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A Note on the Maximum Difference Between Schweizer and Wolff’s σ
and the Absolute Value of Spearman’s ρ

Manuel Úbeda-Flores
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Abstract. In this note we correct an error on the possible maximum difference between the (measure of dependence)
Schweizer and Wolff’s σ and the absolute value of the (measure of concordance) Spearman’s ρ given in [8]. Moreover,
we provide a possible value for that possible, leaving its proof as an open problem.
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1 Introduction

Aggregation functions play an important role in many applications of fuzzy set theory and fuzzy logic, among
many other fields (see, e.g., [1, 3]). Copulas —multivariate probability distribution functions with uniform
univariate margins on [0, 1]— are special types of conjunctive aggregation functions, and they are used in
aggregation processes because they ensure that the aggregation is stable in the sense that small error inputs
correspond to small error outputs.

The importance of copulas in probability and statistics comes from Sklar’s theorem [9], which states that
the joint distribution H of a pair of random variables (X,Y ) and the corresponding (univariate) marginal
distributions F and G are linked by a copula C in the following manner:

H(x, y) = C (F (x), G(y)) for all (x, y) ∈ [−∞,∞]2.

If F and G are continuous, then the copula is unique; otherwise, C is uniquely determined on (RangeF ) ×
(RangeG). For a review on copulas, we refer to the monographs [2, 5]

A (bivariate) copula is a function C : [0, 1]2 −→ [0, 1] which satisfies:

(C1) the boundary conditions C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) = t for all t in [0, 1], and

(C2) the 2-increasing property, i.e., VC(R) := C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0, where
R = [u1, u2]× [v1, v2] is a rectangle in [0, 1]2.

..
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The fundamental best-possible bounds inequality for the set of copulas is given by the Fréchet-Hoeffding
bounds, i.e., for any copula C we have

W (u, v) := max(0, u+ v − 1) ≤ C(u, v) ≤ min(u, v) =: M(u, v) (1)

for all (u, v) ∈ [0, 1]2. The hyperbolic paraboloid z = uv —which corresponds to the copula for independence
random variables, denoted by Π— sits midway between M and W .

Let B([0, 1]) and B([0, 1]2) denote the Borel σ-algebras in [0, 1] and [0, 1]2, respectively. A measure µ on
B([0, 1]2) is doubly stochastic if µ(B × [0, 1]) = µ([0, 1]×B) = λ(B) for every B ∈ B([0, 1]), where λ denotes
the Lebesgue measure on [0, 1] (see [4] for details). Each copula C induces a doubly stochastic measure µC
by setting µC(R) = VC(R) for every rectangle R ⊆ [0, 1]2 and extending µC to B([0, 1]2). The support of a
copula C is the complement of the union of all open subsets of [0, 1]2 with µC-measure zero, and when we
refer to “mass” on a set, we mean the value of µC for that set.

In 1904, Charles Spearman defined the Spearman’s ρ coefficient [10], a measure of concordance according
to the set of axioms proposed by Scarsini [7]. For a pair of continuous random variables (X,Y ) with associated
copula C, the population version of this measure is given by

ρ(X,Y ) = ρC = 12

∫ 1

0

∫ 1

0
[C(u, v)− uv] dudv.

It represents the difference of the volume formed by the surfaces z = C(u, v) and z = uv on [0, 1]2, and where
ρW = −1 and ρM = 1.

In 1959, A. Rényi proposed a set of desirable axioms for a nonparametric dependence measure for two
continuously distributed random variables (X,Y ) [6]. Later, those axioms were conveniently modified by
Schweizer and Wolff in [8], where the authors introduced a new measure, called the Schweizer and Wolff’s
σ based upon the distance L1 between the graphs of a copula C and Π, and which, suitably normalized, is
given by

σ(X,Y ) = σC = 12

∫ 1

0

∫ 1

0
|C(u, v)− uv| dudv,

where (X,Y ) ∼ C. Note that, in this case, we have σM = σW = 1.
For any copula C, the quantity |ρC | satisfies all the axioms for a measure of dependence except the fact

that ρC = 0 does not necessarily imply that the random variables are independent (note that σC = 0 if, and
only if, C = Π). If the copula C satisfies C(u, v) ≥ uv or C(u, v) ≤ uv for all (u, v) ∈ [0, 1]2, then we have
σC = |ρC |; but if this is not the case, σC is often a better measure than ρ (see [8] for several examples).

For any copula C, it is clear that σC ≥ |ρC |. In [8], the authors provide an example for a possible
maximum difference between the Schweizer and Wolff’s σ and the absolute value of Spearman’s ρ, which is
≈ 0.58 (see also [11]); however, this quantity is wrong. In the next section, we correct that error and provide
a value (even greater than 0.58) for that possible difference, leaving its proof as an open problem.

2 The example, the correction and the conjecture

In [8] the authors provide the following example of the possible maximum difference between the Schweizer
and Wolff’s σ and the absolute value of Spearman’s ρ.

Example 2.1 ([8]). Let (X,Y ) be a pair of continuous random variables such that X is the identity map on
[0, 1] and Y is defined by

Y (w) =


w, 0 ≤ w ≤ 1

2
3

2
− w, 1

2
< w ≤ 1.
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0

1

1

u+v-1

u

v

1/2

1/2

1/2

(a) Support of C (b) |C(u, v)− uv|

Figure 1: Support of the copula C and the values of |C(u, v)− uv| in Remark 2.2.

Then σ(X,Y )− |ρ(X,Y )| = 3 ln 2− 3/2 ≈ 0.58.

Remark 2.2. The difference given in Example 2.1 is not correct. Note that the copula C, associated with
the pair (X,Y ), is given by

C(u, v) =

{
max(1/2, u+ v − 1), (u, v) ∈ [1/2, 1]2,

M(u, v), otherwise.

C is the copula whose mass is spread in two line segments, one joining the points (0, 0) to (1/2, 1/2) and
the other the points (1/2, 1) to (1, 1/2). Figure 1 shows the support of the copula C and the values of
|C(u, v)− uv| for all (u, v) ∈ [0, 1]2.

Then, after some elementary algebra, we obtain σC = 3 ln 2 − 5/4 ≈ 0.83 and ρC = 0.75 —in [11] it
appears 0.25—; whence σC − |ρC | ≈ 0.08.

In the next example, we propose a possible maximum difference σC − |ρC | for a given copula C, even
greater than the wrong value 0.58 in Example 2.1.

Example 2.3. Let 0 ≤ θ ≤ 1, and let Cθ be the copula given by

Cθ(u, v) =


max(0, u+ v − θ), (u, v) ∈ [0, θ]2,

max(θ, u+ v − 1), (u, v) ∈ [θ, 1]2,

M(u, v), otherwise.

Cθ is the copula whose mass is spread in two line segments, one joining the points (0, θ) to (θ, 0) and the
other the points (θ, 1) to (1, θ). Figure 2 shows the support of the copula Cθ and the values of |Cθ(u, v)− uv|
for all (u, v) ∈ [0, 1]2. After some algebra, we obtain

σCθ
= 1− 18θ(1− θ)− 12θ2 ln θ − 12(1− θ)2 ln(1− θ)

and
ρCθ

= −1 + 6θ(1− θ).
Figure 3 shows the graphs of σCθ

, |ρCθ
| and σCθ

− |ρCθ
|. The maximum of the function σCθ

− |ρCθ
| is reached

at the points θ1 = 1/2 −
√

3/6 ≈ 0.21 and θ2 = 1/2 +
√

3/6 ≈ 0.79, for which σCθ1
= σCθ2

≈ 0.60496 and

ρCθ1
= ρCθ2

= 0, whence σCθ1
−
∣∣∣ρCθ1

∣∣∣ ≈ 0.60496.
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=

=

v
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θ
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(a) Support of Cθ (b) |Cθ(u, v)− uv|

Figure 2: Support of the copula Cθ and the values of |Cθ(u, v)− uv| in Example 2.3.
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Figure 3: Support of the copula Cθ and the values of |Cθ(u, v)− uv| in Example 2.3.

It remains as an open problem to check if, for any copula C, the maximum difference of σC − |ρC | is the
quantity given in Example 2.3.
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Abstract. In this paper, we present some characterizations of the LM -fuzzy interior operator, the LM -fuzzy
closure operator, LM -fuzzy semiopen operator and LM -fuzzy preopen operator in an LM -fuzzy topological space.
Based on them, we introcuced the notions of LM -fuzzy regularly open operators and LM -fuzzy regularly closed
operators and show that these kinds of openness degrees are different from those defined by level L-topology.

AMS Subject Classification 2020: 54A40; 03E72
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1 Introduction

As we all know, closure operator and interior operator are not only two important concepts in topology,
but also have important applications in many other branches of mathematics. For example, it is a basic
tool in functional analysis, algebra, lattice theory, matroid theory and convexity theory and so on. In [20],
Shi generalized them to L-fuzzy topological spaces and called them L-fuzzy interior operators and L-fuzzy
closure operators. L-fuzzy interior operators and L-fuzzy closure operators can be used to characterize L-fuzzy
topology T , but don’t rely on the level L-topology T[r].

The notions of semiopenness, preopenness and regular openness are very important in general topology
[15]. They were extended to L-topological spaces by Azad, Singal and Prakash, respectively (see [1, 23]).
The notions of semicontinuity and precontinuity were also extended to L-topological spaces by Azad and
Nanda respectively (see [1, 17]). Moreover the notions of semiopenness and regular openness were extended
to fuzzifying topological spaces by A.M. Zahran, F.M. Zeyada and A.K. Mousa respectively (see [25, 26]).
Further in [12, 13, 14], S.J. Lee and E.P. Lee introduced the notions of fuzzy r-semiopen sets, fuzzy r-preopen
sets and fuzzy r-regular open sets in [0, 1]-fuzzy topological space (X, T ) by means of the level [0, 1]-topology
T[r].

In 2011, Shi introduced the notions of LM -fuzzy semiopen operator and LM -fuzzy preopen operator in
LM -fuzzy topological spaces by means of the idea of [20]. Further they were applied to many research fields
by Ghareeb, Al-Omeri and Liang [3, 4, 5, 6, 7, 21].

In this paper, we shall present some characterizations of the LM -fuzzy interior operator, the LM -fuzzy
closure operator, LM -fuzzy semiopen operator and LM -fuzzy preopen operator. We shall show that these
kinds of openness degrees are different from those defined by level [0, 1]-topology.
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2 Preliminaries

Throughout this paper, L and M denote completely distributive lattices with order-reversing involutions, X
is a nonempty set. The set of all nonzero co-prime elements of L is denoted by J(L). The set of all nonzero
co-prime elements of LX is denoted by J(LX). It is easy to see that J(LX) is exactly the set of all fuzzy
points xλ (λ ∈ J(L)).

We say that a is a wedge below b in M , denoted by a ≺ b, if for every subset D ⊆ M ,
∨
D ≥ b implies

d ≥ a for some d ∈ D [2]. A complete lattice M is completely distributive if and only if b =
∨
{a ∈M | a ≺ b}

for each b ∈ M . {a ∈ M | a ≺ b} is called the greatest minimal family of b, denoted by β(b). α(a) = {b ∈
M | b′ ≺ a′} is called the greatest maximal family of a.

In a completely distributive lattice M , α is an
∧

-
∪

map, β is a union-preserving map, and for each
a ∈M , a =

∨
β(a) =

∧
α(a) (see [10, 27]).

For A ∈MX and a ∈M , we use the following symbols [18, 19].

A[a] = {x ∈ X | A(x) ̸≥ a}, A(a) = {x ∈ X | A(x) ̸̸≤ a},

A(a) = {x ∈ X | a ∈ β(A(x))}, A[a] = {x ∈ X | a /∈ α(A(x))}.

Definition 2.1. [8, 9, 11, 22, 24] A map T : LX →M is called an LM -fuzzy pretopology on X provided that
it satisfies the following conditions:

(LFT1) T (X) = T (∅) = ⊤M ;

(LFT2) T
(∨

i∈ΩAi
)
⩾
∧
i∈Ω T (Ai), ∀{Ai | i ∈ Ω} ⊆ LX .

An LM -fuzzy pretopology T is called an LM -fuzzy topology if it satisfies the following condition again.

(LFT3) T (U ∧ V ) ≥ T (U) ∧ T (V ), ∀U, V ∈ LX .
T (U) can be interpreted as the degree to which U is an L-open set. T ∗(U) = T (U ′) is called the degree

of closedness of U . The pair (X, T ) is called an LM -fuzzy topological space. When L = M , an LM -fuzzy
topology is also called an L-fuzzy topology. When L = M = [0, 1], an LM -fuzzy topology is called a [0, 1]-fuzzy
topology. In particular, when M = {0, 1}, an LM -fuzzy topology is called an L-topology and when L = {0, 1},
an LM -fuzzy topology is called an M -fuzzifying topology.

A map f : (X, T1) → (Y, T2) is said to be continuous with respect to LM -fuzzy topologies T1 and T2 if
T1(f←L (U)) ≥ T2(U) holds for all U ∈ LY , where f←L is defined by f←L (U)(x) = U(f(x)).

Analogous to Theorem 3.2 in [27], we have the following.

Theorem 2.2. [27] Let T : LX →M be a map. Then the following conditions are equivalent:

(T1) T is an LM -fuzzy topology on X.

(T2) ∀a ∈M , T[a] is an L-topology on X.

(T3) ∀a ∈M , T [a] is an L-topology on X.

Definition 2.3. [20, 22] An LM -fuzzy interior operator on X is a map Int : LX → MJ(LX) satisfying the
following conditions:

(FI1) Int(A)(xλ) =
∧
µ≺λ

Int(A)(xµ), ∀xλinJ(LX), ∀A ∈ LX ;

(FI2) Int(X)(xλ) = ⊤M for any xλ ∈ J(LX);
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(FI3) Int(A)(xλ) = ⊥M for any xλ ̸≤ A;

(FI4) Int(A ∧B) = Int(A) ∧ Int(B);

(FI5) ∀a ∈M\{⊤M}, (Int(A))(a) ⊆
(
Int
(∨

(Int(A))(a)
))(a)

.

Corollary 2.4. [20, 22] Let T be an LM -fuzzy topology on X and let IntT be the LM -fuzzy interior operator
induced by T . Then ∀xλ ∈ J(LX), ∀A ∈ LX ,

IntT (A)(xλ) =
∨

xλ≤V≤A
T (V ) and T (A) =

∧
xλ≺A

IntT (A)(xλ).

Definition 2.5. [20, 22] An LM -fuzzy closure operator on X is a map Cl : LX → MJ(LX) satisfying the
following conditions:

(FC1) Cl(A)(xλ) =
∧
µ≺λ

Cl(A)(xµ), ∀xλ ∈ J(LX);

(FC2) Cl(∅)(xλ) = ⊥M for any xλ ∈ J(LX);

(FC3) Cl(A)(xλ) = ⊤M for any xλ ≤ A;

(FC4) Cl(A ∨B) = Cl(A) ∨ Cl(B);

(FC5) ∀a ∈M\{⊥M},
(
Cl
(∨

(Cl(A))[a]

))
[a]
⊆ (Cl(A))[a].

Corollary 2.6. [20, 22] Let T be an LM -fuzzy topology on X and let ClT : LX →MJ(LX) be the LM -fuzzy
closure operator induced by T . Then ∀xλ ∈ J(LX), ∀A ∈ LX ,

ClT (A)(xλ) =
∧

xλ ̸≤D≥A

(
T (D′)

)′
and T (A) =

∧
xλ ̸≤A′

Cl(A′)(xλ)′.

3 The characterizations of LM-fuzzy interiors and closures

In this section, our aim is to present some characterizations of LM -fuzzy interiors and LM -fuzzy closures.

