞.

Proof. If x ∈ σ(I) with x ̸= 0, then there are a ∈ I and b ∈ x⊥ such that a ⊕ b = 1. It follows that
a′ → b′′ = 1, which means that a′ ≤ b′′. This implies that (b′)n ≤ (a′′)n, for every n ≥ 1. It is sufficient
to show that ord(b′) = ∞. We have x′′ ∧ b′′ = 0 (since b ∈ x⊥) , which implies that n.n(x′′ ∧ b′′) = 0, for
every n ≥ 2. From (P13), (nx) ∧ (nb) ≤ n.n(x′′ ∧ b′′) = 0, i.e., (nx) ∧ (nb) = 0, which is equivalent to
[(x′)n]′ ∧ [(b′)n]′ = 0, for every n ≥ 2. If by contrary [(b′)n]′ = 1 for some n ≥ 2, then [(x′)n]′ = 0, i.e.,
(nx) = 0, implying that x = 0 (as x ≤ nx = 0), contradicting the hypothesis. Thus, [(b′)n]′ ̸= 1. We deduce
that (b′)n ̸= 0, for every n ≥ 2.
It is worth noticing that if n = 1, then b′ ̸= 0. Otherwise, we will have b′′ = 1, implying from x′′∧ b′′ = 0 that
x′′ = 0, which is equivalent to x = 0, a contradiction to the hypothesis. Therefore, ord(b′) = ∞ and hence
ord(a′′) = ∞.
□
Corollary 4.7. Let I be a proper ideal of L. If L is i-local, then σ(I) = {0}, that is, the unique pure ideals
of L are {0} and L.

Proof. Let I be a proper ideal of the i-local residuated lattice L. Assume by contrary that σ(I) ̸= 0.
Then, there exists a ∈ I such that ord(a′′) = ∞, from Proposition 4.6. Since L is i-local, we deduce from
Corollary 3.20 that ord(a′) < ∞, i.e., (a′)n = 0 for some n ≥ 1. Therefore, 1 = [(a′)n]′ = na ∈ I, i.e., I = L,
contradicting the hypothesis that I is proper. Hence the only pure ideals of L are 0 and L.
□

The theorem below states that the stable topology for an i-local residuated lattice is trivial.

Theorem 4.8. If L is i-local, then the stable topology SL on L is trivial.

Proof. From Theorem 4.2, D(I) is stable in SpecId(L) iff I is a pure ideal of L. But if L is i-local, then it
follows from Corollary 4.7 that the only pure ideals of L are {0} and L . Thus, either I = {0} or I = L, and
therefore D(I) = ∅, or D(I) = SpecId(L). Hence, SL = {∅, SpecId(L)}. □

5 Conclusion

This work aimed to equip the set of prime ideals of a residuated lattice with the stable topology, a topology
coarser than Zariski topology. To achieve, based on the notion of annihilator, we have introduced the concept
of pure ideal in residuated lattices, along with its properties. After establishing a relation between pure ideals
and pure filters of a residuated lattice, we have characterized open stable sets relative to the stable topology
on prime ideals of a residuated lattice.

In our forthcoming research, following the approach in [27], we will explore some sheaf representations
of i-normal residuated lattices described in [13]. Also, we plan to construct the Belluce lattice using the
prime ideals of a residuated lattice to offer some additional characterizations of pure ideals and a better
understanding of the prime ideals space of a residuated lattice. Recognizing the limitations of existing
models such as those used for De Morgan residuated lattices [14], or MV algebras [16], we acknowledge the
need for a novel approach.
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Abstract. Although optimization of weighted objectives is ubiquitous in production scheduling, the literature
concerning the determination of weights used in these objectives is scarce. Authors usually suppose that weights
are given in advance, and focus on the solution methods for the specific problem at hand. However, weights directly
settle the class of optimal solutions, and are of utmost importance in any practical scheduling problem. In this
study, we propose a new weighting approach for single machine scheduling problems. First, factor weights to be
used in customer evaluation are found by solving a nonlinear optimization problem using the covariance matrix
adaptation evolutionary strategy (CMAES) under fuzzy environment that takes a pairwise comparison matrix
as input. Next, customers are sorted using the technique for order of preference by similarity to ideal solution
(TOPSIS) by means of which job weights are obtained. Finally, taking these weights as an input, a total weighted
tardiness minimization problem is solved by using mixed-integer linear programming to find the best job sequence.
This combined methodology may help companies make robust schedules not based purely on subjective judgment,
find the best compromise between customer satisfaction and business needs, and thereby ensure profitability in the
long run.

AMS Subject Classification 2020: 90B50; 90B35
Keywords and Phrases: Covariance matrix adaptation evolutionary strategy, Technique for order of preference
by similarity to ideal solution, Weighted single machine scheduling, Mixed-integer linear programming.

1 Introduction

Companies should develop customer-focused strategies for being one step ahead in today’s competitive market.
The primary rule, which is an overwhelming and daunting task, is getting to know and identifying customers
better. This not only helps companies fulfill their expectations, but also facilitates prioritization. Actually,
some customers are more valuable than others. In production scheduling, this is reflected in the practice of
assigning weights to orders or jobs. Each jobs contribution to the objective function thereby depends on its
weight.

Although optimization of weighted objectives is ubiquitous in production scheduling, the literature con-
cerning the determination of weights used in these objectives is scarce. Authors usually suppose that weights
are given in advance, and focus on the solution methods for the specific problem at hand. However, weights
directly settle the class of optimal solutions, and are of utmost importance in any practical scheduling prob-
lem.

Lin et al. [1] consider a hybrid flow shop scheduling problem with dynamic reentrant characteristics sub-
stantiated by the complexities in a repairing company. A genetic algorithm is applied to obtain near-optimal
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schedules, while the analytic hierarchy process (AHP) is used both to fulfill multiple criteria concerning the
problem and to speed up the genetic algorithm’s convergence. Deliktas et al. [2] propose an integrated ap-
proach for single machine scheduling with sequence-dependent setup times. In the first stage, job weights
are determined by using AHP. In the second stage, a mixed-integer nonlinear programming model is built by
considering three objective functions, namely the weighted number of tardy jobs, total weighted completion
time, and makespan with sequence-dependent setup times. nemli [3] aims to create an algorithm to support
the decision maker in the scheduling of customer orders for a box packaging production company in a make-
to-order environment. In the first stage, the weighted tardiness of the orders is minimized, where the weights
are determined by AHP, based on the knowledge and experience of experts. Ortiz-Barrios et al. [4] propose an
integrated and enhanced method of a dispatching algorithm for scheduling flexible job shops based on fuzzy
AHP and the technique for order of preference by similarity to ideal solution (TOPSIS). Fuzzy AHP is used to
calculate the criteria weights under uncertainty, and TOPSIS is later applied to rank the eligible operations.
Utku et al. [5] develop a mixed-integer programming model to minimize total lateness and total completion
time of jobs in an automotive company. AHP is used to determine the weights of the two objectives.