Theorem 3.1. If a map Int : LX →MJ(LX) satisfies the following (FI1)–(FI4):

(FI1) Int(A)(xλ) =
∧
µ≺λ

Int(A)(xµ), ∀xλ ∈ J(LX), ∀A ∈ LX ;

(FI2) Int(X)(xλ) = ⊤M for any xλ ∈ J(LX);

(FI3) Int(A)(xλ) = ⊥M for any xλ ̸≤ A;

(FI4) Int(A ∧B) = Int(A) ∧ Int(B),

then the following (FI5), (FI6) and (FI7) are equivalent:

(FI5) Int(A)(xλ) =
∨

xλ≤V≤A

∧
yµ≺V

Int(V )(yµ);

(FI6) ∀a ∈M\{⊤M}, (Int(A))(a) ⊆
(
Int
(∨

(Int(A))(a)
))(a)

;
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(FI7) ∀a ∈M\{⊥M}, (Int(A))(a) ⊆
(
Int
(∨

(Int(A))(a)

))
(a)

.

Proof. By means of Theorem 3.3 in [22] we know that (FI5) is equivalent to (FI6). Now we prove that (FI5)
is equivalent to (FI7).

In order to prove (FI5) ⇒ (FI7), suppose xλ ∈ (Int(A))(a). Then a ≺ Int(A)(xλ). By (FI5) we know that

there exists V ∈ LX such that xλ ≤ V ≤ A and

a ≺
∧
yµ≺V

Int(V )(yµ) ≤ Int(V )(yµ) ≤ Int(A)(yµ) for all yµ ≺ V .

This implies yµ ∈ (Int(V ))(a) ⊆ (Int(A))(a). Further we obtain V ≤
∨

(Int(V ))(a) ≤
∨

(Int(A))(a). Therefore
it holds

a ≺
∧
yµ≺V

Int(V )(yµ) ≤
∨

xλ≤V≤
∨

(Int(A))(a)

∧
yµ≺V

Int(V )(yµ) = Int
(∨

(Int(A))(a)

)
(xλ).

This shows xλ ∈
(
Int
(∨

(Int(A))(a)

))
(a)

. (FI7) is proved.

(FI7) ⇒ (FI5). It is easy to check that Int (A) (xλ) ≥
∨

xλ≤V≤A

∧
yµ≺V

Int (V ) (yµ) holds. We only need to

show that Int (A) (xλ) ≤
∨

xλ≤V≤A

∧
yµ≺V

Int (V ) (yµ) is true.

Suppose that a ≺ Int(A)(xλ). Then by (FI7) we know xλin(Int(A))(a) ⊆
(
Int
(∨

(Int(A))(a)

))
(a)
. Let

V =
∨

(Int(A))(a). Then xλ ≤ V ≤ A and a ≺ Int(V )(xλ). For all yµ ≺ V , there exists yγ ∈ (Int(A))(a) such
that yµ ≺ yγ . By (FI1) and (FI7) we know

yµ ∈ (Int(A))(a) ⊆
(

Int
(∨

(Int(A))(a)

))
(a)

= (Int (V ))(a) , i.e., a ≺ Int(V )(yµ).

This implies a ≤
∧

yµ≺V
Int(V )(yµ). Hence we have

a ≤
∨

xλ≤V≤
∨

(Int(A))(a)

∧
yµ≺V

Int(V )(yµ) ≤
∨

xλ≤V≤A

∧
yµ≺V

Int(V )(yµ).

This shows that Int(A)(xλ) ≤
∨

xλ≤V≤A

∧
yµ≺V

Int(V )(yµ) is true. The proof is completed. □

Theorem 3.2. If a map Cl : LX →MJ(LX) satisfies the following (FC1)–(FC4):

(FC1) Cl(A)(xλ) =
∧
µ≺λ

Cl(A)(xµ), ∀xλ ∈ J(LX);

(FC2) Cl(∅)(xλ) = ⊥M for any xλ ∈ J(LX);

(FC3) Cl(A)(xλ) = ⊤M for any xλ ≤ A;

(FC4) Cl(A ∨B) = Cl(A) ∨ Cl(B),

then the following (FC5), (FC6) and (FC7) are equivalent:

(FC5) Cl(A)(xλ) =
∧

xλ≰B≥A

∨
yµ≰B

(Cl(B))(yµ);

(FC6) ∀a ∈M\{⊥M},
(
Cl
(∨

(Cl(A))[a]

))
[a]
⊆ (Cl(A))[a];

(FC7) ∀a ∈M\{⊤M},
(
Cl
(∨

(Cl(A))[a]
))[a] ⊆ (Cl(A))[a].
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Proof. By means of Theorem 3.1 in [22] we know that (FC5) is equivalent to (FC6). Now we prove that
(FC5) is equivalent to (FC7).

(FC5) ⇒ (FC7). Suppose that xλ ̸∈ Cl(A)[a]. Then by (FC5) we obtain the following fact.

a ∈ α (Cl(A)(xλ)) = α

 ∧
xλ ̸≤B≥A

∨
yµ ̸≤B

Cl(B)(yµ)

 =
∪

xλ ̸≤B≥A
α

 ∨
yµ ̸≤B

Cl(B)(yµ)

 .

Hence there exists B ∈ LX with xλ ≰ B ≥ A such that a ∈ α

( ∨
yµ≰B

Cl(B)(yµ)

)
, which implies ∀yµ ≰ B,

a ∈ α(Cl(B)(yµ)), i.e., yµ ̸∈ Cl(B)[a]. Therefore it follows
∨

Cl(B)[a] ≤ B. Thus we have xλ ≰ B ≥∨
Cl(B)[a] ≥

∨
Cl(A)[a]. Hence we obtain the following formula.

a ∈
∪

xλ≰B≥
∨

Cl(A)[a]

α

 ∨
yµ ̸≤B

Cl(B)(yµ)

 = α

 ∧
xλ≰B≥

∨
Cl(A)[a]

∨
yµ ̸≤B

Cl(B)(yµ)


= α

(
Cl
(∨

Cl(A)[a]
)

(xλ)
)
.

This implies xλ ̸∈ Cl
(∨

Int(A)[a]
)[a]

. (FC7) is proved.
(FC7) ⇒ (FC5). It is easy to check that Cl(A)(xλ) ≤

∧
xλ≰B≥A

∨
yµ≰B

(Cl(B))(yµ) holds. Now we prove

Cl(A)(xλ) ≥
∧

xλ≰B≥A

∨
yµ≰B

(Cl(B))(yµ).

Suppose that a ∈ α (Cl(A)(xλ)). Then there exists b ∈ L such that a ∈ α(b) and b ∈ α (Cl(A)(xλ)). By
(FC7) we know

xλ ̸∈ (Cl(A))[b] ⊇
(

Cl
(∨

(Cl(A))[b]
))[b]

.

Let D =
∨

Cl(A)[b]. Then A ≤ D and b ∈ α (Cl (D) (xλ)). In this case, we must have xλ ̸≤ D. In fact,
if xλ ≤ D, then xµ ≺ xλ ≤ D for all µ ≺ λ, hence there exists xγ ∈ Cl(A)[b] such that xγ ≥ xµ. From
Cl(A)(xγ) ≤ Cl(A)(xµ) we know b ̸∈ α(Cl(A)(xµ)) for all µ ≺ λ. This implies

b ̸∈
∪
µ≺λ

α (Cl(A)(xµ)) = α

∧
µ≺λ

Cl(A)(xµ)

 = α (Cl(A)(xλ)) ,

which contradicts to b ∈ α (Cl (D) (xλ)). Therefore xλ ̸≤ D ≥ A. For all yµ ̸≤ D, by

(Cl(A))[b] ⊇
(

Cl
(∨

(Cl(A))[b]
))[b]

= (Cl (D))[b]

we know yµ ̸≤ (Cl (D))[b], i.e., b ∈ α (Cl (D) (yµ)). Further we have b ≥
∨

yµ ̸≤D
Cl (D) (yµ). This shows

a ∈ α (b) ⊆ α

 ∨
yµ ̸≤D

Cl (D) (yµ)

 ⊆ ∪
xλ≰B≥

∨
Cl(A)[b]

α

 ∨
yµ ̸≤B

Cl(B)(yµ)


= α

 ∧
xλ≰B≥

∨
Cl(A)[b]

∨
yµ ̸≤B

Cl(B)(yµ)

 ⊆ α
 ∧
xλ≰B≥A

∨
yµ ̸≤D

Cl(B)(yµ)

 .

Therefore it follows Cl(A)(xλ) ≥
∧

xλ≰B≥A

∨
yµ≰B

(Cl(B))(yµ). The proof is completed. □
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Theorem 3.3. Let T be an LM -fuzzy topology on X, Int be the LM -fuzzy interior operator in (X, T ) and
Cl be the LM -fuzzy closure operator in (X, T ). Then for any A ∈ LX and for any a ∈M \ {⊥M}, it follows

(1) A ∈ T[a] ⇔ ∀xλ ≺ A, Int(A)(xλ) ≥ a ⇔ A ≤
∨

(Int(A))[a] .

(2) A ∈ T ∗[a] ⇔ ∀xλ ̸≤ A, Cl(A)(xλ) ≤ a′ ⇔
∨

(Cl(A))(a′) ≤ A.

Proof. (1) From Corollary 2.4 we easily obtain

A ∈ T[a] ⇔ a ≤ T (A)⇔ ∀xλ ≺ A, Int(A)(xλ) ≥ a.

Moreover it is obvious
∀xλ ≺ A, Int(A)(xλ) ≥ a⇒ A ≤

∨
Int(A)[a].

Now we prove

A ≤
∨

Int(A)[a] ⇒ ∀xλ ≺ A, Int(A)(xλ) ≥ a.

Suppose xλ ≺ A. By A ≤
∨

Int(A)[a], there exists xµ ∈ Int(A)[a] such that xλ ≺ xµ. Hence

Int(A)(xλ) ≥
∧
λ≺µ

Int(A)(xλ) = Int(A)(xµ) ≥ a.

(2) From Corollary 2.6 we easily obtain

A ∈ T ∗[a] ⇔ a ≤ T ∗(A)⇔ ∀xλ ̸≤ A, Cl(A)(xλ) ≤ a′.

Moreover it is obvious ∨
Cl(A)(a′) ≤ A⇒ ∀xλ ̸≤ A, Cl(A)(xλ) ≤ a′.

Now we prove

∀xλ ̸≤ A, Cl(A)(xλ) ≤ a′ ⇒
∨

Cl(A)(a′) ≤ A.

Suppose that xλ ≺
∨

Cl(A)(a′). Then there exists xµ ∈ Cl(A)(a′) (that is, Cl(A)(xµ) ̸≤ a′) such that xλ ≺ xµ.
Hence by

Cl(A)(xλ) ≥
∧
λ≺µ

Cl(A)(xλ) = Cl(A)(xµ) ̸≤ a′

we obtain Cl(A)(xλ) ̸≤ a′. This implies xλ ≤ A.
∨

Cl(A)(a′) ≤ A is proved. □

Theorem 3.4. Let T be an LM -fuzzy topology on X, Int be the LM -fuzzy interior operator in (X, T ) and
Cl be the LM -fuzzy closure operator in (X, T ). Then for any A ∈ LX and for any a ∈M \ {⊥M}, it follows

(1) A ∈ T [a] ⇔ ∀xλ ≺ A, xλ ∈ Int(A)[a] ⇔ A ≤
∨

Int(A)[a].

(2) A ∈ T ∗[a] ⇔ ∀xλ ̸≤ A, xλ ̸∈ Cl(A)(a′) ⇔
∨

Cl(A)(a′) ≤ A.

Proof. (1) From Corollary 2.4 we easily obtain

A ∈ T [a] ⇔ a ̸∈ α(T (A))⇔ ∀xλ ≺ A, a ̸∈ α(Int(A)(xλ))⇔ ∀xλ ≺ A, xλ ∈ Int(A)[a].

Moreover it is obvious
∀xλ ≺ A, xλ ∈ Int(A)[a] ⇒ A ≤

∨
Int(A)[a].

Now we prove

A ≤
∨

Int(A)[a] ⇒ ∀xλ ≺ A, xλ ∈ Int(A)[a].
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Suppose xλ ≺ A. By A ≤
∨

Int(A)[a], there exists xµ ∈ Int(A)[a] such that xλ ≺ xµ. Hence by

Int(A)(xλ) ≥
∧
λ≺µ

Int(A)(xλ) = Int(A)(xµ) and a ̸∈ α(Int(A)(xµ))

we know a ̸∈ α(Int(A)(xλ)), i.e., xλ ∈ Int(A)[a].

(2) From Corollary 2.6 we easily obtain

A ∈ T ∗[a] ⇔ a ̸∈ α(T ∗(A))

⇔ ∀xλ ̸≤ A, a ̸∈ α(Cl(A)(xλ)′)

⇔ ∀xλ ̸≤ A, a′ ̸∈ β(Cl(A)(xλ))

⇔ ∀xλ ̸≤ A, xλ ̸∈ Cl(A)(a′).

It is easy to check ∀xλ ̸≤ A, xλ ̸∈ Cl(A)(a′) ⇔
∨

Cl(A)(a′) ≤ A. □

4 The Characterizations of LM-fuzzy (semiclosed, preopen) preclosed
operators

In 2011, Shi presented the notions of LM -fuzzy semiopen operator and LM -fuzzy preopen operator by
means of LM -fuzzy topology T . They were applied to many research fields by Ghareeb, Al-Omeri and Liang
[3, 4, 5, 6, 7, 20]. Now we give their characterizations by means of LM -fuzzy interior operator and LM -fuzzy
closure operator.

Definition 4.1. [6, 16] Let T be an LM -fuzzy topology on X. For any A ∈ LX , define two mappings
Ts, Tp : LX →M by

Ts(A) =
∨
B≤A

T (B) ∧
∧
xλ≺A

∧
xλ ̸≤D≥B

(
T (D′)

)′ ,

Tp(A) =
∧
xλ≺A

∨
xλ≺B

T (B) ∧
∧
yµ≺B

∧
yµ ̸≤D≥A

(
T (D′)

)′ .

Then Ts is called the LM -fuzzy semiopen operator induced by T , and Tp is called the LM -fuzzy preopen
operator induced by T . For all A ∈ LX , define T ∗s (A) = Ts(A′) and T ∗p (A) = Tp(A′), then T ∗s and T ∗p are
respectively called the LM -fuzzy semiclosed operator and the LM -fuzzy preclosed operator induced by T .

The next theorem presents a characterization of the LM -fuzzy semiclosed operator.

Theorem 4.2. Let T be an LM -fuzzy topology on X. Then for any A ∈ LX ,

T ∗s (A) =
∨
B≥A

T ∗(B) ∧
∧
xµ ̸≤A

(
IntT (B)(xµ)

)′ . (1)
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Proof. On the one hand, we have

T ∗s (A) = Ts(A′) =
∨
B≥A

{
T (B′) ∧

∧
xλ≺A′

ClT (B′)(xλ)

}

≥
∨
B≥A

{
T (B′) ∧

∧
xλ≤A′

ClT (B′)(xλ)

}

=
∨
B≥A

{
T (B′) ∧

∧
xλ≤A′

∧
µ̸≤λ′

(
IntT (B)(xµ)

)′}

≥
∨
B≥A

{
T ∗(B) ∧

∧
xµ ̸≤A

(
IntT (B)(xµ)

)′}
.

On the other hand, we can prove

∨
B≥A

{
T ∗(B) ∧

∧
xµ ̸≤A

(
IntT (B)(xµ)

)′}

=
∨
B≥A

{
T (B′) ∧

∧
A̸≤(xλ)′

∨
µ̸≤λ′

ClT (B′)(xµ)

}

≥
∨

B′≤A′

{
T (B′) ∧

∧
xµ≺A′

ClT (B′)(xµ)

}
= Ts(A′) = T ∗s (A).

The proof of (1) is completed. □
The next theorem presents a characterization of the LM -fuzzy preclosed operator.

Theorem 4.3. Let T be an LM -fuzzy topology on X. Then for any A ∈ LX ,

T ∗p (A) =
∧
xλ ̸≤A

∨
xλ ̸≤D

T ∗(D) ∧
∧
yγ ̸≤D

(
IntT (A)(yγ)

)′ . (2)

Proof. On the one hand, we have

T ∗p (A) = Tp(A′) =
∧

xλ≺A′

∨
xλ≺B

{
T (B) ∧

∧
yµ≺B

ClT (A′)(yµ)

}

=
∧

xλ ̸≤A

∨
xλ≰B′

{
T (B) ∧

∧
yµ≺B

ClT (A′)(yµ)

}

=
∧

xλ ̸≤A

∨
xλ≰B′

{
T (B) ∧

∧
yµ≺B

∧
γ ̸≤µ′

(
IntT (A)(yγ)

)′}

≥
∧

xλ ̸≤A

∨
xλ≰B′

{
T (B) ∧

∧
yγ ̸≤B′

(
IntT (A)(yγ)

)′}

=
∧

xλ ̸≤A

∨
xλ≰D

{
T ∗(D) ∧

∧
yγ ̸≤D

(
IntT (A)(yγ)

)′}
.