Ignorance of weight determination in scheduling literature might be partly attributed to the gap between
the theory and practice of scheduling. Stoop and Wiers [6] give an overview of the problems related to the
complexity of scheduling in practice. Alternative suggestions to improve scheduling are proposed. First a
description of scheduling and how it relates to planning and sequencing is presented. Then a description of
problems that cause the scheduling function in practice to be very complex, and also an overview of shop
floor models and scheduling techniques are given. Next, the problem of measuring schedule performance is
discussed. Then possible solutions to the problems discussed are provided. Wiers [7] gives an overview of
the applicability of techniques and the role of humans in production scheduling. He indicates that most of
the literature reports give little indication of whether the system has been implemented in manufacturing
practice, and for those systems that have been implemented, what types of implementation problems were
encountered. The success of scheduling techniques in practice can only improve when researchers are aware of
the implementation pitfalls through learning from each other’s experiences. McKay and Wiers [8] argue that
the gap between theory and practice in production scheduling has been confounded by the traditional view
of scheduling as sequencing. This definition has focused researchers on the sequencing issue at the expense
of the larger scheduling problem faced by practitioners dealing with the problems of partiality, temporality,
and predictiveness. Namely, a scheduling process generates partial solutions for partial problems; anticipates,
reacts to, and adjusts for disturbances in the process and environment; and is sensitive to and adjusts to the
meaning of time in the production situation. The authors present an extended view of scheduling that unifies
the traditional definition used in operations research and a number of key aspects of real-world scheduling.
Dudek et al. [9] claim in the context of flow shop scheduling that scores of person-years of research time have
been wasted on an intractable problem of little practical consequence. Although Gupta and Stafford [10]
disagree with the viewpoint expressed by Dudek et al. [9], they admit that the mathematical theory of flow
shop scheduling suffers from too much abstraction and too little application.

The purpose of this paper is to propose a new weighting approach with evolutionary computation for single
machine scheduling problems. First, a pairwise comparison matrix that shows the relative importance of the
criteria to be used in assessing customers is formed by having recourse to expert opinion, and criteria weights
are determined by solving a nonlinear optimization problem via covariance matrix adaptation evolutionary
strategy (CMAES) under fuzzy environment. Second, customer orders are ranked according to these criteria
with TOPSIS. Finally, orders are sequenced so as to minimize total weighted tardiness by mixed-integer linear
programming, where TOPSIS performance scores are taken as input.

The remainder of the paper is organized as follows. Section 2 presents the workflow regarding the appli-
cation of the new approach. Section 3 defines the total weighted tardiness minimization problem, presents
its mixed-integer linear program and suggests one possible way of handling the problem of quoting due dates
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for new orders in this context. Section 4 gives the numerical solution for the case study in a Turkish textile
firm. Finally, we summarize our findings in Section 5.

2 TOPSIS-Based Improved Weighting Approach with Evolutionary Al-
gorithm

Workflow of the proposed approach consists in (1) forming a pairwise comparison matrix for the criteria to
be used in assessing customers, (2) determination of the weights of these criteria by solving an optimization
problem via CMAES taking the pairwise comparison matrix as input, and (3) finding customers’ scores with
respect to these weights by using TOPSIS. The steps will be explained in detail below.

2.1 Forming Pairwise Comparison Matrix

We assume that preference of criterion i over j is given by a triple (xlij , x
m
ij , x

u
ij). We call this a “fuzzy

triangular number.” Here the superscripts l,m, u stand for lower, middle, and upper, respectively. The
middle coordinate xmij may take an integer value in between 1 and 9. The equality xmij = 1 implies that the
criteria in question are equally important, whereas the equality xmij = 9 implies that criterion i is extremely

important compared to j. Unless xmij = 1 or xmij = 9, the first coordinate xlij is 1 less than xmij , and the third
coordinate xuij is 1 more than xmij . If xmij = 1, then all three coordinates are 1; if xmij = 9, then all three
coordinates are 9. Formally, pairwise comparison matrix formation using triangular numbers is composed of
the following steps, where n denotes the number of criteria:

1. Form the tentative pairwise comparison matrix for the criteria:
(1, 1, 1) (xl12, x

m
12, x

u
12) · · · (xl1n, x

m
1n, x

u
1n)

(xl21, x
m
21, x

u
21) (1, 1, 1) · · · (xl2n, x

m
2n, x

u
2n)

...
...

. . .
...

(xln1, x
m
n1, x

u
n1) (xln2, x

m
n2, x

u
n2) · · · (1, 1, 1)

 .

2. Perform defuzzification according to the formula

xij :=
xlij + 4xmij + xuij

6
.

3. Calculate the consistency index (CI) of the matrix (xij):

CI :=
λmax − n

n− 1
.

Here λmax denotes the principal eigenvalue.

4. Calculate the consistency ratio (CR) of the matrix (xij):

CR :=
CI

RI
.

Here RI is the random index associated with dimension n.

5. If CR is less than 0.1, then proceed to obtain criteria weights; otherwise, revise the pairwise comparison
matrix.
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2.2 Determination of Criteria Weights

Many methods exist for deriving preference values from judgment matrices [11]. Basically, the idea is to
obtain weights wi such that

wi

wj
≈ xij

for all i, j where (xij) denotes the pairwise comparison matrix [12]. Let µij be a piecewise linear function of
weights defined as

µij(w1, . . . , wn) =


(wi/wj)−xl

ij

xm
ij−xl

ij
, wi/wj ≤ xmij ;

xu
ij−(wi/wj)

xu
ij−xm

ij
, wi/wj > xmij .

Note that µij is an indicator of how well the weights wj , wj comply with the pairwise comparison value xij .
We have

• µij = 1 if and only if wi/wj = xmij ,

• µij ∈ (0, 1) for wi/wj ∈ (xlij , x
u
ij) \ {xmij }, and

• µij ≤ 0 whenever wi/wj ≤ xlij or wi/wj ≥ xuij .