14 Fu-Gui Sh-TFSS Vol.1, No.2, (2022)

On the other hand, we can prove

∧
xλ ̸≤A

∨
xλ≰D

{
T ∗(D) ∧

∧
yγ ̸≤D

(
IntT (A)(yγ)

)′}

=
∧

xλ≺A′

∨
xλ≺D′

{
T (D′) ∧

∧
D′ ̸≤(yγ)′

(
IntT (A)(yγ)

)′}

≥
∧

xλ≺A′

∨
xλ≺D′

{
T (D′) ∧

∧
∃yµ≺D′,yµ ̸≤(yγ)′

(
IntT (A)(yγ)

)′}

≥
∧

xλ≺A′

∨
xλ≺D′

{
T (D′) ∧

∧
∃yµ≺D′,yµ ̸≤(yγ)′

∨
ν ̸≤γ′

ClT (A′)(yν)

}

≥
∧

xλ≺A′

∨
xλ≺D′

{
T (D′) ∧

∧
yµ≺D′

ClT (A′)(yµ)

}

≥
∧

xλ≺A′

∨
xλ≺B

{
T (B) ∧

∧
yµ≺B

ClT (A′)(yµ)

}
= Ts(A′) = T ∗s (A).

The proof of (2) is completed. □
The following is a characterization of LM -fuzzy preopen operator, which is simpler than Definition 4.1.

Theorem 4.4. Let T be an LM -fuzzy topology on X. Then for any A ∈ LX ,

Tp(A) =
∨
A≤B

T (B) ∧
∧
yµ≺B

∧
yµ ̸≤D≥A

(
T (D′)

)′ . (3)

Proof. First we prove

Tp(A) ≤
∨
A≤B

T (B) ∧
∧
yµ≺B

∧
yµ ̸≤D≥A

(
T (D′)

)′ .

Suppose that there exists a ∈M such that a ≺ Tp(A). Then by

Tp(A) =
∧

xλ≺A

∨
xλ≺B

{
T (B) ∧

∧
yµ≺B

∧
yµ ̸≤D≥A

(T (D′))′
}

we know that ∀xλ ≺ A, there exists Bxλ ∈ LX such that xλ ≺ Bxλ , T (Bxλ) ≥ a and ∀yµ ≺ Bxλ , a ≤∧
yµ ̸≤D≥A

(T (D′))′. Let B =
∨
{Bxλ | xλ ≺ A}. Then A ≤ B, T (B) ≥ a and ∀yµ ≺ B, there exists Bxλ such

that ∀yµ ≺ Bxλ . This implies

∨
A≤B

T (B) ∧
∧
yµ≺B

∧
yµ ̸≤D≥A

(
T (D′)

)′ ≥ a.
Hence

Tp(A) ≤
∨
A≤B

T (B) ∧
∧
yµ≺B

∧
yµ ̸≤D≥A

(
T (D′)

)′ .

The inverse of the above inequality is obvious. □
By means of LM -fuzzy interior operator and LM -fuzzy closure operator we can give the other character-

izations of LM -fuzzy preopen operator and LM -fuzzy preclosed operator.
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Corollary 4.5. In an LM -fuzzy topological space (X, T ), it holds that for any A ∈ LX ,

Tp(A) =
∨
A≤B

{
T (B) ∧

∧
yµ≺B

Cl(A)(yµ)

}
, (4)

T ∗p (A) =
∨
A≤D

{
T ∗(D) ∧

∧
yγ ̸≤D

(
IntT (A)(yγ)

)′}
. (5)

Proof. (4) can be proved from Corollary 2.6 and Theorem 4.4. Based on Theorem 4.3 and analogous to the
proof of Theorem 4.4 we can obtain (5) □

5 LM-fuzzy regular open operators

In this section, we shall present the notions of LM -fuzzy regularly open operators and LM -fuzzy regularly
closed operators in LM -fuzzy topological spaces.

Definition 5.1. Let T be an LM -fuzzy topology on X. For any A ∈ LX , define a map Tr : LX →M by

Tr(A) = Ts(A′) ∧ T (A) = T ∗s (A) ∧ T (A).

Then Tr is called the LM -fuzzy regularly open operator corresponding to T , where Tr(A) can be regarded as
the degree to which A is regular open and T ∗r (B) = Tr(B′) can be regarded as the degree to which B is regularly
closed.

Theorem 5.2. Let Tr be the LM -fuzzy regularly open operator in LM -fuzzy topological space (X, T ). Then

(1) Tr(∅) = Tr(X) = ⊤M .

(2) Tr(A) ≤ T (A) for any A ∈ LX .

(3) Tr(A ∧B) ≥ Tr(A) ∧ Tr(B) for any A,B ∈ LX .

Proof. (1) and (2) are obvious. In order to prove (3), we first prove the following inequality.

T ∗s

(∧
i∈Ω

Ai

)
≥
∧
i∈Ω

T ∗s (Ai) for any subfamily {Ai | i ∈ Ω} of LX . (6)

Let a ∈ L and a ≺
∧
i∈Ω

T ∗s (Ai). Then for any i ∈ Ω, there exists Bi ≤ (Ai)
′ such that

a ≺ T (Bi) and a ≺
∧

xλ≺(Ai)′

∧
xλ ̸≤D≥Bi

(
T (D′)

)′
.

Hence

a ≤
∧
i∈Ω

T (Bi) ≤ T

(∨
i∈Ω

Bi

)
and a ≤

∧
i∈Ω

∧
xλ≺(Ai)′

∧
xλ ̸≤D≥Bi

(
T (D′)

)′
.

By {
xλ | xλ ≺

(∧
i∈Ω

Ai

)′}
=
∪
i∈Ω

{
xλ | xλ ≺ (Ai)

′} ,
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we have

T ∗s
( ∧
i∈Ω

Ai

)
=

∨
B≤
( ∧

i∈Ω
Ai

)′

T (B) ∧
∧

xλ≺
( ∧

i∈Ω
Ai

)′

∧
xλ ̸≤D≥B

(T (D′))′


≥ T

( ∨
i∈Ω

Bi

)
∧
∧
i∈Ω

∧
xλ≺(Ai)′

∧
xλ ̸≤D≥

∨
i∈Ω

Bi

(T (D′))′

≥ T
( ∨
i∈Ω

Bi

)
∧
∧
i∈Ω

∧
xλ≺(Ai)′

∧
xλ ̸≤D≥Bi

(T (D′))′

≥ a.

This shows T ∗s
( ∧
i∈Ω

Ai

)
≥
∧
i∈Ω

T ∗s (Ai).

Since T is an L-fuzzy topology, it follows that T (A ∧B) ≥ T (A) ∧ T (B). Hence by (6), we obtain

Tr(A ∧B) = T (A ∧B) ∧ T ∗s (A ∧B)

≥ T (A) ∧ T (B) ∧ T ∗s (A) ∧ T ∗s (B)

= Tr(A) ∧ Tr(B).

(3) is proved. □

Definition 5.3. A map f : X → Y between LM -fuzzy topological spaces (X,S) and (Y, T ) is called LM -fuzzy
almost continuous if Tr(U) ≤ S(f←L (U)) holds for any U ∈ LY .

Obviously an LM -fuzzy continuous map is LM -fuzzy almost continuous. Moreover the following result
is also obvious.

Corollary 5.4. A map f : X → Y between LM -fuzzy topological spaces (X,S) and (Y, T ) is almost contin-
uous if and only if T ∗r (U) ≤ S∗(f←L (U)) for any U ∈ LY .

S.J. Lee and E.P. Lee presented the definitions of the fuzzy r-semiopen set, fuzzy r-preopen and fuzzy
r-regularly open set, which rely on level [0,1]-topologies.

Definition 5.5. [12, 13, 14] Let A be a [0,1]-fuzzy set of a [0,1]-fuzzy topological space (X, T ) and r ∈ (0, 1].
Then A is said to be

(1) fuzzy r-semiopen if there is a fuzzy r-open set B such that B ≤ A ≤ Cl(B, r).

(2) fuzzy r-preopen if A ≤ ı(Cl(A, r), r).

(3) fuzzy r-regularly open if A = ı(Cl(A, r), r).

Based on Definition 5.5 we can introduce the other definition of LM -fuzzy regular openness.

Definition 5.6. Let (X, T ) be a [0, 1]-fuzzy topological space. For any A ∈ [0, 1]X , define

(1) ST (A) =
∨
{r ∈ (0, 1] | A is r-semiopen in T[r]}.

(2) PT (A) =
∨
{r ∈ (0, 1] | A is r-preopen in T[r]}.

(3) RT (A) =
∨
{r ∈ (0, 1] | A is r-regularopen in T[r]}.
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In general, ST ̸= Ts, PT ̸= Tp, RT ̸= Tr, these can be seen from the following example.

Example 5.7. Let X = [0, 1] and A1, A2, A3 be fuzzy sets defined by

A1(x) = x, A2(x) = 1− x, A3(x) = 0.5, ∀x ∈ [0, 1].

Define T : [0, 1]X → [0, 1] by

T (G) =


1, if G = ∅, X,

0.8, if G = A1, A1 ∨A2, A1 ∧A2,
0.6, if G = A3, A1 ∧A3, A2 ∧A3, A1 ∨A3, A2 ∨A3,
0.1, if G = A2

0, otherwise.

It is easy to check that T is a [0, 1]-fuzzy topology and

T[1] = {∅, X}; T[0.8] = {∅, X,A1, A1 ∨A2, A1 ∧A2};
T[0.6] = {∅, X,A1, A1 ∨A2, A1 ∧A2, A3, A1 ∧A3, A2 ∧A3, A1 ∨A3, A2 ∨A3};
T[0.1] = {∅, X,A1, A2, A1 ∨A2, A1 ∧A2, A3, A1 ∧A3, A2 ∧A3, A1 ∨A3, A2 ∨A3}.

It is easy to check that A1 is a fuzzy 0.8-open set and 0.3-closed set. This implies RT (A1) = 0.3. By

Ts(A2) =
∨

B≤A2

T (B) ∧
∧

xλ<A2

∧
xλ ̸≤D≥B

(T (D′))′


=

T (A1 ∧A2) ∧
∧

xλ<A2

∧
xλ ̸≤D≥A1∧A2

(T (D′))′


∨

T (A2 ∧A3) ∧
∧

xλ<A2

∧
xλ ̸≤D≥A2∧A3

(T (D′))′


∨

T (A2) ∧
∧

xλ<A2

∧
xλ ̸≤D≥A2

(T (D′))′


= (0.8 ∧ 0.2) ∨ (0.6 ∧ 0.4) ∨ (0.1 ∧ 1) = 0.4,

and
Tr(A1) = Ts((A1)′) ∧ T (A1) = Ts(A2) ∧ T (A1) = 0.4

we know RT (A1) ̸= Tr(A1).
It is easy to check that A2 is a fuzzy 0.1-open set and 0.8-closed set. This implies PT (A2) = 0.1. By

Tp(A2) =
∨

B≥A2

T (B) ∧
∧
xλ≺B

∧
xλ ̸≤D≥A2

(T (D′))′


=

T (A1 ∨A2) ∧
∧

xλ≺A1∨A2

∧
xλ ̸≤D≥A2

(T (D′))′


∨

T (A2) ∧
∧

xλ≺A2

∧
xλ ̸≤D≥A2

(T (D′))′


= (0.8 ∧ 0.2) ∨ (0.1 ∧ 1) = 0.2.
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we know PT (A2) ̸= Tp(A2).
It is easy to check that A1∨A3 is a fuzzy 0.6-open set and 0.6-closed set. This implies ST (A1∨A3) = 0.6.

Hence by the following fact we know ST (A1 ∨A3) ̸= Ts(A1 ∨A3).

Ts(A1 ∨A3)

=
∨

B≤A1∨A3

T (B) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥B

(T (D′))′


=

T (A1 ∧A2) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A1∧A2

(T (D′))′


∨

T (A2 ∧A3) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A2∧A3

(T (D′))′


∨

T (A1 ∧A3) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A1∧A3

(T (D′))′


∨

T (A1) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A1

(T (D′))′


∨

T (A3) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A3

(T (D′))′


∨

T (A1 ∨A3) ∧
∧

xλ≺A1∨A3

∧
xλ ̸≤D≥A1∨A3

(T (D′))′


= (0.8 ∧ 0.4) ∨ (0.6 ∧ 0.4) ∨ (0.6 ∧ 0.4) ∨ (0.8 ∧ 0.9) ∨ (0.6 ∧ 0.4) ∨ (0.6 ∧ 1)

= 0.8.
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1 Introduction

Data processing and storage are now more readily available than ever because of the booming development of
information technologies. If policy-makers can obtain information and knowledge from databases effectively
and quickly, they can make better decisions. However, along with the growing number of database types,
getting useful and valuable information from large databases for decision-making is difficult and important
[4, 27].

Fuzzy data mining is attracting much research interest these years. In fuzzy data mining, membership
functions are given and used to extract fuzzy association rules represented by linguistic terms from quantita-
tive data [3, 8, 9, 11, 26]. Therefore, fuzzy membership functions play a crucial role in affecting the quality
of the mining results. In literature, in addition to using static or manually defined membership functions,
meta-heuristic methods are utilized to find appropriate membership functions [7, 24]. For example, Hong
et al. proposed a genetic-fuzzy mining approach to extract fuzzy association rules with the derived member-
ship functions from given quantitative transactions [7]. Yang et al. proposed a method to generate fuzzy
membership functions using unsupervised learning of a self-organizing feature map [24].

This paper discusses the concept-drift issue of membership functions. We present a detection algorithm for
concept drift of membership functions. Firstly, each item in the database was divided into several linguistic
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terms, such as low, medium, and high. The proposed FCM-based approach is then used to generate a set
of relevant membership functions for each item in two given transactional databases that could be collected
at different times or places. Finally, a comparison algorithm is used to obtain the concept-drift patterns for
these membership functions in these two databases by a predefined threshold.

The rest of this paper is organized as follows. Section 2 reviews some related researches. Section 3 states
three types of concept drift of membership functions. Section 4 describes the proposed algorithm. Section 5
shows the experimental results and analysis. At last, the conclusion and future work are given in Section 6.

2 Related Works

In this section, we review some related research in regards to concept drift, fuzzy data mining, FCM, and
membership functions.

2.1 Concept Drift

The research of concept drift has become popular in recent years [4, 22, 27]. Tsymbal proposed the concept
of drift as finding patterns which change over time in unexpected ways [22]. For example, assume at time t
there is an association rule of ”if buying milk, then buying bread” and at time t + k there is another rule ”if
buying milk, then buying apple”. For the two rules, the latter changes from the former in the consequence
part along with time. The change is a type of concept-drift pattern.

The traditional methods of data mining have been used in various research areas based on the concept-
drift patterns [5, 13, 20, 23]. For instance, in intrusion detection systems, Mukkavilli et al. designed an
approach for detecting network attacks [13]. Hayat et al. utilized a language model to conduct concept-drift
detection in junk mail filtering [5]. Lee et al. designed a rule-based model using the concept of decision trees
to extract the concept-drift rules [12]. In addition, the concept of drift was often applied to classification
and data stream [2, 6, 14, 16, 17, 20, 21].

Song et al. defined three types of concept-drift patterns, which could be focused in association-rule
mining [18]. They are emerging patterns, unexpected changes, and added/perished patterns. Different types
of concept-drift patterns indicate different meanings of concept drift for association rules. An evaluative
function was then designed to calculate the degree of concept drift. If the degree between two rules is bigger
than a predefined threshold, then a concept-drift pattern is generated. Hong et al. then generalized it and
proposed fuzzy concept-drift patterns of association rules [10].