Therefore, all µij shall be as large as possible. One possible way towards this end is to maximize the minimum
of the µij . So we define

G(w1, . . . , wn) := min
i<j

µij(w1, . . . , wn).

Hence, weights can be determined by solving the following nonlinear optimization problem:

maximize G(w1, . . . , wn)

such that w1 + · · ·+ wn = 1.

Note that, rewriting wn in terms of w1, . . . , wn−1, the problem can be converted into an unconstrained
maximization problem. As in Zeydan et al. [13], we solve this by CMAES under fuzzy environment, which is
a derivative-free stochastic global search algorithm developed recently [14]. It works iteratively by adapting
the resulting search distribution to the contours of the objective function by updating the covariance matrix
deterministically using information from evaluated points [14]. We refer the reader to Hansen [15] for details
of the CMAES algorithm.

2.3 Ranking Customers with TOPSIS

Let there be m alternatives and n criteria indexed respectively by i and j. Criteria weights wj are assumed
to be given. Steps for ranking customers with the TOPSIS method can be stated as follows [16]:

1. Form the decision matrix (xij). (This is not to be confused with the matrix obtained in §2.1 after
defuzzification.)

2. Construct the normalized decision matrix (rij):

rij :=
xij√∑m
k=1 x

2
kj

.



A TOPSIS-Based Improved Weighting approach
With Evolutionary Computation. Trans. Fuzzy Sets Syst. 2024; 3(1) 175

3. Construct the weighted normalized decision matrix (vij):

vij := wj × rij .

4. Determine the positive and negative ideal rows (v+1 , . . . , v
+
n ) and (v−1 , . . . , v

−
n ).

5. Measure the distance of each alternative from the ideal rows:

d+i :=

√√√√ n∑
j=1

(vij − v+j )
2, d−i :=

√√√√ n∑
j=1

(vij − v−j )
2.

6. Calculate the closeness of the alternatives to the ideal solution, namely the TOPSIS scores:

Scorei :=
d−i

d+i + d−i
.

3 Total Weighted Tardiness Minimization Problem on a Single Machine

Let there be n jobs to be processed on a single machine. We index jobs by j. Each job has a processing
time pj , due date dj , and weight wj . Preemptions are not allowed; in other words, processing of a job cannot
be interrupted until it is completed. Let Cj denote the completion time of job j. Tardiness is defined as

Tj := max{Cj − dj , 0}.

Thus, tardiness equals lateness if the job is late, and it is zero otherwise. The question is to find a schedule
that minimizes total weighted tardiness. In the common three-field notation, the problem is 1 ||

∑
wjTj

[17, 18]. The objective function is nondecreasing in completion times; i.e., it is regular. So there exists an
optimal schedule in which the machine is never kept idle. Therefore, the problem amounts to finding the best
job sequence with respect to total weighted tardiness. Table 1 shows the indices, parameters, and decision
variables for 1 ||

∑
wjTj .

Table 1: Indices, parameters, and decision variables for 1 ||
∑

wjTj .

Symbol Explanation

j job index
n number of jobs
pj processing time of job j
dj due date of job j
wj weight of job j
Cj completion time of job j
Tj tardiness of job j

3.1 Mixed-Integer Linear Programming Formulation

Minimization of total weighted tardiness on a single machine, which is strongly NP-hard in terms of com-
putational complexity [19], has received much attention in the literature [20, 21, 22]. Branch-and-bound
and dynamic programming approaches have been proposed to obtain optimal solutions. The problem can
also be modeled as a mixed-integer linear program (MILP). One can build a model based on precedence or
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time-indexed decisions [23]. We shall focus on the former in this section. Let xjk be a binary variable defined
as follows:

xjk =

{
1, if job j precedes job k;

0, otherwise.

If xjk = 1, then Cj ≤ Ck − pk; if xjk = 0, then Ck ≤ Cj − pj . These conditional statements can be expressed
respectively as

Cj ≤ Ck − pk +M(1− xjk),

Ck ≤ Cj − pj +Mxjk,

where M is a sufficiently large number. Note that the first inequality becomes redundant when xjk = 0, and
the second becomes redundant when xjk = 1. It is enough to define xjk for each pair of jobs, so there are(
n
2

)
= n(n− 1)/2 such variables. Below is the MILP formulation of 1 ||

∑
wjTj using precedence constraints:

minimize
∑
j

wjTj (1a)

subject to Cj ≤ Ck − pk +M(1− xjk) for all j < k (1b)

Ck ≤ Cj − pj +Mxjk for all j < k (1c)

Tj ≥ Cj − dj for all j (1d)

Cj ≥ pj for all j (1e)

Cj , Tj ≥ 0 for all j (1f)

xjk ∈ {0, 1} for all j < k. (1g)

The objective (1a) is to minimize the sum of weighted tardiness. Constraints (1b) and (1c) relate the
precedence decisions to jobs’ completion times as explained above. Inequality (1d) must hold as an equality
in view of the objective whenever job j is late. The next constraint (1e) guarantees that the completion time
of the first job in the sequence is nonzero. Note that in the formulation there are 2n continuous variables,
namely Cj and Tj , in addition to the n(n− 1)/2 binary variables xjk. There are n2 + n constraints in total
(except binary and nonnegativity restrictions). The big M can be taken as the sum of all processing times.

3.2 Due Date Quotation Problem

Although the number of tardy jobs is a common performance criterion in practice, its minimization may be
an unrealistic objective as it may lead to schedules with unacceptably late jobs. The same is true of weighted
tardiness minimization: if a job has a small weight relative to others, it may be overly late in an optimal
schedule. Therefore, it makes sense to assume deadlines dj for real-life applications. Deadlines represent
hard constraints: in any feasible schedule, all deadlines must be met. Mathematically, the inequality Cj ≤ dj
must be satisfied for all j. We assume that deadlines are defined as translations of due dates by a specified
constant δ:

dj = dj + δ.

Then inequalities Cj ≤ dj can be stated equivalently as

Tj ≤ δ.

Thus, a job is ideally to be completed by its due date, but if it somehow happens to be late, the lateness
cannot exceed δ. In the three-field notation, we express this problem by 1 | dj = dj + δ |

∑
wjTj .
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In scheduling literature it is often assumed that due dates are given beforehand. However, in many
circumstances, determination of due dates itself is a problem: what due date should be assigned to a new
customer order? This is called the due date quotation or management problem. A comprehensive literature
survey thereon is given by Kaminsky and Hochbaum [24].

We consider due date quotation in the setting 1 | dj = dj + δ |
∑

wjTj . More precisely, let there be n
jobs, already sequenced to minimize

∑
wjTj respecting the deadlines. Suppose a new customer order, namely

the (n + 1)st job, has arrived. Its processing time pn+1 and weight wn+1 are known. What due date dn+1

should be assigned to this job? There is an intrinsic trade-off to be faced here: if dn+1 is large, the existing
schedule will not be affected much and the objective value

∑n+1
j=1 wjTj will be small, but the new customer’s

satisfaction will be less; if dn+1 is small, the situation is the other way around.
Let dmin and dmax be the minimum and maximum possible due dates for the (n+1)st job. If it is sequenced

first, it will be completed by pn+1; if it is sequenced last, it will be completed by
∑n+1

j=1 pj . So we naturally

have dmin := pn+1 and dmax :=
∑n+1

j=1 pj . For each possible due date d ∈ [dmin, dmax] for the (n + 1)st job,

let z∗(d) be the objective value
∑n+1

j=1 wjT
∗
j (d) associated with the optimal sequencing of all n + 1 jobs (we

assume δ is large enough to guarantee that there always exists a feasible solution). As mentioned above, z∗

is a nonincreasing function of d; that is, for all d, d′,

d ≤ d′ ⇒ z∗(d) ≥ z∗(d′).

It follows that in this context the due date quotation, in essence, is a multi-objective optimization problem.
Namely, we are to find the best compromise between the due date dn+1 to be assigned and the objective
value z∗(dn+1) associated with it.

Now we discuss one way to do this. Let
∑n

j=1wjT
∗
j be the optimal total weighted tardiness for the existing

n jobs, let
∑n

j=1wjT
∗
j (d) be the updated value of this sum after the arrival of the (n+1)st job given that its

quoted due date is d, and let

∆z(d) :=

n∑
j=1

wjT
∗
j (d)−

n∑
j=1

wjT
∗
j

denote the difference of these two sums. Clearly, as d gets smaller, ∆z(d) gets larger. Suppose, without loss
of generality, that

∑n
j=1wj = 1. Then an increase of ∆z(d) by 1 means that the tardiness of each one of the

existing n jobs has increased on average by 1 time unit. What is the utility of this in terms of assigning a
better due date to the (n+ 1)st job? In other words, if the pairs of solutions (d,∆z(d)) and (d′,∆z(d) + 1)
are equivalent, what is d− d′? Ultimately, this depends on the decision-maker, but a possible answer would
be wn+1. Then the due date quotation problem can be written concisely as

min
d

wn+1d+∆z(d).

4 Application in a Textile Company

In this section, we present a numerical demonstration of the weighting approach introduced above with
data obtained from a textile firm in Turkey. The problem is to find an optimal sequence of 11 customer
orders that minimizes total weighted tardiness. Customers are to be assessed with respect to five criteria:
profitability (%), average order quantity (meters), unit selling price (dollars per meter), payment performance
(lateness per order), risk limit (dollars). First of all, managers from three distinct departments—production,
marketing, and finance—are consulted in order to construct pairwise comparison matrices. Then an aggregate
matrix has been built as shown in Table 2.

Consistency ratio for the matrix in Table 2 turns out to be 0.089, so it is convenient to use this matrix as
an input to CMAES to find criteria weights. We coded the 29 April 2014 version of CMAES algorithm using
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Table 2: Aggregate pairwise comparison matrix for the five criteria.

C1 C2 C3 C4 C5

C1 1.000 2.000 3.000 3.000 6.000
C2 0.556 1.000 2.000 2.000 7.000
C3 0.347 0.556 1.000 1.000 8.000
C4 0.347 0.556 1.000 1.000 8.000
C5 0.168 0.144 0.126 0.126 1.000

MATLAB 2018. Convergence of the method with respect to the objective function value and the weights are
given in Figure 1. The resulting weights are

w1 = 0.284, w2 = 0.335, w3 = 0.171 w4 = 0.164 w5 = 0.040.

Table 3 shows the decision matrix for the first step of the TOPSIS algorithm, namely numerical values
associated with the 11 customers for the five aforementioned criteria. Tables 4 and 5 show the normalized
and the weighted normalized versions thereof, respectively. Table 6 shows positive and negative ideal rows
obtained from the weighted normalized decision matrix. Finally, Table 7 shows the distance of the alternatives
(customers) to the ideal rows, their TOPSIS scores, and the relevant ranking.

Table 8 shows the data and the optimal solution of the single machine weighted tardiness minimization
problem. The processing times and due dates are randomly generated following the weighted tardiness
instance generation routine in the OR-Library maintained by John Beasley. We took the range of due dates
(RDD) and the average tardiness factor (TF) parameters in this routine as 0.6. Weights are assumed to
be the TOPSIS scores computed in Table 7. Solving the mixed-integer linear program (1), the optimal job
sequence turns out to be (11, 8, 7, 2, 10, 5, 4, 1, 3, 6, 9) with an objective value of 204.19.

Figure 1: Convergence of CMAES with respect to the objective function value (on the left) and the weights
(on the right).
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Table 3: Decision matrix for TOPSIS.

Customer Profitability
Average order

quantity
Unit selling

price
Payment

performance
Risk limit

1 1 17976 2.67 2 200000
2 1 35766 2.29 29 100000
3 7 1966 1.95 10 50000
4 4 9306 1.63 9 15000
5 1 43721 1.55 18 50000
6 1 25030 2.20 20 200000
7 5 72609 2.19 2 50000
8 3 19444 2.52 34 30000
9 1 9515 1.81 7 200000
10 1 12961 5.81 7 150000
11 5 13921 3.76 2 200000

Table 4: Normalized decision matrix.

Customer Profitability
Average order

quantity
Unit selling

price
Payment

performance
Risk limit

1 0.0877 0.1768 0.2839 0.0364 0.4459
2 0.0877 0.3518 0.2435 0.5284 0.2229
3 0.6134 0.0193 0.2074 0.1822 0.1114
4 0.3508 0.0915 0.1733 0.1639 0.0334
5 0.0877 0.4301 0.1648 0.3279 0.1114
6 0.0877 0.2462 0.2340 0.3644 0.4459
7 0.4385 0.7142 0.2329 0.0364 0.1114
8 0.2631 0.1912 0.2680 0.6195 0.0668
9 0.0877 0.0936 0.1925 0.1275 0.4459
10 0.0877 0.1275 0.6179 0.1275 0.3344
11 0.4385 0.1369 0.3999 0.0364 0.4459
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Table 5: Weighted normalized decision matrix.