2.2 Fuzzy Data Mining

The fuzzy-set theory has been used in intelligent systems because of its simplicity and similarity to human
reasoning [25]. The theory has been applied in fields such as manufacturing, engineering, diagnosis, and
economics, among others. Many fuzzy data mining approaches have been proposed to solve real problems
[8, 9, 11].

Srikant et al. proposed a mining method to handle quantitative transactions by partitioning the values
of each attribute [19]. Hong et al. also proposed a fuzzy mining algorithm to mine fuzzy association rules
from quantitative transaction data [8]. The fuzzy mining algorithm first used given membership functions to
transform each quantitative value into a fuzzy set of linguistic terms and then used a fuzzy mining process to
find fuzzy association rules. To handle the time-consuming mining task from a very large database, Fernandez-
Basso et al. presented three Spark approaches to extract interesting fuzzy association rules from massive fuzzy
data [3]. Based on the existing association rule mining algorithms of Apriori, Apriori-TID, and ECLAT,
the map-reduced framework was utilized to speed up the data processing in mining fuzzy association rules.
Besides, Zhang et al. proposed a differential evolution (DE) algorithm to extract important fuzzy association
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rules and reduce spurious rules [26]. They also indicated that the rules extracted were better than those by
non-evolutionary and genetic algorithms. They also gave a case study to show the DE-based approach was
effective in practice.

2.3 Fuzzy C-means

FCM is a popular method for clustering. It follows the fuzzy-set theory and allows one piece of data to belong
to two or more clusters [1]. It is frequently used in pattern recognition. The following objective function is
minimized to get good clusters:

c∑
j=1

n∑
i=1

(uij)
m ∥cj − xi∥2 , (1)

where m is an arbitrary real number greater than 1, xi is the i-th data, cj is the center of the j-th cluster,
uij is the membership degree of xi in the cluster j, and || ∗ || is a norm expressing the similarity between a
data and a center. The Euclidean distance is commonly used to calculate the norm.

FCM adopts an iterative process to minimize the above function. The process will stop when

max
i,j

∥∥∥uk−1
ij − ukij

∥∥∥ < β, (2)

where β is a termination criterion between 0 and 1 and k is an iteration number. The algorithm of FCM is
shown below.

The FCM algorithm

Step1: Initialize the U matrix, U (0), where U represents all the uij values.

Step2: At each k-th iteration, calculate the center of each cluster and the membership function of each
data to each cluster by the following two formulas:

cj =

∑n
i=1(uij)

m × xi∑n
i=1(uij)m

, and (3)

uij =
1∑c

k=1
∥xi−cj∥
∥xi−ck∥

( 2
m−1

)
. (4)

Step3: If formula (2) is reached, then stop; otherwise return to Step 2.

2.4 Fuzzy Data Mining

In this paper, we use the isosceles-triangle membership functions to represent the fuzzy regions [15] for
simplicity. Isosceles-triangle membership functions are shown in Figure 1. The membership function of each
fuzzy region Rjk is represented by a (c, w) pair, where c denotes the center abscissa and w represents half
the span.

3 Concept Drift of Membership Functions

In this section, we present the concept-drift process of membership functions.
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Figure 1: Representation of Membership functions.

Figure 2: Membership functions of an item Ij .

3.1 Generating Membership Functions by Fuzzy C-means

In this paper, we propose a simple approach based on FCM to generate a set of membership functions for an
item. As mentioned above, a membership function is designed as an isosceles triangle and encoded as a pair
of (c, w). The peak of the triangle is located at c, and the distance between the peak and the left endpoint is
w. If we need to generate n membership functions for an item, the proposed algorithm will obtain n cluster
centers by using FCM. Each center obtained is the c value of the corresponding membership function. Then
the span w is calculated as the distance between the location of the peak in this triangle with the previous
one with the first one is the distance between the locations of the peak with 0. Figure 2 shows an example
of three membership functions for an item Ij .

The membership functions play a critical role in converting commodity items into human semantics. Fig-
ure 3 shows a membership-function set for apples purchased in a transaction. It consists of three membership
functions representing low, medium, and high, respectively, for each purchased amount. If we buy five apples,
the low fuzzy value is 0.4, the medium fuzzy value is 0.6, and the high fuzzy value is 0.

Additionally, we may know the status of the concept from the membership functions. In Figure 3,
the purchased amounts of three, six, and nine reach the membership value of 1 for the three membership
functions, respectively. We can regard these amounts as the representative of the linguistic terms and observe
the changes at different times.
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Figure 3: An example of membership functions for purchased apple amounts.

Figure 4: Changed membership functions for the purchased number of apples.

3.2 Concept-drift Patterns of Membership Functions

We proposed three types of concept-drift patterns of membership functions. The first type is the change
of the representative value (the center) of a linguistic term (membership function), the second type is the
change of a linguistic-term span, and the third type is the change of the fuzzy support for a linguistic term.
They are described below.

(A) The concept drift of the representative value for a linguistic term

Figure 3 shows the membership functions of the purchased number of apples derived in the last year,
and Figure 4 shows those derived in this year. In the membership function for the linguistic term of low,
the representative value, which is the center of the membership function, reduces from three to two. On the
contrary, in the membership function for the linguistic term of high, the representative value increases from
nine to ten. This represents the concepts of the low and the high linguistic terms have already changed.

The concept-drift degree of the representative value of a linguistic term, denoted cdLT , is thus shown
below:

cdLT =
|cD

′

ji − cDji |
wDji

, (5)

where D and D
′

are the initial and the final transaction databases at different times or different places, cji



26 T. P. Hong, C. H. Chen, Y. K. Li, M. T. Wu-TFSS Vol.1, No.2, (2022)

and wji are the center and the span values of the i-th linguistic term for the j-th commodity item. When
the degree is larger than or equal to a given threshold, we may say it has a concept drift of a center.

As an alternative, we may also consider the average span as the denominator and set the formula below:

cdLT =
|cD

′

ji − cDji |∑N
k=1w

D
jk/N

, (6)

where wjk is the span value of the k-th linguistic term for the j-th commodity item, and N is the number of
linguistic terms.

(B) The concept drift of the span value for a linguistic term

The meaning of the span of a membership function is the coverage of a linguistic term on data. For
example, although the representative value of the medium linguistic term is not changed in Figures 3 and
4, the span of the membership function from the modified database is larger than that from the original
database. The concept-drift degree of the span value of a linguistic term, denoted cdMF , is thus designed
below:

cdMF =
|wD

′

ji − wDji |
(cDjN − cDj1)/(N − 1)

, (7)

where D and D′ are the initial and the final transaction databases at different times or different places, wji
is the span values of the i-th linguistic term for the j-th commodity item, cj1 and cjN are the first and the
last center values of the j-th commodity item, and N is the number of linguistic terms. When the degree is
larger than or equal to a given threshold, we may say it has a concept drift of a span.

(C) The concept drift of the fuzzy support for a linguistic term

A concept drift in fuzzy support represents a group size changes for a membership function. We can
use this value to measure concept drift. An example, may be the number of people that buy expensive
mobile phones this year is greater than that in last year. We may use the following formula to evaluate the
concept-drift degree of the fuzzy support value of a linguistic term, denoted cdSUP :

cdSUP =
|supD

′

ji − supDji |
supDji

, (8)

where D and D
′

are the initial and the final transaction databases at different times or different places, supji
is the span values of the i-th linguistic term for the j-th commodity item. When the degree is larger than or
equal to a given threshold, we may say it has a concept drift of a fuzzy support. It can usually be used to
represent the concept drift of customer purchase behaviour.

As an alternative, we may also consider the average support as the denominator and set the formula
below:

cdSUP =
|supD

′

ji − supDji |∑N
k=1 sup

D
jk/N

, (9)

where N is the number of linguistic terms.
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4 The Proposed Algorithm

In this section, the proposed approach that combines concept-drift and FCM is described. The algorithm is
stated as follows.

The algorithm for finding the concept drift of membership functions

Input: D and D′: databases; I: the number of items; S: concept-drift rule sets; M : the number of linguistic
terms; α, β, γ: the thresholds for judging the concept drift of centers, spans and fuzzy supports of membership
functions, respectively.

Output: The concept-drift patterns of membership functions.

Method:

Step1: Generate membership functions for each item from D and D′ by the following substeps.

(a) Use the FCM algorithm to find the center values of the N clusters of each item respectively for the two
databases, D and D′.

(b) Set the center points of these N clusters for each item as the centers of the membership functions.

(c) Calculate the distances of all two neighbouring centers and set them as the spans of the membership
functions.

Step2: Set the initial concept-drift pattern set S as ∅.
Step3: Find the three types of concept-drift patterns of membership functions of each item between D and
D′ by the following substeps.

(a) Calculate the concept-drift degree (cdLT ) of the representative value of the linguistic term and compare
it with the α value. If the value of cdLT is larger than or equal to α, then put the center drift pattern
in S.

(b) Calculate the concept-drift degree (cdMF ) of the span value of the linguistic term and compare it with
the β value. If the value of cdMF is larger than or equal to β, then put the span drift pattern in S.

(c) Calculate the concept-drift degree (cdSUP ) of the fuzzy support value of the linguistic term and compare
it with the γ value. If the value of cdSUP is larger than or equal to γ, then put the support drift pattern
in S.

Step4: After all the items are processed, output the concept-drift set S.

5 Experimental Results

In this section, we describe the experimental results of the concept drift of membership functions. We used
a computer with an Intel Core i5 − 3230M 2.60GHz processor with four cores, four threads, and 12 GB
RAM. The operating system used was Microsoft Windows 8.1 Pro and the programming language was .NET
Framework 4.5.1 C# (C# Version 5.0).

A simulated retail dataset containing 1, 559 items and 21, 556 transactions was used in the experiments. In
the dataset, the number of purchased items in transactions was first randomly generated, and the purchased
items and their quantities in each transaction were then generated. Each transaction was also assigned a
date and a location in one year.
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Table 1: The numbers of concept-drift patterns of membership functions.

Center Drift Span Drift Support Drift

Case 1 1 12 52

Case 2 9 39 234

Case 3 112 236 441

Case 4 40 112 274

The cluster size was set at 3, the fuzziness index value m in FCM was set at 2, the threshold values of
α, β, and γ were all set at 1. We generate the following four cases to verify the concept drift of membership
functions:

Case 1. Data from two different locations are selected to form the original and drifted databases.

Case 2. Data from the first and the second half of the dataset are selected to form the original and drifted
databases.

Case 3. Data from two arbitrary months are selected to form the original and drifted databases.

Case 4. The whole data set is used as the original dataset and the data from an arbitrary month is
selected to form the drifted database.

Table 1 shows the experimental concept-drift results of the proposed approach. In the experimental results,
we can find the number of drift patterns at different times was larger than that at different locations. The
short-term databases may contain more drifted patterns, so when we compared the membership functions
from two short-term databases, more concept-drifts could be found. In the contrast, since the long-term
databases tended to be stable, less concept-drifts will occur. As a result, for the simulated database, the
comparison between short-term databases is more preferable. The experimental results with alternative
formulas for concept-drift degrees are similar.

6 Conclusion and Future Work

In this paper, we have described a simple approach to test the concept drift of membership functions. We have
proposed three types of concept drifts of membership functions and designed formulas to evaluate them. We
have also implemented the approach based on fuzzy c-means (FCM) and the designed formulas. Experiments
on the simulated retail dataset have also been made to show the effectiveness of the proposed approach. In
particular, the proposed method can help shop managers understand customer behaviour drift, analyzed from
membership functions, in different times and places. In the future, we will try to design more effective ways
to decrease computing time and combine the proposed concept-drift patterns with fuzzy association rules.
We will also conduct more experiments to verify the approach.
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Abstract. In this paper, we have characterized big data fuzzy sets and shown that topological data points form
singleton fuzzy sets which are closed. Besides, fuzzy sets of topological data points are compact and have at least
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1 Introduction

Studies on fuzzy sets have been carried out over a long period of time particularly in topological spaces with
interesting results obtained and open problems indicated (see [1]-[16] and the references therein). From the
beginning, fuzzy set theory has gained a lot of advancement in a variety of ways and in several fields [5]. Nice
applications of fuzzy set theory have been seen in several disciplines like artificial intelligence, topological
spaces, computer engineering, medical engineering, control and instrumentation engineering, risk theory, game
theory, decision theory, expert systems, logical functions analysis, management systems science, operations
research, face and pattern recognition among others [8]. With respect to mathematical developments, fuzzy
set theory has led to a very high level of improvement in modern research with applications to real life problems
[13]. This work describes the the pertinent logical framework of fuzzy set theory, together with very important
significance of this theory to other methods and theories. Since the beginning of this area of study [15] by Lotfi
Zadeh in 1965, several aspects have been considered in the study of fuzzy sets. These include: The intuitionist
case [2], the empty set[3], singleton fuzzy sets among others[4]-[9]. These aspects have been utilized in several
areas like logic [10]-[13], programming and decision making particularly in optimization and profit making
in the business sector [14]. In this work, we consider fuzzy sets in topological spaces [8], particularly the
Hausdorff space. We take advantage of the fact that for any two fuzzy sets say A,B in a Hausdorff space,
A∩B = ∅. This helps in classification of the fuzzy sets into different classes without overlaps. From early 90’s,
fuzzy set theory, neural circuits and programming of evolution acquired the title computational intelligence
also known as soft computing [16]. There exists a very important relationship between these areas making
them to be naturally equivalent in some sense. In this study, however, we particularly embark primarily
on fuzzy Hausdorff spaces with applications to real life problems which are indispensable. For better under
standing of this work, we give some preliminary notes which are very instrumental in the next section.

..

∗Corresponding author: Benard Okelo, Email: bnyaare@yahoo.com, ORCID: 0000-0003-3963-1910
Received: 31 March 2022; Revised: 22 May 2022; Accepted: 23 May 2022; Published Online: 7 November 2022.

How to cite: B. Okelo and A. Onyango, Characterization of Topological Fuzzy Sets in Hausdorff Spaces, Trans. Fuzzy Sets Syst.,
1(2) (2022), 32-36.

32

https://tfss.journals.iau.ir/
http://doi.org/10.30495/tfss.2022.1955757.1020
https://orcid.org/0000-0003-3963-1910
https://orcid.org/0000-0003-2685-4680


Characterization of Topological Fuzzy Sets in Hausdorff Spaces-TFSS Vol.1, No.2, (2022) 33

2 Preliminaries

We provide basic concepts which are useful in the sequel.

Definition 2.1. ([16], Definition 1) Let X is a collection of objects denoted generically by x, then a fuzzy
set Ã in X is a set of ordered pairs: Ã = {(x, µÃ(x)) : x ∈ X}. µÃ(x) is called the membership function
(generalized characteristic function) which maps X to the membership space M . Its range is the subset of
nonnegative real numbers whose supremum is finite. For supµÃ(x) = 1 we have a normalized fuzzy set.

Remark 2.2. In Definition 2.1, the membership function of the fuzzy set is a crisp (real-valued) function.
Zadeh [15] also defined fuzzy sets in which the membership functions themselves are fuzzy sets.

Definition 2.3. ([17], Definition 3.2) A type m fuzzy set is a fuzzy set whose membership values are type
m− 1,m > 1, fuzzy sets on [0, 1].

Remark 2.4. For operations on fuzzy set see [16] and the references therein.

Definition 2.5. ([6], Definition 2.3) Let X be a fuzzy topological space and H be a nonempty fuzzy compact
Hausdorff subspace of X. A point a ∈ H is called a topological data point (TDP) if Hc \ {a} is a compact
fuzzy subspace of H. The set of all topological data points is called a Topological Data Set (TDS). If this set
is fuzzy then we call it a Fuzzy Topological Data Set (FTDS).

Definition 2.6. ([11], Definition 1.5) A nonempty fuzzy compact Hausdorff space H is called a TDP fuzzy
space if every a ∈ H is a TDP.

Remark 2.7. Let H be a fuzzy topological space. Then H = P † Q means P and Q are nonempty fuzzy
subsets of H such that H = P ∪Q and P ∩ Q̄ = P̄ ∩Q = ∅.

3 Topological data sets in fuzzy Hausdorff spaces

In this section, we characterize Topological Data Points in a fuzzy Hausdorff space. We begin with the
following proposition.

Proposition 3.1. Let H be a TDP fuzzy space and a ∈ H such that Hc \ {a} = P †Q. If {a} is open then
P and Q are closed and if {a} is closed, then P and Q are open.

Proof. Let a ∈ H be open and suppose that P is both open and closed in Hc\{a}. Without loss of generality,
there exists a closed subset R of H such that P = R∩(Hc\{a}) = Rc\{a}. Hence, Hc\{a} = P†Q meaning
Q of H is closed and so is P. Conversely, let a ∈ H be closed. Putting the same argument as the forward case,
there exists an open set Z of H in which P = Z∩ (Hc \ {a}) = Zc \ {a}. Therefore, P = Rc \ {a} = Zc \ {a}.
Hence, Hc \ {a} = P †Q meaning Q of H is open and so is P. This completes the proof. □

This proposition leads to characterization of topological Data points in terms of compactness.

Lemma 3.2. Let H be a TDP fuzzy space and a ∈ H. If Hc \ {a} = P †Q then P ∪ {a} is compact.

Proof. Without loss of generality, let W and V be connected fuzzy subsets of H in which P∪{a} = W †V.
Let a ∈ W. Then V ⊆ P. Now (V ∪W) ∩ V = (Q ∩ V) ∪ (W ∩ V) = ∅. So (V ∪W) ∩ V = ∅ and
consequently, (Q ∩W) ∩V = ∅ implying H = (Q ∩W) †V. □

Example 3.3. Consider the points on n straight lines in the Euclidean plane with standard topology R2. The
union of these n straight lines is a compact TDP fuzzy space if and only if either all of them are concurrent
or exactly n− 1 of them are parallel.
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Theorem 3.4. Let H be a TDP fuzzy space and a ∈ H. If Hc \ {a} = P †Q and if every point of P is TDP
in H then P has at least one closed point.

Proof. Suppose that P is compact then by Proposition 3.1, P ∪ {a} is compact. So {a} is closed. Let
z0 ∈ P. By Lemma 3.2, Hc \ {z0} =

∪
z=P,z̸=z0

{{a, z} ∪ (Q ∪ {a})} is also compact. This contradicts the
earlier hypothesis that a is TDP point of H. □
Example 3.5. Consider the Euclidean plane with standard topology R2. Let X0 = {(x, 0) ∈ R2 : x ≤
0} ∪ {(x, 1) ∈ R2 : x > 0} and let for each positive integer n, Yn = {( 1

n , y) ∈ R2 : 0 < y ≤ 1}. Define
K = X0 ∪ (∪∞n=1Yn). Then X is a TDP fuzzy space with at least one closed point.

Remark 3.6. All TDP fuzzy spaces are connected spaces. However, a finite fuzzy topological space is not a
TDP.

Example 3.7. Consider the Khalimsky line given as follows. Let Z be the set of integers and let D =
{{2i − 1, 2i, 2i + 1} : i ∈ Z} ∪ {{2i + 1} : i ∈ Z}. Then D is a base topology for Z. The set Z with this
topology is a TDP fuzzy space which is connected.

At this juncture, we locate Topological Data points of Big Data fuzzy Sets in a fuzzy Hausdorff space.
We state the following proposition.

Proposition 3.8. Let H be a TDP fuzzy space. The set A0 of all condensation points of H is a fuzzy TDS
which is infinite.

Proof. Let a1, a2,... be a sequence of distinct condensation points in H. By induction, we have a condensation
point a0 in A0 ⊆ H. But a0 is a TDP of H. So we have open TDS W1 and V1 of H such that Hc \ {a1} =
W1 † V1. Suppose that a1, a2, ..., an are in H and open subsets Wi and Vi(i ∈ N) are picked such that
Hc \ {a1} = Wi †Vi, where i = 1, ...,n. Clearly, by induction and considering Wi+1 and Vi+1, the set A0 of
all condensation points of H is infinite. □

The above Proposition 3.8 takes us to characterization of the size of the fuzzy sets. We give the size of
the fuzzy data set in the next lemma.

Corollary 3.9. Let X be a fuzzy topological space and H be a TDP fuzzy subspace of X. Then CardH =∞.

Proof. By Hausdorff Maximal Principle (HMP) and by Proposition 3.8, the proof is complete. □
Next, we establish the distribution patterns of the topological Data Points within a fuzzy Hausdorff space

in the following theorem.

Theorem 3.10. All TDS in TDP fuzzy space are arbitrarily distributed if they are T2. Moreover, each FTDS
has at least two TDPs with closed subsets of FTDS which are singletons.

Proof. Let H be a TDP fuzzy space with two subsets H1 and H2. Let H1 and H2 be TDP fuzzy subspaces
of H. Then it implies that if H1 and H2 are both empty then trivially we are done. Let H1 and H2 be
non-empty. It remains to show that H1 ∩H2 = ∅ and hence it is T2. To see this, consider a1 ∈ H1 and
a2 ∈ H2 such that a2 /∈ H1 and a1 /∈ H2. Clearly, H1 ∩H2 = ∅, hence it is Hausdorff. Now we show that
H has at least two TDPs. Let H be such that it has at most one TDP. Let a1 ∈ H and H \ {a1} = P0 †Q0

for some P0,Q0, which are subsets of H. Since H has only one TDP then either P0 or Q0 has TDPs. By
proposition 4.8, P0 has some condensation point of P say a. Let H\{a} = P †Q. Without loss of generality,
let a ∈ Q. By Hausdorff Maximal Principle, there is an optimal chain C in S of H such that for some Uα

of S,
∪
α∈Λ Uα ∈ H. Hence, H is compact. Let V =

∪
α∈Λ Uα, then by Lemma 4.9, we can get at least two

points of H which give a subcover for H. Since the subcovers are open by Heine-Borel Property, each set
forms a singleton set. □
Example 3.11. Consider the Euclidean plane with standard topology R2. Let X1 = {(x, y) ∈ R2 : x ≤
0 and |y| = 1} and let X2 = {(x, y) ∈ R2 : x > 0 and y = sin 1

x}. Define X = X1 ∪X2. Then X is a FTDS
with at least two TDPs with closed subsets of FTDS which are singletons.
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4 Conclusion

In this work, we have characterized big data fuzzy sets and shown that topological data points form singleton
fuzzy sets which are closed. Besides, fuzzy sets of topological data points are compact and have at least one
closed point. We have also shown that the fuzzy set of all condensation points of a fuzzy Hausdorff space is
infinite and the cardinality of a fuzzy topological data set is also infinite and arbitrarily distributed in fuzzy
Hausdorff spaces. For further research, this work can be extended by characterizing topological data point
and sets in soft fuzzy Haursdorff spaces.
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Abstract. The idea of  Lukasiewicz t-conorm is used to construct the concept of  Lukasiewicz anti fuzzy sets
based on a given anti fuzzy set, and it is applied to BE-algebras. The notion of  Lukasiewicz anti fuzzy BE-ideal
is introduced, and its properties are investigated. The conditions under which  Lukasiewicz anti fuzzy set will be
 Lukasiewicz anti fuzzy BE-ideal are explored, and the relationship between anti fuzzy BE-ideal and  Lukasiewicz anti
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1 Introduction

BCK-algebra and BCI-algebra, introduced by Y. Imai, K. Iski and S. Tanaka in 1966, are algebraic structures
of universal algebra which describe fragments of propositional calculus related to implications known as BCK
and BCI-logic. After that, various generalizations were attempted, and BCC-algebras, BCH-algebras, BH-
algebras, d-algebras etc. appeared. In 2007, H. S. Kim and Y. H. Kim [7] introduced the notion of a BE-
algebra as a dualization of a generalization of a BCK-algebra. Since then, the fuzzy set theory in BE-algebras
has been studied (see [2, 5, 8]). S. S. Ahn and K. S. So [3] introduced the notion of ideals in BE-algebras, and
S. Abdullah et al. [1] studied anti fuzzy ideals in BE-algebras. In mathematics, a triangular norm (briefly,
t-norm) is a kind of binary operation used in the framework of probabilistic metric spaces and in multi-valued
logic, specifically in fuzzy logic. The  Lukasiewicz t-norm is a nice example of t-norm. A t-conorm is dual
to a t-norm under the order-reversing operation that assigns 1x to x on [0, 1], and the  Lukasiewicz t-conorm
is dual to the  Lukasiewicz t-norm. It is the standard semantics for strong disjunction in  Lukasiewicz fuzzy
logic.

In this paper, we establish the concept of the  Lukasiewicz anti-fuzzy set using the idea of the  Lukasiewicz
t-conorm and anti-fuzzy set, and apply it to BE-algebra. We introduce the notion of  Lukasiewicz anti fuzzy
BE-ideal and investigate its properties. We explore the conditions under which  Lukasiewicz anti fuzzy set will
be  Lukasiewicz anti fuzzy BE-ideal. We discuss the relationship between anti fuzzy BE-ideal and  Lukasiewicz
anti fuzzy BE-ideal. We look for conditions under which the ⋖-subset, Υ-subset, and anti subset can be
BE-ideal.
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2 Preliminaries

This section lists the known default content that will be used later.

A BE-algebra (see [7]) is defined to be a set X together with a binary operation “∗” and a special element
“1” satisfying the conditions:

(BE1) (∀a ∈ X) (a ∗ a = 1),

(BE2) (∀a ∈ X) (a ∗ 1 = 1),

(BE3) (∀a ∈ X) (1 ∗ a = a),

(BE4) (∀a, b, c ∈ X) (a ∗ (b ∗ c) = b ∗ (a ∗ c)).
In the following, the BE-algebra is expressed as (X, 1)∗.

A relation “ ≤ ” in (X, 1)∗ is defined as follows:

(∀a, b ∈ X)(a ≤ b ⇔ a ∗ b = 1). (1)

In (X, 1)∗, the following conditions are valid.

(∀a, b ∈ X) (a ∗ (b ∗ a) = 1) . (2)

(∀a, b ∈ X) (a ∗ ((a ∗ b) ∗ b) = 1) . (3)

A BE-algebra (X, 1)∗ is said to be transitive (see [3]) if it satisfies:

(∀a, b, c ∈ X) (b ∗ c ≤ (a ∗ b) ∗ (a ∗ c)) . (4)

A BE-algebra (X, 1)∗ is said to be self-distributive (see [7]) if it satisfies:

(∀a, b, c ∈ X) (a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)) . (5)

Note that if a BE-algebra (X, 1)∗ is self-distributive, then it is transitive, but the converse is not valid
(see [3]).

A subset K of X is called a BE-ideal of (X, 1)∗ (see [3]) if it satisfies:

(∀a, b ∈ X) (b ∈ K ⇒ a ∗ b ∈ K) , (6)

(∀a, b, c ∈ X) (b, c ∈ K ⇒ (b ∗ (c ∗ a)) ∗ a ∈ K) . (7)

Lemma 2.1 ([6]). A subset K of X is a BE-ideal of (X, 1)∗ if and only if it satisfies:

1 ∈ K, (8)

(∀x, y, z ∈ X)(x ∗ (y ∗ z) ∈ K, y ∈ K ⇒ x ∗ z ∈ K). (9)

Given two fuzzy sets f and g in a set X, their union f ∪ g and intersection f ∩ g are defined as follows:

f ∪ g : X → [0, 1], b 7→ max{f(b), g(b)},
f ∩ g : X → [0, 1], b 7→ min{f(b), g(b)}.

A fuzzy set g in X is called an anti fuzzy BE-ideal of (X, 1)∗ (see [1]) if it satisfies:

(∀a, b ∈ X) (g(a ∗ b) ≤ g(b)) , (10)

(∀a, b, c ∈ X) (g((b ∗ (c ∗ a)) ∗ a) ≤ max{g(b), g(c)}) . (11)
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3  Lukasiewicz anti fuzzy sets

A fuzzy set g in a set X of the form

g(b) :=

{
s ∈ [0, 1) if b = a,
1 if b ̸= a,

(12)

is called an anti fuzzy point with support a and value s, and is denoted by a
s . A fuzzy set g in a set X is said

to be non-unit if there exists a ∈ X such that g(a) ̸= 1.
For a fuzzy set g in a set X, we say that an anti fuzzy point a

s is said to

(i) beside in g, denoted by a
s ⋖ g, (see [4]) if g(a) ≤ s.

(ii) be non-quasi coincident with g, denoted by a
s Υ g, (see [4]) if g(a) + s < 1.

If a
s ⋖ g or a

s Υ g (resp., a
s ⋖ g and a

s Υ g), we say that a
s ⋖∨Υ g (resp., a

s ⋖∧Υ g). Given β ∈ {⋖,Υ}, to
indicate a

s β g means that a
s β g is not established.

Based on the  Lukasiewicz t-conorm, we define  Lukasiewicz anti fuzzy set.

Definition 3.1. Let ε be an element of the unit interval [0, 1] and let g be a fuzzy set in a set X. A function

 Lεg : X → [0, 1], x 7→ min{1, g(x) + ε}

is called a  Lukasiewicz anti fuzzy set of g in X.

Let  Lεg be a  Lukasiewicz anti fuzzy set of a fuzzy set g in X. If ε = 0, then  Lεg(x) = min{1, g(x) + ε} =
min{1, g(x)} = g(x) for all x ∈ X. This shows that if ε = 0, then the  Lukasiewicz anti fuzzy set of a fuzzy set
g in X is the classisical fuzzy set g itself in X. If ε = 1, then  Lεg(x) = min{1, g(x)+ε} = min{1, g(x)+1} = 1
for all x ∈ X, that is, if ε = 1, then the  Lukasiewicz anti fuzzy set is the constant function with value 1.
Therefore, in handling the  Lukasiewicz anti fuzzy set, the value of ε can always be considered to be in (0, 1).

Let g be a fuzzy set in a set X and ε ∈ (0, 1). If g(x) + ε ≥ 1 for all x ∈ X, then the  Lukasiewicz anti
fuzzy set  Lεg of g in X is the constant function with value 1, that is,  Lεg(x) = 1 for all x ∈ X. Therefore, in
order for the  Lukasiewicz anti fuzzy set to have a meaningful shape, a fuzzy set g in X and ε ∈ (0, 1) shall
be set to satisfy condition “g(x) + ε < 1 for some x ∈ X”.

Proposition 3.2. If g is a fuzzy set in a set X and ε ∈ (0, 1), then its  Lukasiewicz anti fuzzy set  Lεg satisfies:

(∀x, y ∈ X)(g(x) ≥ g(y) ⇒  Lεg(x) ≥  Lεg(y)), (13)

(∀x ∈ X)
(
x
ε Υ g ⇒  Lεg(x) = g(x) + ε

)
. (14)

(∀x ∈ X)(∀ε, γ ∈ (0, 1))(ε ≥ γ ⇒  Lεg(x) ≥  Lγg (x)). (15)

Proof. Straightforward. □

Proposition 3.3. If f and g are fuzzy sets in a set X, then

(∀ε ∈ (0, 1))
(

 Lεf∩g =  Lεf ∩  Lεg,  Lεf∪g =  Lεf ∪  Lεg
)
. (16)

Proof. For every y ∈ X, we have

 Lεf∩g(y) = min{1, (f ∩ g)(y) + ε} = min{1,min{f(y), g(y)}+ ε}
= min{1,min{f(y) + ε, g(y) + ε}}
= min{min{1, f(y) + ε},min{1, g(y) + ε}}
= min{ Lεf (y),  Lεg(y)} = ( Lεf ∩  Lεg)(y),
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and

 Lεf∪g(y) = min{1, (f ∪ g)(y) + ε} = min{1,max{f(y), g(y)}+ ε}
= min{1,max{f(y) + ε, g(y) + ε}}
= max{min{1, f(y) + ε},min{1, g(y) + ε}}
= max{ Lεf (y),  Lεg(y)} = ( Lεf ∪  Lεg)(y).

Hence (16) is valid. □
Given a  Lukasiewicz anti fuzzy set  Lεg of a fuzzy set g in X and s ∈ [0, 1), consider the sets:

( Lεg, s)⋖ := {y ∈ X | ys ⋖  Lεg} and ( Lεg, s)Υ := {y ∈ X | ys Υ  Lεg}

which are called the ⋖-subset and Υ-subset of  Lεg in X. Also, we consider the following set

Anti( Lεg) := {y ∈ X |  Lεg(y) < 1}

and it is called the anti subset of  Lεg in X. It is observed that

Anti( Lεg) = {y ∈ X | g(y) + ε < 1}.