Customer Profitability
Average order

quantity
Unit selling

price
Payment

performance
Risk limit

1 0.0250 0.0595 0.0488 0.0060 0.0175
2 0.0250 0.1185 0.0418 0.0878 0.0087
3 0.1752 0.0065 0.0356 0.0302 0.0043
4 0.1001 0.0308 0.0298 0.0272 0.0013
5 0.0250 0.1449 0.0283 0.0545 0.0043
6 0.0250 0.0829 0.0402 0.0605 0.0175
7 0.1251 0.2406 0.0400 0.0060 0.0043
8 0.0750 0.0644 0.0460 0.1029 0.0026
9 0.0250 0.0315 0.0330 0.0211 0.0175
10 0.0250 0.0429 0.1062 0.0211 0.0131
11 0.1251 0.0461 0.0687 0.0060 0.0175

Table 6: Positive and negative ideal rows.

Profitability
Average order

quantity
Unit selling
priceprice

Payment
performance

Risk limit

v+ 0.1752 0.2406 0.1062 0.0060 0.0175
v− 0.0250 0.0065 0.0283 0.1029 0.0013

Table 7: Distance to ideal rows and composite indices of the customers.

Customer d+i d−i Score Ranking

1 0.2421 0.1135 0.3192 7
2 0.2199 0.1140 0.3414 5
3 0.2460 0.1670 0.4044 4
4 0.2370 0.1093 0.3156 8
5 0.2007 0.1466 0.4221 3
6 0.2339 0.0896 0.2770 9
7 0.0840 0.2727 0.7645 1
8 0.2330 0.0785 0.2520 10
9 0.2680 0.0871 0.2453 11
10 0.2487 0.1192 0.3240 6
11 0.2043 0.1512 0.4253 2
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Table 8: Data and optimal solution of the single machine weighted tardiness minimization problem.

Customer pj dj wj C∗
j T ∗

j

1 50 393 0.3192 378 0
2 90 215 0.3414 224 9
3 58 416 0.4044 436 20
4 50 332 0.3156 328 0
5 41 330 0.4221 278 0
6 79 214 0.2770 515 301
7 74 151 0.7645 134 0
8 44 179 0.2520 60 0
9 82 150 0.2453 597 447
10 13 386 0.3240 237 0
11 16 68 0.4253 16 0

5 Conclusion

In this paper, we proposed a novel bottom-up approach for solving weighted single machine scheduling prob-
lems. First, a pairwise comparison matrix that shows the relative importance of the criteria to be used in
evaluating customers is formed through expert opinion, and criteria weights are calculated by optimizing a
nonlinear function via the covariance matrix adaptation evolutionary strategy (CMAES) under fuzzy envi-
ronment. Second, customer orders are sorted with respect to these criteria with the technique for order of
preference by similarity to ideal solution (TOPSIS). Finally, orders are sequenced by mixed-integer linear
programming with the objective of minimizing total weighted tardiness, where TOPSIS scores are taken as
weights. This combined methodology may help companies make robust schedules not based purely on sub-
jective judgment, find the best compromise between customer satisfaction and business needs, and thereby
ensure profitability in the long run. As a topic of future study, it is worthwhile to investigate how the proposed
methodology works in practice for due date quotation as discussed in Section 3.2.
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182 Zeydan M, Güngör M, Urazel B. Trans. Fuzzy Sets Syst. 2024; 3(1)

[4] Ortiz-Barrios M, Petrillo A, De Felice F, Jaramillo-Rueda N, Jimenez-Delgado G, Borrero-Lopez L. A
dispatching-fuzzy AHP-TOPSIS model for scheduling flexible job-shop systems in industry 4.0 context.
Applied Sciences. 2021; 11(11): 5107. DOI: http://doi.org/10.3390/app11115107
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İstanbul, Turkey

E-mail: mithat.zeydan@medeniyet.edu.tr

Murat Güngör
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1 Introduction

In this paper, we discuss how theoretical results from one family of fuzzy sets can be carried over immediately
to another family of fuzzy sets by the use of lattice isomorphisms. We also show that these families can occur
naturally and that applications may not necessarily be carried over using these isomorphisms. We illustrate
this using techniques from the study of human trafficking and its analysis using mathematics of uncertainty.
Mathematics of uncertainty is a very appropriate tool to use in the study of trafficking. This is because
accurate data concerning trafficking in persons is impossible to obtain. The goal of the trafficker is to be
undetected. The size of the problem also makes it very difficult to obtain accurate data. Victims are reluctant
to report crimes or testify for fear of reprisals, disincentives, both structural and legal, for law enforcement to
act against traffickers, a lack of harmony among existing data sources, and an unwillingness of some countries
and agencies to share data. We also generalize some results concerning families of fuzzy sets involved with
these lattice isomorphisms.

2 Fuzzy Sets and Lattice Isomorphisms

One of the most important papers concerning fuzzy set theory in recent years is one by Klement and Mesiar,
[1]. In this paper, it is shown that differently defined families of fuzzy sets have lattice structures that are
actually isomorphic and so theoretical results for one family can be carried over to another family.

We show by using a real world problem with real world data that even though theoretical results can be
obtained for one family from another, the two families may arise naturally in an application.

We use the concepts of vulnerability and government response to modern slavery to illustrate our findings.
In [2], it is stated that the departing point is the fact that not only fuzzy sets originate in Language, but
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that they are just ‘linguistic entities’ genetically different from the concept of ‘crisp sets’ whose origin is
either in a physical collection of objects, or in a list of them. A new definition of a fuzzy set is presented by
means of two magnitudes: A qualitative one, called a graph, the basic magnitude, and a quantitative one, a
scalar magnitude. If the first reflects the language’s relational ground of the fuzzy set, the second reflects the
(numerical) extensional state in which it currently appears.

We next illustrate these ideas using the concepts of vulnerability and government response with respect
to modern slavery, [3].

Vulnerability Measures

(1) Government issues

(2) Nourishment and access

(3) Inequality

(4) Disenfranchised groups

(5) Effect of conflicts

Countries are scored with respect to these five measures. Then a weighted average of these scores is taken
to provide a single score for each number. For example, the final score for Brazil is 36.4. The countries are
placed into regions. Brazil is in the Americas. For this region, the highest score was 69.6 and the smallest was
10.2. The country scores were normalized using the formula (number - minimum)/(maximum - minimum) to
obtain (36.4− 10.2)/(69.6− 10.2) = 0.441.