It is clear that if s < ε, then ( Lεg, s)⋖ = ∅, and if s+ ε ≥ 1, then ( Lεg, s)q = ∅.
Example 3.4. Consider a set X := {x ∈ N | x ≤ 10} and define a fuzzy set g in X as follows:

g : X → [0, 1], x 7→



0.5 if x = 5,
0.3 if x ∈ {1, 2},
0.6 if x ∈ {3, 4},
0.8 if x ∈ {5, 6, 7},
0.1 if x ∈ {8, 9},
1.0 if x = 10.

If we take ε := 0.28 and s := 0.59, then ( Lεg, s)⋖ = {1, 2, 8, 9}, ( Lεg,Υ)⋖ = {8, 9}, and Anti( Lεg) =
{1, 2, 3, 4, 8, 9}.

4  Lukasiewicz anti fuzzy BE-ideals

In this section, let g and ε be a fuzzy set in X and an element of (0, 1), respectively, unless otherwise specified.

Definition 4.1. A  Lukasiewicz anti fuzzy set  Lεg in X is called a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗
if it satisfies:

(∀x, y ∈ X)(∀s ∈ [0, 1))
(y
s ⋖  Lεg ⇒

x∗y
s ⋖  Lεg

)
, (17)

(∀x, y, z ∈ X)(∀sa, sb ∈ [0, 1))
(
x
sa

⋖  Lεg,
y
sb

⋖  Lεg ⇒
(x∗(y∗z))∗z
max{sa, sb} ⋖  Lεg

)
. (18)

Example 4.2. Let X = {1, a, b, c, d, 0} and ∗ be given by the following Cayley table:

∗ 1 a b c d 0

1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1
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Then (X, 1)∗ is a BE-algebra (see [7]). Let g be a fuzzy set in X defined as follows:

g : X → [0, 1], x 7→


0.43 if x ∈ {1, a, b},
0.86 if x = c,
0.67 if x = d,
0.79 if x = 0.

Given ε := 0.35, the  Lukasiewicz anti fuzzy set  Lεg of g in X is given as follows:

 Lεg : X → [0, 1], y 7→
{

0.78 if y ∈ {1, a, b},
1.00 if y ∈ {c, d, 0}.

It is routine to verify that  Lεg is a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗.

Theorem 4.3. A  Lukasiewicz anti fuzzy set  Lεg in X is a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗ if and
only if it satisfies:

(∀x, y ∈ X)
(

 Lεg(x ∗ y) ≤  Lεg(y)
)
. (19)

(∀x, y, z ∈ X)
(

 Lεg((x ∗ (y ∗ z)) ∗ z) ≤ max{ Lεg(x),  Lεg(y)}
)
. (20)

Proof. Assume that  Lεg is a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗. Let x, y ∈ X. Since y

 Lε
g(y)

⋖  Lεg, we

have x∗y
 Lε

g(y)
⋖  Lεg by (17), and so  Lεg(x ∗ y) ≤  Lεg(y). Note that x

 Lε
g(x)

⋖  Lεg and y

 Lε
g(y)

⋖  Lεg for all x, y ∈ X.

It follows from (18) that (x∗(y∗z))∗z
max{ Lε

g(x), Lε
g(y)} ⋖  Lεg, that is,  Lεg((x ∗ (y ∗ z)) ∗ z) ≤ max

{
 Lεg(x),  Lεg(y)

}
for all

x, y, z ∈ X.
Conversely, let  Lεg be a  Lukasiewicz anti fuzzy set satisfying (19) and (20). If y

s ⋖  Lεg for all y ∈ X and
s ∈ [0, 1), then  Lεg(x ∗ y) ≤  Lεg(y) ≤ s for all x ∈ X by (19). Hence x∗y

s ⋖  Lεg. Let x, y, z ∈ X and sa, sb ∈ [0, 1)
be such that x

sa
⋖  Lεg and y

sb
⋖  Lεg. Then  Lεg(x) ≤ sa and  Lεg(y) ≤ sb. It follows from (20) that

 Lεg((x ∗ (y ∗ z)) ∗ z) ≤ max{ Lεg(x),  Lεg(y)} ≤ max{sa, sb}.

Hence (x∗(y∗z))∗z
max{sa, sb} ⋖  Lεg, and therefore  Lεg is a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗. □

Proposition 4.4. Every  Lukasiewicz anti fuzzy BE-ideal  Lεg of (X, 1)∗ satisfies:

(∀x ∈ X)(∀s ∈ [0, 1))
(
x
s ⋖  Lεg ⇒ 1

s ⋖  Lεg
)
. (21)

(∀x, y ∈ X)(∀s ∈ [0, 1))
(
x
s ⋖  Lεg ⇒

(x∗y)∗y
s ⋖  Lεg

)
. (22)

(∀x, y ∈ X)(∀s ∈ [0, 1))
(
x ≤ y, x

s ⋖  Lεg ⇒
y
s ⋖  Lεg

)
. (23)

(∀x, y ∈ X)(∀sa, sb ∈ [0, 1))
(
x∗y
sb

⋖  Lεg,
x
sa

⋖  Lεg ⇒
y

max{sa,sb} ⋖  Lεg

)
. (24)

(∀x, y, z ∈ X)(∀sa, sb ∈ [0, 1))
(
x∗(y∗z)
sa

⋖  Lεg,
y
sb

⋖  Lεg ⇒ x∗z
max{sa,sb} ⋖  Lεg

)
. (25)

Proof. The combination of (BE1) and (17) induces the condition (21). Let x ∈ X and s ∈ [0, 1) be such that
x
s ⋖  Lεg. Then (x∗y)∗y

s = (x∗(1∗y))∗y
s = (x∗(1∗y))∗y

max{s,s} ⋖  Lεg by (BE3), (18) and (21). The combination of (BE3), (1)

and (22) induces (23). Let x, y ∈ X and sa, sb ∈ [0, 1) be such that x∗y
sb

⋖  Lεg and x
sa

⋖  Lεg. Then

y
max{sa,sb} = 1∗y

max{sa,sb} = ((x∗y)∗(x∗y))∗y
max{sa,sb} ⋖  Lεg

by (BE1), (BE3) and (18), which proves (24). The condition (25) is derived from the combination of (BE4)
and (24). □
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Lemma 4.5. If a  Lukasiewicz anti fuzzy set  Lεg in X satisfies (21) and (25), then it satisfies the conditions
(22) and (23).

Proof. Let x, y ∈ X and s ∈ [0, 1) be such that x ≤ y and x
s ⋖  Lεg. Then x ∗ y = 1 and 1∗(x∗y)

s = 1∗1
s =

1
s ⋖  Lεg by (BE1) and (21). It follows from (BE3) and (25) that y

s = 1∗y
s ⋖  Lεg. Hence (23) is valid. Since

x ∗ ((x ∗ y) ∗ y) = (x ∗ y) ∗ (x ∗ y) = 1, i.e., x ≤ (x ∗ y) ∗ y, for all x, y ∈ X, it follows from (23) that (x∗y)∗y
s ⋖  Lεg

which proves (22). □

Theorem 4.6. Let (X, 1)∗ be a transitive BE-algebra. If a  Lukasiewicz anti fuzzy set  Lεg in X satisfies
conditions (21) and (25), then it is a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗.

Proof. Assume that  Lεg satisfies conditions (21) and (25). Since (X, 1)∗ is transitive, we have

(∀x, y, z ∈ X) (((y ∗ z) ∗ z) ∗ ((x ∗ (y ∗ z)) ∗ (x ∗ z)) = 1) . (26)

Let y ∈ X and s ∈ [0, 1) be such that y
s ⋖  Lεg. Then x∗(y∗y)

s = 1
s ⋖  Lεg by (BE1), (BE2) and (21). It follows

from (25) that x∗y
s ⋖  Lεg. Let x, y, z ∈ X and sa, sb ∈ [0, 1) be such that x

sa
⋖  Lεg and y

sb
⋖  Lεg. Then (y∗z)∗z

sb
⋖  Lεg

by Lemma 4.5, and so (x∗(y∗z))∗(x∗z)
sb

⋖  Lεg by the combination of Lemma 4.5 and (26). It follows from (25)

that (x∗(y∗z))∗z
max{sa,sb} ⋖  Lεg. Therefore  Lεg is a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗. □

Since every self-distributive BE-algebra is transitive, we have the following corollary.

Corollary 4.7. Let (X, 1)∗ be a self-distributive BE-algebra. Then every  Lukasiewicz anti fuzzy set  Lεg in X
is a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗ if and only if it satisfies conditions (21) and (25).

Theorem 4.8. If g is an anti fuzzy BE-ideal of (X, 1)∗, then  Lεg is a  Lukasiewicz anti fuzzy BE-ideal of
(X, 1)∗.

Proof. Let x, y, z ∈ X. Then  Lεg(x ∗ y) = min{1, g(x ∗ y) + ε} ≤ min{1, g(y) + ε} =  Lεg(y) and

 Lεg((x ∗ (y ∗ z)) ∗ z) = min{1, g((x ∗ (y ∗ z)) ∗ z) + ε}
≤ min{1,max{g(x), g(y)}+ ε}
= min{1,max{g(x) + ε, g(y) + ε}}
= max{min{1, g(x) + ε},min{1, g(y) + ε}}
= max{ Lεg(x),  Lεg(y)}

Hence  Lεg is a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗ by Theorem 4.3. □
In Example 4.2,  Lεg is a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗. But g is not an anti fuzzy BE-ideal of

(X, 1)∗ since g(b ∗ 0) = g(c) = 0.86 ≰ 0.79 = g(0). Therefore, the converse of Theorem 4.8 may not be true.
In the sense of Theorem 4.8, we can say that  Lukasiewicz anti fuzzy BE-ideal is a generalization of anti fuzzy
BE-ideal.

We explore the conditions under which ⋖-subset and Υ-subset of the  Lukasiewicz anti fuzzy set can be
BE-ideal.

Theorem 4.9. Let  Lεg be a  Lukasiewicz anti fuzzy set in X. Then ⋖-subset ( Lεg, s)⋖ of  Lεg with value
s ∈ [0, 0.5) is a BE-ideal of (X, 1)∗ if and only if  Lεg satisfies:

(∀x ∈ X)
(

 Lεg(x) ≥ min{ Lεg(1), 0.5}
)
, (27)

(∀x, y, z ∈ X)
(
min{ Lεg(x ∗ z), 0.5} ≤ max{ Lεg(x ∗ (y ∗ z)),  Lεg(y)}

)
. (28)
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Proof. Assume that ( Lεg, s)⋖ is a BE-ideal of (X, 1)∗ for s ∈ [0, 0.5). If  Lεg(a) < min{ Lεg(1), 0.5} for
some a ∈ X, then  Lεg(a) ∈ [0, 0.5) and  Lεg(a) <  Lεg(1). Hence a

 Lε
g(a)

⋖  Lεg, and so a ∈ ( Lεg,  L
ε
g(a))⋖, but

1 /∈ ( Lεg,  L
ε
g(a))⋖. This is a contradiction, and thus  Lεg(x) ≥ min{ Lεg(1), 0.5} for all x ∈ X. If the condition

(28) is not valid, then there exist a, b, c ∈ X such that min{ Lεg(a ∗ c), 0.5} > max{ Lεg(a ∗ (b ∗ c)),  Lεg(b)}. If

we take s := max{ Lεg(a ∗ (b ∗ c)),  Lεg(b)}, then s ∈ [0, 0.5) and a∗(b∗c)
s ⋖  Lεg and b

s ⋖  Lεg, but a∗c
s ⋖  Lεg, that is,

a ∗ (b ∗ c) ∈ ( Lεg, s)⋖ and b ∈ ( Lεg, s)⋖, but a ∗ c /∈ ( Lεg, s)⋖. This is a contradiction, and thus (28) is valid.

Conversely, suppose that  Lεg satisfies (27) and (28), and let s ∈ [0, 0.5). For every x ∈ ( Lεg, s)⋖, we
have min{ Lεg(1), 0.5} ≤  Lεg(x) ≤ s < 0.5 by (27). Hence 1 ∈ ( Lεg, s)⋖. Let x, y, z ∈ X be such that
x ∗ (y ∗ z) ∈ ( Lεg, s)⋖ and y ∈ ( Lεg, s)⋖. Then  Lεg(x ∗ (y ∗ z)) ≤ s and  Lεg(y) ≤ s, which imply from (28) that

min{ Lεg(x ∗ z), 0.5} ≤ max{ Lεg(x ∗ (y ∗ z)),  Lεg(y)} ≤ s < 0.5.

Hence x∗z
s ⋖  Lεg, that is, x ∗ z ∈ ( Lεg, s)⋖. Therefore ( Lεg, s)⋖ is a BE-ideal of (X, 1)∗ for s ∈ [0, 0.5) by Lemma

2.1. □

Theorem 4.10. The Υ-subset of the  Lukasiewicz anti fuzzy BE-ideal is a BE-ideal.

Proof. Let  Lεg be a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗ and let s ∈ [0, 1). If 1 /∈ ( Lεg, s)Υ, then
1
s Υ  Lεg, i.e.,  Lεg(1) + s ≥ 1. Since x

 Lε
g(x)

⋖  Lεg for all x ∈ X, we get 1
 Lε

g(x)
⋖  Lεg for all x ∈ X by (21). Hence

 Lεg(1) ≤  Lεg(x) for x ∈ ( Lεg, s)Υ, and so 1− s ≤  Lεg(1) ≤  Lεg(x). This shows that x
s Υ  Lεg, that is, x /∈ ( Lεg, s)Υ,

a contradiction. Thus 1 ∈ ( Lεg, s)Υ. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ ( Lεg, s)Υ and y ∈ ( Lεg, s)Υ.

Then x∗(y∗z)
s Υ Lεg and y

sΥ Lεg, that is,  Lεg(x ∗ (y ∗ z)) < 1 − s and  Lεg(y) < 1 − s. It follows from (25) that
 Lεg(x ∗ z) ≤ max

{
 Lεg(x ∗ (y ∗ z)),  Lεg(y)

}
< 1 − s. Hence x∗z

s Υ Lεg, and so x ∗ z ∈ ( Lεg, s)Υ. Therefore ( Lεg, s)Υ

is a BE-ideal of (X, 1)∗ by Lemma 2.1. □

Corollary 4.11. If g is an anti fuzzy BE-ideal of (X, 1)∗, then the Υ-subset of  Lεg is a BE-ideal of (X, 1)∗.

Theorem 4.12. For the  Lukasiewicz anti fuzzy set  Lεg in X, if the Υ-subset of  Lεg is a BE-ideal of (X, 1)∗,
then the following arguments are satisfied.

1 ∈ ( Lεg, s)⋖, (29)
x
sa

Υ Lεg,
y
sb

Υ Lεg ⇒ (x ∗ (y ∗ z)) ∗ z ∈ ( Lεg,min{sa, sb})⋖ (30)

for all x, y, z ∈ X and s, sa, sb ∈ [0.5, 1).