Government Response

(1) Support for survivors

(2) Criminal justice

(3) Coordination

(4) Response

(5) Supply chains

Similarly, as for the vulnerability measures, a final score is determined for each country with respect to
government response. For example the final score for Brazil is 55.6. For the Americas, the maximum score was
71.7 and the minimum was 20.8. Hence the normalized value for Brazil was (55.6−20.8)/(71.7−20.8) = 0.684.

In [2], it is stated that shortening the statement x is less P, where P is a predicate, by x ≺P y facilitates
the basic magnitude. That is, x ≺P y ⊆ X ×X.

For our illustration, we let P denote the predicate vulnerable and X denote the set of countries under
consideration. Now the final vulnerable score for Mexico was 57.3. Brazil’s was 36.4. Hence Brazil ≺PMexico.
The final value for government response for Mexico was 52.4 and for Brazil 55.6. In the case, we have Mexico
≺P Brazil if P denotes government response and ≺P is the linguistic relation x has less government response
than y.

In [2], a membership function mP : X × X → [0, 1] was introduced. It provides a numerical value for
measuring the degree to which x is P. The membership function is required to satisfy the following three
properties:

(i) x ≺P y implies mP (x) ≤ mP (y).

(ii) If z is minimal, then mP (z) = 0.

(iii) If w is maximal, then mP (w) = 1.
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We see that our membership function mP (x) =
#(x)−min
max−min , where #(x) denotes the final score of x, satisfies

these three properties. Thus mV (Brazil) = 0.441, where V denotes vulnerable and mG(Brazil) = 0.684,
where G denotes government response. For Mexico, we have mV (Mexico) = 0.793 and mG(Mexico) = 0.621.

We present some isomorphisms and other methods in fuzzy set theory to obtain results from one family
for another.

The following table is from [3]. See also [[4], p. 104].

Table 1: Global slavery index Americas

Country Government Response Vulnerability Prevalence

Argentina 0.821 0.297 0.156
Barbados 0.365 0.533 0.431
Bolivia 0.402 0.570 0.313
Brazil 0.684 0.441 0.294
Canada 0.742 0.000 0.000
Chile 0.815 0.259 0.058
Columbia 0.398 0.696 0.431
Costa Rica 0.573 0.306 0.156
Cuba 0.000 0.710 0.647
Dominican Rep. 0.730 0.553 0.686
El Salvador 0.326 0.681 0.392
Ecuador 0.502 0.523 0.372
Guatemala 0.479 0.705 0.470
Guyana 0.210 0.592 0.509
Haiti 0.371 1.000 1.000
Honduras 0.318 0.762 0.568
Jamaica 0.742 0.572 0.411
Mexico 0.621 0.793 0.431
Nicaragua 0.500 0.567 0.470
Paraguay 0.394 0.516 0.215
Panama 0.453 0.441 0.313
Peru 0.622 0.574 0.411
Suriname 0.123 0.537 0.352
Trinidad and Tobago 0.571 0.486 0.490
United States 1.000 0.095 0.156
Uruguay 0.581 0.159 0.098
Venezuela 0.145 0.803 1.000

Neutrosophic fuzzy sets and Pythagorean fuzzy sets: Recall that a neutrosophic fuzzy set is a triple
(σ, τ, µ) of fuzzy subsets of a set. It is based on the lattice of elements (x1, x2, x3) ∈ [0, 1]3,where (x1, x2, x3) ≤
(y1, y2, y3) if and only if x1 ≤ y1, x2 ≤ y2, and x3 ≥ y3. Also, a Pythagorean fuzzy set is a pair of fuzzy subsets
(σ, τ) of a set X such that for all x ∈ X,σ(x)2+ τ(x)2 ≤ 1, [5].We can see that vulnerability and government
response corresponding to modern slavery are opposites, [5]. That is, an increase in government response by
a country would lower the country’s vulnerability. However, mV (Brazil)+mG(Brazil) = 0.441+ 0.684 > 1.
This gives meaning to neutrosophic fuzzy sets, [6], even though certain theoretical results can following
immediately from other types of fuzzy sets. Also, (0.441)2 + (0.684)2 = 0.194 + 0.468 < 1. Consequently,
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similar comments might be able to be made here even though Pythagorean fuzzy sets and intuitionistic
fuzzy sets, [7], have corresponding isomorphic lattices. However, this isomorphism may make the situation
different to the neutrosophic case since it is so straight forward. The lattice isomorphism f involved here
is f : P ∗ → L∗ defined by f((x1, x2)) = (x21, x

2
2), where L∗ = {(x1, x2)|x1, x2,ϵ[0, 1], |x1 + x2 ≤ 1} and

P ∗ = {(x1, x2)|x1, x2ϵ[0, 1], x21 + x22 ≤ 1}. The paper by Klement and Mesiar contains many other cases,
where various families of fuzzy sets have isomorphic lattices.

Let X be a set with n elements, say X = {x1, ..., xn}. Let µ, ν be fuzzy subsets of X. Consider the fuzzy

similarity measures, M(µ, ν) =
∑

x∈X µ(x)∧ν(x)∑
x∈X µ(x)∨ν(x) and S(µ, .ν) = 1 −

∑
x∈X |µ(x)−ν(x)|∑
x∈X(µ(x)+ν(x)) . Let m be a positive real

number. Then
∑

x∈X µ(x)∧ν(x)∑
x∈X µ(x)∨ν(x) =

∑
x∈X µ(x)/m∧ν(x)/m∑
x∈X µ(x)/m∨ν(x)/m and

∑
x∈X |µ(x)−ν(x)|∑
x∈X(µ(x)+ν(x)) =

∑
x∈X |µ(x)/m−ν(x)/m|∑
x∈X(µ(x)/m+ν(x)/m) . Suppose

there exists x ∈ X such that µ(x) + ν(x) > 1. Let m denote the maximal such µ(x) + ν(x). Then we see that
we get the same M and S values if we divide all the µ(x) and ν(x) by m.

Example 2.1. Let X = {x1, x2}. Define the fuzzy subsets µ, ν of X as follows:

µ ν
x1 0.1 0.1
x2 0.2 0.91

Then µ(x2) + ν (x2) = 0.2 + 0.91 = 1.11 > 1. Now M(µ, ν) = 0.1∧0.1+0.2∧0.91
0.1∨0.1+0.2∨0.91 = 0.3

1.01 .
Define the fuzzy subsets µ′, ν ′ of X as follows:

µ′ ν ′

x1 0.1 0.2
x2 0.2 0.82

Then µ′(x2) + ν ′ (x2) = 0.2 + 0.82 = 1.02 > 1. Now M(µ′, ν ′) = 0.1∧0.2+0.2∧0.82
0.1∨0.2+0.2∨0.82 = 0.3

1.02 .

Thus M(µ, ν) > M(µ′, ν ′). We have a Pythagorean situation since (0.2)2 + (0.91)2 < 1 and (0.2)2 +
(0.82)2 < 1.

Squaring the values of µ and ν, we obtain µ2(x1) = 0.01, µ2(x2) = 0.04 and ν2(x1) = 0.01, ν2(x2) = 0.8281.
Hence

M(µ2, ν2) =
0.01 ∧ 0.01 + 0.4 ∧ 0.8281

0.01 ∨ 0.01 + 0.4 ∨ 0.8281
=

0.01 + 0.04

0.01 + 0.8281
.

Also, µ′
2(x1) = 0.01, µ′

2(x2) = 0.04, ν ′2(x1) = 0.04, ν ′2(x2) = 0.6724. Thus

M(µ′
2, ν

′
2) =

0.01 ∧ 0.04 + 0.04 ∧ 0.6724

0.01 ∨ 0.04 + 0.04 ∨ 0.6724
=

0.01 + 0.04

0.04 + 0.6724
.

Hence M(µ2, ν2) < Mµ′
2, ν

′
2). That is, the inequalities have switched. They were not preserved.

We next consider S(µ, ν) = 1−
∑

x∈X |µ(x)−ν(x)|∑
x∈X(µ(x)+ν(x)) . For the previous situation, we have S(µ, ν) = 1− 0+0.71

0.2+1.11 =
0.71
1.31 = 1− 0.542 and S(µ′, ν ′) = 1− 0.1+0.62

0.3+1.02 = 1− 0.72
1.32 = 1− 0.545. Thus S(µ, ν) > S(µ′, ν ′).

We also have S(µ2, ν2) = 1 − 0+0.7881
0.04+0.8281 = 1 − 0.7881

0.8681 = 1 − 0.9078 and S(µ′
2, ν

′
2) = 1 − 0.03+.6324

0.05+0.7164 =

1− 0.6624
0.7664 = 1− 0.8643. Hence S(µ2, ν2) < S(µ′

2, ν
′
2). Once again the inequalities were not preserved.

We have shown with this example that the isomorphism f : P ∗ → L∗ defined by f((x1, x2)) = (x21, x
2
2),

where L∗ = {(x1, x2)|x1, x2ϵ[0, 1], x1 + x2 ≤ 1} and P ∗ = {(x1, x2)|x1, x2 ∈ [0, 1]x21 + x22 ≤ 1}, [1], shows
that although theoretical results can determined between Pythagorean fuzzy sets and intuitionistic fuzzy
sets, the isomorphism may not be suitable in changing a data set from one to another in applications. Also,
isomorphisms in general preserve certain structural properties, but not all outside functions defined on the
sets.
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3 Lack of Accurate Data

Linguistic variables: The size of flow of trafficked people from country to country is given in [8]. It is reported
in linguistic terms since accurate data concerning the size of the flow is impossible to obtain. Information
is provided with respect to the reported human trafficking in terms of origin, transit, and/or destination
according to the citation index. The data is provided in two columns. Information in the left column as to
whether a country ranks (very) low, medium (very) high depends upon the total number of sources which
made reference to this country as one of origin, transit, or destination. Information provided in then the
right column provides further detail to the information provided in the left column. If a country in the right
column was mentioned by one or two sources, the related country was ranked low. If linkage between the
countries in the two columns was reported by 3-5 sources, the related country was ranked medium. If 5 or
more sources linked the two countries, the country in the right was ranked high. This method of combining
linguistic data provides an ideal reason for the use of mathematics of uncertainty to study the problem of
trafficking by persons. For example, by assigning numbers in the interval [0, 1] to the linguistic data, the
data can be combined in a mathematical way. In [9], the notions of t-norms and t-conorms were used. The
number 0.1 can be assigned very low, 0.3 to low. 0.5 to medium, 0.7 to high and 0.9 to very high. Using the
notation and ideas from [10], we have x ≺P y if and only if country x’s linguistic rank is less than country
y’s linguistic rank. We have mP (x) = 0.1, 0.3, 0.5, 0.7, or 0.9 if x is assigned very low, low, medium, high, or
very high, respectively. We note that here mP does not satisfy (ii) and (iii).

Colors: In [10], colors are used to determine how well a country is achieving the Sustainable Development
Goals (SDGs). A green rating on the SDG dashboard is assigned to a country if all the indicators under
that goal are labeled green. Yellow, orange and red indicate increasing distance from the SDG achievement.
The worst two colors of a target were averaged to determine the color for its SDG. In [11], the numbers
0.2, 0.4, 0.6.0.8 are assigned to the colors red, orange, yellow, and green, respectively. Consequently, the
results in [10] are placed into the context of mathematics of uncertainty.

4 Theoretical Results

Letm and n be positive real numbers. Let Pm,n = {(x, y)|x, y ∈ [0, 1] and xm+yn ≤ 1}. Let L∗ = {(x, y)|x, y ∈
[0, 1] and x+ y ≤ 1}. Define ≤P m,n on Pm,n by for all (x, y), (u, v)ϵPm,n(u, v) if and only if x ≤ u and y ≥ v.
This includes L∗ since L∗ = P1,1. The following result extends the theory for Pythagorean fuzzy sets to
m,n-rung fuzzy sets, [12], since P2,2 is a Pythagorean fuzzy set.

The following result follows from Theorem 4.2, but we place it here since it motivates Theorem 4.2.

Theorem 4.1. Define f : Pm,n → L∗ by for all (x, y) ∈ Pm,n, f((x, y)) = (xm, yn). Then f is a lattice
isomorphism of Pm,n onto L∗.

In the above table, we see that for Mexico, (0.621, 0.793) /∈ P2,2 ∪ P3,1 ∪ P1,3. We have (0.62, 1.793) ∈
P2,3 ∩ P3,2.

For the United States, ∄m,n such that (1m, 0.095n) ≤ 1.

Consider Mexico again. Now P2,2 is the set of all Pythagorean fuzzy sets. Define g : P2,3 → P2,2 by for

all (x, y) ∈ P2,3, g((x, y)) = (x
3
2 , y). Note (x

3
2 , y) ∈ P2,2 since (x

3
2 )2 + y2 = x3 + y2 ≤ 1.