Proof. Assume that the Υ-subset of  Lεg is a BE-ideal of (X, 1)∗. If 1 /∈ ( Lεg, s)⋖ for some s ∈ [0.5, 1), then
1
s ⋖  Lεg. Hence  Lεg(1) > s ≥ 1−s since s ∈ [0.5, 1), and so 1

s Υ  Lεg, i.e., 1 /∈ ( Lεg, s)Υ. This is a conradiction, and
thus 1 ∈ ( Lεg, s)⋖. Let x, y, z ∈ X and sa, sb ∈ [0.5, 1) be such that x

sa
Υ Lεg and y

sb
Υ Lεg. Then x ∈ ( Lεg, sa)Υ ⊆

( Lεg,min{sa, sb})Υ and y ∈ ( Lεg, sb)Υ ⊆ ( Lεg,min{sa, sb})Υ, from which (x ∗ (y ∗ z)) ∗ z ∈ ( Lεg,min{sa, sb})Υ is
derived. Hence

 Lεg((x ∗ (y ∗ z)) ∗ z) < 1−min{sa, sb} ≤ min{sa, sb},

that is, (x∗(y∗z))∗z
min{sa,sb} ⋖  Lεg. Therefore (x ∗ (y ∗ z)) ∗ z ∈ ( Lεg,min{sa, sb})⋖. □

Theorem 4.13. If g is an anti fuzzy BE-ideal of (X, 1)∗, then the non-empty anti subset of  Lεg is a BE-ideal
of (X, 1)∗.
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Proof. If g is an anti fuzzy BE-ideal of (X, 1)∗, then  Lεg is a  Lukasiewicz anti fuzzy BE-ideal of (X, 1)∗
(see Theorem 4.8). It is clear that 1 ∈ Anti( Lεg). Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ Anti( Lεg) and

y ∈ Anti( Lεg). Then  Lεg(x ∗ (y ∗ z)) < 1 and  Lεg(y) < 1. Since x∗(y∗z)
 Lε

g(x∗(y∗z)) ⋖  Lεg and y

 Lε
g(y)

⋖  Lεg, we have
x∗z

max{ Lε
g(x∗(y∗z)), Lε

g(y)} ⋖  Lεg by (25). It follows that

 Lεg(x ∗ z) ≤ max
{

 Lεg(x ∗ (y ∗ z)),  Lεg(y)
}
< 1.

Hence x ∗ z ∈ Anti( Lεg), and therefore Anti( Lεg) is a BE-ideal of (X, 1)∗ by Lemma 2.1. □

Theorem 4.14. If a  Lukasiewicz anti fuzzy set  Lεg in X satisfies (21) and

(∀x, y, z ∈ X)(∀sa, sb ∈ [0, 1))

(
x∗(y∗z)
sa

⋖  Lεg,
y
sb

⋖  Lεg
⇒ x∗z

min{sa,sb} Υ  Lεg

)
. (31)

then the non-empty anti subset of  Lεg is a BE-ideal of (X, 1)∗.

Proof. Let Anti( Lεg) be a non-empty anti subset of  Lεg. Then there exists x ∈ Anti( Lεg), and so s :=  Lεg(x) < 1,

i.e., x
s ⋖  Lεg for s < 1. Hence 1

s ⋖  Lεg by (21), and thus  Lεg(1) ≤ s < 1. Thus 1 ∈ Anti( Lεg). Let x, y, z ∈ X
be such that x ∗ (y ∗ z) ∈ Anti( Lεg) and y ∈ Anti( Lεg). Then g(x ∗ (y ∗ z)) + ε < 1 and g(y) + ε < 1. Since
x∗(y∗z)

 Lε
g(x∗(y∗z)) ⋖  Lεg and y

 Lε
g(y)

⋖  Lεg, it follows from (31) that x∗z
min{ Lε

g(x∗(y∗z)),  Lε
g(y)} Υ  Lεg. If x ∗ z /∈ Anti( Lεg), then

 Lεg(x ∗ z) = 1, and so

 Lεg(x ∗ z) + min
{

 Lεg(x ∗ (y ∗ z)),  Lεg(y)
}

= 1 + min
{

 Lεg(x ∗ (y ∗ z)),  Lεg(y)
}

= 1 + min {min{1, g(x ∗ (y ∗ z)) + ε}, min{1, g(y) + ε}}
= 1 + min {g(x ∗ (y ∗ z)) + ε, g(y) + ε}
= 1 + min {g(x ∗ (y ∗ z)), g(y)}+ ε

≥ 1 + ε > 1.

Hence x∗z
min{ Lε

g(x∗(y∗z)),  Lε
g(y)} Υ  Lεg, a contradiction. Thus x∗z ∈ Anti( Lεg), and therefore Anti( Lεg) is a BE-ideal

of (X, 1)∗ by Lemma 2.1. □

Theorem 4.15. Let  Lεg be a  Lukasiewicz anti fuzzy set in X that satisfies 1
ε Υ g and the condition (30) for

all x, y, z ∈ X and sa, sb ∈ [0, 1). Then the anti subset of  Lεg is a BE-ideal of (X, 1)∗.

Proof. Let Anti( Lεg) be the anti subset of  Lεg. If 1
ε Υ g, then g(1) + ε < 1 and so  Lεg(1) = min{1, g(1) + ε} =

g(1)+ε < 1. Hence 1 ∈ Anti( Lεg). Let x, y, z ∈ X be such that x, y ∈ Anti( Lεg). Then  Lεg(x) < 1 and  Lεg(y) < 1,
which imply that x

0 Υ  Lεg and y
0 Υ  Lεg. It follows from (30) that (x ∗ (y ∗ z)) ∗ z ∈ ( Lεg,min{0, 0})⋖ = ( Lεg, 0)⋖.

Hence  Lεg((x ∗ (y ∗ z)) ∗ z) = 0 < 1, and so (x ∗ (y ∗ z)) ∗ z ∈ Anti( Lεg). Therefore Anti( Lεg) is a BE-ideal of
(X, 1)∗. □

Theorem 4.16. Let  Lεg be a  Lukasiewicz anti fuzzy set in X that satisfies 1
ε Υ g and

(∀x, y, z ∈ X)(∀sa, sb ∈ [0, 1))

(
x∗(y∗z)
sa

Υ  Lεg,
y
sb

Υ  Lεg
⇒ x ∗ z ∈ ( Lεg,min{sa, sb})⋖

)
. (32)

Then the anti subset of  Lεg is a BE-ideal of (X, 1)∗.
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Proof. Let Anti( Lεg) be an anti subset of  Lεg. Then 1 ∈ Anti( Lεg) in the proof of Theorem 4.15. Let
x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ Anti( Lεg) and y ∈ Anti( Lεg). Then  Lεg(x ∗ (y ∗ z)) < 1 and  Lεg(y) < 1.

Thus x∗(y∗z)
0 Υ  Lεg and y

0 Υ  Lεg. Using (32) leads to x∗z ∈ ( Lεg,min{0, 0})⋖ = ( Lεg, 0)⋖ Hence  Lεg(x∗z) = 0 < 1,
and so x ∗ z ∈ Anti( Lεg). It follows from Lemma 2.1 that Anti( Lεg) is a BE-ideal of (X, 1)∗. □
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Abstract. The present paper reviews and compares the main theories reported in the literature for managing
the existing real life uncertainty by listing their advantages and disadvantages. Starting with a comparison of the
bivalent logic (including probability) and fuzzy logic, proceeds to a brief description of the primary generalizations
of fuzzy sets (FSs) including interval valued FSs, type-2 FSs, intuitionistic FSs, neutrosophic sets, etc. Alternative
theories related to fuzziness are also examined including grey system theory, rough sets and soft sets. The conclusion
obtained at the end of this discussion is that there is no ideal model for managing the uncertainty; it all depends
upon the form, the available data and the existing knowledge about the problem under solution. The combination of
all the existing models, however, provides a sufficient framework for efficiently tackling several types of uncertainty
appearing in real life.
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1 Introduction

The frequently appearing in the real world, in science and in everyday life uncertainty is due to a shortage of
knowledge regarding some situations. Roughly speaking, the amount of the existing uncertainty is equal to the
difference in the amount of the necessary knowledge needed for interpreting or determining the evolution of a
situation, minus the already existing knowledge about this situation. In other words, uncertainty represents
the total amount of potential information in the situation, which implies that a reduction of uncertainty due
to new evidence (e.g. receipt of a message) indicates a gain of an equal amount of information. This is the
reason for which the classical measures of uncertainty under crisp or fuzzy conditions (Hartley’s formula,
Shannon’s entropy, etc. [15, Chapter 5]) have also been adopted as measures of information, comprising a
powerful tool for dealing with problems such as systems modeling analysis and design, decision making, etc.
Different kinds of uncertain environments exist in real life [15]. A typical taxonomy of the uncertainties that
can arise includes vagueness, imprecision, ambiguity and inconsistency. The uncertainty due to vagueness is
created when one is unable to clearly differentiate between two classes, such as ”a person of average height”
and ”a tall person”. In case of imprecision the available information has not an exact value; e.g. ”the
temperature tomorrow will be between 27◦ and 32◦ C”. In ambiguity then existing information leads to
several interpretations by different observers. For example, the statement ”Boy no girl” written as ”Boy, no
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girl” means boy, but written as ”Boy no, girl” means girl. Finally, inconsistency appears when two or more
pieces of information cannot be true at the same time. As a result the obtainable in this case information
is conflicted or undetermined. For example, ”the probability for raining tomorrow is 80%, but this does not
mean that the probability of not raining is 20%, because they might be hidden weather factors”.
Note that several other taxonomies of the uncertainty exist. One such taxonomy, for example, includes the
epistemic (or subjective) uncertainty and the linguistic uncertainty. The former is due to a lack of knowledge,
whether the latter is produced by statements expressed in natural language. Another taxonomy includes the
uncertainty due to randomness and the uncertainty due to imprecision. The uncertainty due to randomness
is related to well-defined events whose outcomes cannot be predicted in advance, like the turning of a coin,
the throwing of a die, etc. On the other hand, uncertainty due to imprecision occurs when the events are
well defined, but the possible outcomes cannot be expressed in a crisp form.
The uncertain problems need imprecise methods that could deal with different types of uncertainties to
increase the understanding of the outcomes. Several theories have been proposed for tackling such kinds of
problems. The target of the present work is to review and compare the primary among those theories and list
their advantages and disadvantages. The rest of the paper is formulated as follows: Section 2 compares the
bivalent logic (including probability) with the fuzzy logic. Section 2 describes the headlines of the primary
generalizations of fuzzy sets (FSs), such as interval valued FSs, type-2 FSs, intuitionistic FSs, neutrosophic
sets, etc. Alternative theories related to fuzziness are examined in section 3, including grey system theory,
rough sets and soft sets. The paper closes with a discussion including some hints for future research and the
final conclusion, which are contained in section 5.

2 Fuzzy Vs Bivalent Logic

Logic is the study of correct reasoning, involving the drawing of inferences. There is no doubt that the
enormous progress of science and technology owes a lot to Aristotle’s (384-322 BC) bivalent logic, which
dominated for centuries the human way of thinking.
Bivalent logic is based on Aristotle’s law of the excluded middle, according to which, for all propositions p,
either p or not p must be true and there is no middle (third) true proposition between them; all its other
principles are mere elaborations of this law [16].
From the time of Buddha Siddhartha Gautama, however, who lived in India around 500 BC, Heraclitus
(535-475 BC) and Plato (427-377 BC) views have appeared to discuss the existence of a third area between
”true” and ”false”, where those two opposites can exist together. More recent philosophers like Hegel, Marx,
Engels, Russel and others supported and cultivated further those ideas, but the first integrated propositions
of multivalued logics appeared only during the 20th century by Jan Lukasiewicz (1858-1956) and Alfred Tarski
(1901-1983) [37, Section 2]. Max Black [2] introduced in 1937 the concept of the vague set being a premonition
of the Zadeh’s fuzzy set (FS) introduced in 1965 [44].
Let U be the universal set of the discourse. It is recalled that a fuzzy set F on U is defined with the help of
its membership function m : U → [0, 1] as the set of the ordered pairs

F = {(x,m(x)) : x ∈ U}. (1)

The real number m(x) is called the membership degree of x in F . The greater is m(x), the more x satisfies
the characteristic property of F .
A crisp subset A of U is a fuzzy set on U with a membership function taking the values m(x) = 1 if x belongs
to A and 0 otherwise. Most notions and operations concerning the crisp sets, e.g. subset, complement, union,
intersection, Cartesian product, binary and other relations, etc., can be extended to FS. For general facts
about FSs and the connected to them uncertainty we refer to the chapters 4-7 of the book [36].
The infinite-valued on the interval [0, 1] fuzzy logic (FL) is defined with the help of the concept of FS [45].
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Through FL, the fuzzy terminology is translated by algorithmic procedures into numerical values, operations
are performed upon those values and the outcomes are returned into natural language statements in a reliable
manner [17]. FL is useful for handling real-life situations that are inherently fuzzy, calculating the existing
in such situations fuzzy data and describing the operation of the corresponding fuzzy systems. An important
advantage of FL is that its rules are set in natural language with the help of linguistic, and therefore fuzzy,
variables [46].

The process of reasoning with fuzzy rules involves:

• Fuzzification of the problem’s data by utilizing the suitable membership functions to define the required
FSs.

• Application of FL operators on the defined FSs and combination of them to obtain the final result in
the form of a unique FS.

• Defuzzification of the final FS to return to a crisp output value, in order to apply it to the real world
situation for resolving the corresponding problem.
Among the more than 30 defuzzification methods in use, the most popular is probably the Centre of Gravity
(COG) technique. According to it, a problem’s fuzzy solution is represented by the coordinates of the COG
of the level’s section contained between the graph of the MF involved and the OX axis [35].
But, while Zadeh was trying to spread out the message of fuzziness, he received many tough critiques for his
radical ideas from three different directions [10].
The first direction of critique came from a great number of scientists who asked for some practical applica-
tions. In fact, such applications started to appear in the industry during the 1970’s, the first one being in the
area of cement kiln control [42]. This is an operation demanding the control of a highly complex set of chem-
ical interactions by dynamically managing 40-50 ”rules of thumb”. This was followed by E. H. Mamdani’s
[21] work in the Queen Mary College of London, who designed the first fuzzy system for controlling a steam
engine and later the operation of traffic lights. Another type of fuzzy inference system was developed later
in Japan by Takagi-Sugeno-Kang [32]. Nowadays FSs and FL have found many important applications in
almost all sectors of human activity. It must be mentioned that fuzzy mathematics has also been significantly
developed on a theoretical level, providing important contributions even in branches of classical mathematics,
such as algebra, analysis, geometry, etc. (e.g. see [3]).
The second direction was related to a great part of the probability theorists, who claimed that FL could not do
any more than probability does. Membership degrees, taking values in the same with probabilities interval
[0, 1], are actually hidden probabilities, fuzziness is a kind of disguised randomness, and the multi-valued
logic is not a new idea. It took a long time to become universally understood that fuzziness does not oppose
probability, but actually supports and completes it by successfully treating the cases of the existing the real
world uncertainty which is caused by reasons different from randomness [9].
The expressions ”John’s membership degree in the FS of clever people is 0.7” and ”the probability of John
to be clever is 0.7”, although they look similar, they actually have essentially different meanings. The former
means that John is a rather clever person, whereas the latter means that John, according to the principle of
the excluded middle, is either clever or not, but his outlines (heredity, academic studies, etc.) suggest that
the probability to be clever is high (70%).
There are also other differences between the two theories mainly arising from the way of defining the corre-
sponding notions and operations. For instance, whereas the sum of the probabilities of all the single events
(singleton subsets) of the universal set is always equal to 1 (probability of the certain event), this is not
necessarily true for the membership degrees. Consequently a probability distribution could be used to define
membership degrees, but the converse does not hold in general.
Note that Edwin T. Jaynes, Professor of Physics at the University of Washington, argued that Probability
theory could be considered as a generalization of the bivalent logic reducing to it in the special case where
our hypothesis is either absolutely true or absolutely false [12]. Many eminent scientists have been inspired



Managing the Uncertainty: From Probability to Fuzziness, Neutrosophy and Soft Sets-TFSS-Vol.1, No.2-(2022) 49

by the ideas of Janes, like the expert in Algebraic Geometry David Mumford, who believes that Probability
and Statistics are emerging as a better way of building scientific models [26].
Probability and Statistics are related mathematical topics having, however, fundamental differences. In fact,
Probability is a branch of theoretical mathematics dealing with the estimation of the likelihood of future
events, whereas Statistics is an applied branch , which tries to make sense by analyzing the frequencies of
past events. Nevertheless, both Probability and Statistics have been developed on the basis of the principles
of the bivalent logic. As a result, they are tackling effectively only the cases of the existing in the real world
uncertainty which are due to randomness [18]. In other words, Janes’ probabilistic logic ”covers” only the
cases of uncertainty wich are due to randomness.
One could argue, however, that Bayesian Reasoning constitutes an interface between bivalent and FL [38].
In fact, the Bayes’ rule (see equation 2 below) calculates the conditional probability P (A/B) with the help of
the inverse in time conditional probability P (B/A), the prior probability P (A) and the posterior probability
P (B):