Let f1, f2 : [0, 1] → [0, 1] be one-to-one functions of [0, 1] onto [0, 1] such that for all x, yϵ[0, 1], x ≤ y
implies fi(x) ≤ fi(y), i = 1, 2.Then fi(0) = 0 and fi(1) = 1, i = 1, 2. Assume fi(x ∧ y) = fi(xi) ∧ fi(y) and
fi(x ∨ y) = fi(x) ∨ fi(y), i = 1, 2.
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Let L̂(f1, f2) = {(x, y)|x, yϵ[0, 1], f1(x) + f2(y) ≤ 1}. For ease of notation, let L̂ = L̂(f1, f2). Define ≤
L̂
on

L̂ by for all (x, y), (w, z)ϵL̂, (x, y) ≤
L̂
(w, z) if and only if x ≤ w and y ≥ z. Then ≤

L̂
is a partial order on ≤

L̂
such that any two elements ≤

L̂
have a greatest lower bound and a least upper bound. Thus ≤

L̂
is a lattice.

The greatest lower bound of (x, y), (w, z)ϵ ≤
L̂
is (x ∧ w, y ∨ z) and the least upper bound is (x ∨ w, y ∧ z).

Theorem 4.2. Define f : L̂ → L∗ by for all (x1, x2)ϵL̂, f((x1, x2)) = (f (x1) , f2(x2)). Then f is a lattice
isomorphism of L̂ onto L∗.

Proof. Clearly, f maps L̂ into L∗. Now (x1, x2) = (y1, y2) ⇔ x1 = y1 and x2 = y2 ⇔ f1x1) = f1(y1) and
f2(x2) = f2(y2) ⇔ f((x1, x2)) = (f1(x1), f2(x2)) = (f1(y1), f2(y2)) = f((y1, y2)). Hence f is single-valued and
one-to-one. Let (x1, x2)ϵL

∗. Then (f−1
1 (x1), f

−1
2 (x2))ϵL̂. Thus f maps L̂ onto L∗. Let (x1, x2), (y1, y2)ϵL̂.

Then

f((x1, x2) ∧L̂
(y1, y2)) = f((x1 ∧ y1, x2 ∨ y2))

= (f1(x1 ∧ y1), f2(x2 ∨ y2))

= (f1(x1) ∧ f1(y1)), (f2(x2) ∨ f2(y2))

= (f1(x1), f2(x2)) ∧L∗ (f1(y1), x1xf2(y2))

= f((x1, x2) ∧L∗ f(y1, y2)).

Similarly, f((x1, x2) ∨L̂
(y1, y2)) = f((x1, x2) ∨L∗ f(y1, y2)).

Suppose (x1, x2) ≤L̂
(y1, y2). Then x1 ≤ y1 and x2 ≥ y2 and so f1(x1) ≤ f1(y1) and f2(x2) ≥ f2(y2). Thus

(f1(x1), f2(x2)) ≤L̂
(f1(y1), f2(y2)). That is, f((x1, x2) ≤L̂

f((y1, y2)). □
If we let m,n be positive real numbers. Define f1, f2 : [0, 1] → [0, 1] by for all xϵ[0, 1], f1(x) = xm and

f2(x) = xn, then Theorem 4.1 follows from Theorem 4.2.

Example 4.3. Let i, j be positive real numbers. Define f1, f2 : [0, 1] → [0, 1] by for all xϵ[0, 1], f1(x) = xi

and f2(x) = xj . Then f1 and f2 satisfy the above properties. Thus the above Theorem holds for (m,n)-rung
fuzzy sets, where m,n are positive integers.

Let f1, f2 : [0, 1] → [0, 1] be defined by for all xϵ[0, 1], f1(x) = x and f2(x) = 1 − x. Let I = {[x, y]|0 ≤
x ≤ y ≤ 1}. Define f : L∗ → I by for all (x, y)ϵL∗, f((x, y)) = [f1(x), f2(y)]. Then f((x, y)) = [x, 1 − y].
Clearly f is single-valued. Note that since x+ y ≤ 1, x ≤ 1− y. Let [x, y]ϵI. Then f((x, 1− y)) = [x, y] and
(x, 1− y)ϵL∗ since x+ 1− y ≤ 1, i.e., (x, 1− y)ϵL∗. Thus f maps L∗ onto T . (Note x ≤ y so x+ 1− y ≤ 1.).
Now f is one-to-one since f1 and f2 are.

Define ∧I ,∨I on Iby for all [x, 1 − y], [w, 1 − z]ϵI, [x, 1 − y] ∧I [w, 1 − z] = [x ∧ w, (1 − y) ∧ (1 − z)],
and [x, 1− y] ∨I [w, 1− z] = [ x ∨ w, (1− y) ∨ (1− z)]. Define ≤Iby on I by for all [x, 1− y], [w, 1− z]ϵI,
[x, 1− y] ≤I [w, 1− z] if and only if x ≤ w and y ≥ z.

Theorem 4.4. f is a lattice isomorphism of L∗ onto I.

Proof. By the discussion above f is a one-to-one function of L∗ onto I. Let (x1, x2), (y1, y2)ϵL∗. Then

f((x1, x2) ∧L∗ (y1, y2)) = f((x1 ∧ y1, x2 ∨ y2)) = (f1(x1 ∧ y1), , f2(x2 ∨ y2))

= (x1 ∧ y1, 1− (x2 ∨ y2)) = (x1 ∧ y1, (1− x2) ∧ (1− y2))

= (x1, (1− x2)) ∧I (y1, (1− y2))

= (f1(x1), f2(x2)) ∧I (f1(y1), f2(y2)

= f((x1, x2) ∧I f((y1, y2))
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Similarly, f((x1, x2) ∨L∗ (y1, y2)) = f((x1, x2) ∨I f((y1, y2)).
Now (x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1 and x2 ≥ y2 ⇔ x1 ≤ y1 and 1 − x2 ≤ 1 − y2 ⇔ [x1, 1 − x2] ≤I∗

[y1, 1− y2] ⇔ f((x1, x2)) ≤I∗ f((y1, y2)). □

5 Conclusion

In this paper, we discussed the important paper by Klement and Mesiar that shows, using lattice isomor-
phisms, how theoretical results can be carried over immediately from one family of fuzzy sets to another. We
show that these families of fuzzy sets can arise naturally in applications. We also show that newly developed
families of fuzzy sets may also have these isomorphic lattices.
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