P (A/B) =
P (B/A)P (A)

P (B)
. (2)

In other words, the Bayes’ rule calculates the probability of an event based on prior knowledge of conditions
related to that event. The value of the prior probability P (A) is fixed before the experiment, whereas the
value of the posterior probability is derived from the experiment’s data. Usually, however, there exists an
uncertainty (not necessarily due to randomness) about the value of P (A). In such cases, considering all the
possible values of P (A), we obtain different values for the conditional probability P (A/B). Therefore, the
Bayes’ rule introduces a kind of multi-valued logic tackling the existing, due to the different values of the
prior probability, uncertainty in a way analogous to FL.
The third direction of the critiques against FL comes from bivalent logic. Many of its traditional supporters,
based on a culture of centuries, argue that, since this logic works effectively in science, functions the com-
puters and explains satisfactorily the phenomena of the real world, except perhaps those that happen in the
boundaries, there is no reason to make things more complicated by introducing the unstable principles of a
multi-valued logic.
FL, however, aims exactly at smoothing the situation in the boundaries! Look, for example, at the graph in
Figure 1 corresponding to the FS T of ”tall people”. People with heights less than 1.50 m are considered
to have a membership degree 0 in T . The membership degree is continuously increasing for heights greater
than 1.50 m, taking its maximal value 1 for heights equal or greater than 1.80 m. Therefore, the ”fuzzy
part” of the graph - which is conventionally represented in Figure 1 by the straight line segment AC, but its
exact form depends upon the way in which the membership function has been defined - lies in the area of
the rectangle ABCD defined by the OX axis, its parallel through the point E and the two perpendiculars to
it lines at the points A and B.
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Figure 1: The fuzzy set of ”tall people”

In fact, the way of perceiving a concept (e.g. ”tall”) is different from person to person, depending on the
”signals” that each one receives from the real world about it. Mathematically speaking, this means that the
definition of the membership function of a FS is not unique, depending on the observer’s personal criteria.
The only restriction is that this definition must be compatible to the common logic, because otherwise the
corresponding FS does not give a reliable description of the corresponding real situation.
On the contrary, bivalent logic defines a bound, e.g. 1.80 m, above which people are considered to be tall and
under which are considered to be short. Consequently, one with a height 1.79 m is considered to be short,
whether another with a height 1.81 m is tall!
Bivalent logic is able to verify the validity/consistency of an argument only and not its truth. A deductive
argument is always valid, even if its inference is false. A characteristic example can be found in the function
of computers. A computer is unable to judge, if the input data inserted into it is correct, and therefore if the
result obtained by elaborating this data is correct and useful for the user. The only thing that it guarantees
is that, if the input is correct, then the output will be correct too. On the contrary, always under the bivalent
logic approach, an inductive argument is never valid, even if its inference is true. To put it in a different way,
if a property p is true for a sufficient large number of cases, the expression ”the property p is possibly true
in general” is not acceptable, since it does not satisfy the principle of the excluded middle.
People, however, always want to know the truth in order to organize better, or even to protect, their lives.
Consequently, under this option, the significance of an argument has greater importance than its valid-
ity/precision. In Figure 2 [4], for example, the extra precision on the left makes things worse for the poor
man in danger, who has to spend too much time trying to understand the data and misses the opportunity
to take the much needed action of getting out of the way. On the contrary, the rough / fuzzy warning on the
right could save his life.



Managing the Uncertainty: From Probability to Fuzziness, Neutrosophy and Soft Sets-TFSS-Vol.1, No.2-(2022) 51

Figure 2: Validity/precision vs significance

Figure 2 illustrates very successfully the importance of FL for the real life situations. Real-world knowledge
generally has a different structure and requires different formalization than the existing formal systems. FL,
which according to Zadeh is ”a precise logic of imprecision and approximate reasoning” [45], serves as a link
between classical logic and human reasoning/experience, which is two incommensurable approaches. Having
a much higher generality than bivalent logic, FL is capable of generalizing any bivalent logic-based theory.
They have appeared also whit strong voices of anger against FL, without bothering to present any logical
arguments about it. Those voices, characterize FL as the tool for making the science unstable, or more
emphatically as the ”cocaine of science”! Such voices, however, frequently appear in analogous cases of the
history of science and must be simply ignored.
Zadeh introduced further fuzzy numbers (FNs) [46] as a special form of FSs on the set of the real numbers.
He defined the basic arithmetic operations on them in terms of his extension principle, which provides the
means for any function mapping the crisp set X to the crisp set Y to be generalized so that to map fuzzy
subsets of X to fuzzy subsets of Y [15]. FNs play an important role in fuzzy mathematics, analogous to the
role of ordinary numbers in traditional mathematics. For general facts on FNs we refer to the book [13].
The present author has used in earlier works triangular FNs (TFNs), the simplest form of FNs, as tools in
assessment processes; e.g. [37, section 5].
Zadeh realized that FSs are connected to words (adjectives and adverbs) of the natural language; e.g. the
adjective ”tall” indicates the FS of the tall people, since ”how tall is everyone” is a matter of degree. A
grammatical sentence may contain many adjectives and/or adverbs, therefore it correlates a number of FSs.
A synthesis of grammatical sentences, i.e. a group of FSs related to each other, forms what we call a fuzzy
system. A fuzzy system provides empirical advice, mnemonic rules and common logic in general. It is not
only able to use its own knowledge to represent and explain the real world, but can also increase it with the
help of the new data; in other words, it learns from the experience. This is actually the way in which humans
think. Nowadays, for example, a fuzzy system can control the function of an electric washing-machine or
send signals for purchasing shares from the stock exchange, etc. [39]. Fuzzy systems are considered to be a
part of the wider class of Soft Computing, which also includes probabilistic reasoning and neural networks
(Figure 3) [27].
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Figure 3: A graphical approach to the contents of Soft Computing

One may say that fuzzy systems and neural networks try to emulate the operation of the human brain. Neural
networks have the ability to learn and also have a parallel structure that can rapidly process the information.
In other words they concentrate on the structure of the human brain, i.e. on the ”hardware”, emulating
its basic functions. On the other hand, fuzzy systems concentrate on the ”software”, emulating fuzzy and
symbolic reasoning. Fuzzy systems make decisions based on the raw and ambiguous data given to them,
whereas neural networks try to learn from the data, incorporating the same way involved in the biological
neural networks.
Intersections in Figure 2 include neuro-fuzzy systems and techniques, probabilistic approaches to neural
networks and Bayesian Reasoning. A neuro-fuzzy system is a fuzzy system that uses a learning algorithm
derived from or inspired by neural network theory to determine its parameters (FSs and fuzzy rules) by
processing data samples. Characteristic examples of such kinds of systems are the Adaptive Neuro- Fuzzy
Inference Systems (ANFIS) [11].

3 Generalizations of Fuzzy Sets

As has been already mentioned in the previous section, the probability is suitable for managing the cases of
uncertainty due to randomness. Fuzziness, on the other hand, treats as well the cases of vagueness. for the
purpose of managing the existing real world uncertainty in a better way, a lot of research has been carried
out during the last 60 years to improve/generalize the FS theory.
Zadeh, Sambuc, Jahn and Grattan Guiness introduced in 1975, independently from each other, the concept
of the interval-valued FS (IVFS) [8]. The idea behind IVFs is that the membership degrees of the traditional
FSs, as has been already explained in the previous section, can hardly be precise Thus, an IVFS, defined by
a mapping from the universe U to the set of closed intervals in [0, 1], replaces the membership degrees with
closed sub-intervals of [0, 1].
Similar to the concept of IVFS is the hesitant FS (HFS) introduced by Torra and Narukawa in 2009 [34]. The
difference in the definition of a HFS with respect to an IVFS is that the hesitant degree h(x) of an element
x of U is not a single value like its membership degree, but a set of some values in [0, 1]. For example, if
U = {a, b, c}, we could have h(a) = {0.2, 0.3}, h(b) = {0.75, 0.8, 0.82} and h(c) = {0.9}.
Zadeh also introduced in 1975 the concept of type-2 FS [46], so that more uncertainty could be handled
connected to the membership function. The membership function of a type-2 FS is three - dimensional, its
third dimension is the value of the membership function at each point of its two-dimensional domain, which
is called Footprint of Uncertainty (FOU). The FOU is completely determined by its two bounding functions,
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a lower membership function and an upper membership function, both of which are ordinary FSs (otherwise
called type-1 FSs). When no uncertainty exists about the membership function, then a type-2 FS reduces to a
type-1 FS, in a way analogous to probability reducing to determinism when unpredictability vanishes. Zadeh
in the same paper [46] generalized the type-2 FS to the type-n FS n = 1, 2, 3, . . .. When Zadeh proposed the
type-2 FS, however, the time was not right for researchers to drop what they were doing with type-1 FS and
focus on type-2 FS. This changed in the late 1990s as a result of Prof. Jerry Mendel and his students’ works
on type-2 FS [22]. Since then, more and more researchers around the world have been writing articles about
type-2 FSs and systems.
Another application of FS, inspired by Zadeh, is the process of Computing with Words (CWW), a method-
ology in which the objects of computation are words and propositions drawn from a natural language [47].
The idea was that computers would be activated by words, which would be converted into a mathematical
representation using FSs and that these FSs would be mapped by a CWW engine into some other FS, after
which the latter would be converted back into a word. Much research is under way about CWW. As Mendel
has argued [23], a type-2 fuzzy set should be used as a model for a word.
Ramot et al. [29] introduced in 2002 the notion of Complex FS (CFS) characterized by a complex-valued MF,
whose range is extended from the traditional fuzzy range of [0, 1] to the unit circle in the complex plane. More
explicitly, the membership function of a CFS is of the form m(x) = r(x)eiθ(x) = r(x)[cos[θ(x)] + i sin[θ(x)].
In the above formula r(x) is the amplitude term and θ(x) is the phase term of the membership function. The
terms r(x) and θ(x) are both real-valued and r(x) is in [0, 1] for all x in the universal set U . Since m(x) is a
periodic function, one may only consider θ(x) in [0, 2π]. When θ(x) = 0 for all x in U , then m(x) reduces to
the membership function of an ordinary FS.
Kassimir Atanassov, Professor of Mathematics at the Bulgarian Academy of Sciences, introduced in 1986,
as a complement of Zadehs membership degree m(x), x ∈ U , the degree of non-membership n(x). In a FS
is always m(x) + n(x) = 1, but this need not be always true in real applications; e.g. see the example of
section 2 with the rainy weather. Atanassov proposed the notion of intuitionistic FS (IFS) for more accurate
quantification of the uncertainty [1].
An IFS A is formally defined as the set of the ordered triples

A = {(x,m(x), n(x)) : x ∈ U, 0 ≤ m(x) + n(x) ≤ 1}. (3)

One can write m(x) + n(x) + h(x) = 1, where h(x) is called the hesitation or uncertainty degree of x. If
h(x) = 0, then the corresponding IFS reduces to an ordinary FS. The characterization of intuitionistic is due
to the fact that an IFS contains the intuitionistic idea, as it incorporates the degree of hesitation.
Most notions and operations concerning the crisp sets can be extended to IFS [1]. A Pythagorean FS (PFS),
introduced by Yager in 2013 [43], considers the membership degree m(x) and non-membership degree n(x)
satisfying the condition m2(x) + n2(x) ≤ 1. PFSs have a stronger ability than IFS to manage uncertainty in
real-world decision-making problems [48].
The Romanian-American writer and mathematician Florentin Smarandache, Professor at the branch of Gallup
of the New Mexico University, introduced in 1995 the degree of indeterminancy/neutrality membership of
the elements of the universal set U in a subset of U and defined the concept of neutrosophic set (NS), which
generalizes the notions of FS and IFS [30].
A single valued NS (SVNS) A on U is of the form

A = {(x, T (x), I(x), F (x)) : x ∈ U, T (x), I(x), F (x) ∈ [0, 1], 0 ≤ T (x) + I(x) + F (x) ≤ 3}. (4)

In (4) T (x), I(x), F (x) are the degrees of truth, indeterminancy and falsity membership of x in A respectively,
called the neutrosophic components of x. The etymology of the term ”neutrosophy” comes from the adjective
”neutral” and the Greek word ”sophia” (wisdom) and means, according to Smarandanche who introduced it,
”the knowledge of neutral thought”.
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For example, let U be the set of the players of a football team and let A be the SVNS of the good players
of U . Then each player x of U is characterized by a neutrosophic triplet (t, i, f) with respect to A, with
t, i, f in [0, 1]. For instance, (0.6, 0.2, 0.4) ∈ A means that there is a 60% probability for x to be in A, a 20%
probability to be unknown if x is in A and a 40% probability for x to not be in A. In particular, x(0, 1, 0) ∈ A
means that we do not know absolutely nothing about x,s affiliation with A.
Indeterminancy is understood to be in general everything which is between the opposites of truth and falsity
[31]. One can find plenty of real examples of neutrosophic triplets, like (friend, neutral, enemy), (positive,
zero, negative), (small, medium, high), (male, transgender, female), (win, draw, defeat), etc. This means
that the previously given definition of SVNS is well placed.
In an IFS the inderterminancy is equal by default with the hesitancy, i.e. we have I(x) = 1 − T (x) − F (x).
Also, in a FS is I(x) = 0 and F (x) = 1− T (x), whereas in a crisp set is T (x) = 1 (or 0) and F (x) = 0 (or 1).
In other words, crisp sets, FSs and IFSs are special cases of SVNSs.
When the sum T (x) + I(x) + F (x) of the neutrosophic components of x ∈ U in a SVNS A on U is < 1, then
it leaves room for incomplete information about x, when is equal to 1 for complete information and when is
greater than 1 for parasconsistent (i.e. contradiction tolerant) information about x. A SVNS may contain
simultaneously elements leaving room for all the previous types of information.
When T (x) + I(x) + F (x) < 1, ∀ x ∈ U , then the corresponding SVNS is usually referred as picture FS
(PiFS) [39]. In this case 1 − T (x) − I(x) − F (x) is called the degree of refusal membership of x in A. The
PiFSs based models are adequate in situations where we face human opinions involving answers of types yes,
abstain, no and refusal Voting is a good example of such a situation.
The difference between the general definition of a NS and the previously given definition of a SVNS is that
in the general definition T (x), I(x) and F (x) may take values in the non-standard unit interval ] − 0, 1 + [
(including values < 0 or > 1) [36]. This could happen in real world applications. For example, in a company

with full-time work for its employees 40 hours per week an employee, upon his work, could belong by
40

40
= 1

to the company (full-time job) or by
30

40
< 1 (part-time job) or by

45

40
> 1 (over-time job). Assume further

that a full-time employee caused a damage to his job’s equipment, the cost of which must be taken from his

salary. Then, if the cost is equal to
50

40
of his weekly salary, the employee belongs this week to the company

by −10

40
< 0.

Most notions and operations concerning the crisp sets can be extended to NSs [31].

4 Alternative Theories Related to Fuzziness

In 1982 Julong Deng, Professor of the Huazhong University of Science and Technology, Wuhan, China, intro-
duced the theory of Grey System (GS) [6] for handling the approximate data that are frequently appear in
the study of large and complex systems, like the socio-economic, the biological ones, etc. The systems which
lack information, such as structure message, operation mechanism and behaviour document, are referred to
as GSs. Usually, on the grounds of existing grey relations and elements one can identify where ”grey” means
poor, incomplete, uncertain, etc. The GS theory was mainly developed in China and it has found many
applications in agriculture, economy, management, industry, ecology and in many other fields of the human
activity [7].
An effective tool of the GS theory is the use of Grey Numbers (GNs) that are indeterminate numbers defined
in terms of the closed real intervals. More explicitly, a GN, say A, is of the form A ∈ [a, b], where a, b are
real numbers with a ≤ b. In other words, the range in which A lies is known, but not its exact value. A
GN may enrich its uncertainty representation with respect to the interval [a, b] by a whitenization function
g : [a, b] −→ [0, 1], which defines the degree of greyness g(x) for each x in [a, b]. The closer is g(x) to 1, the
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better x approximates the real value of A. The real number which is used as the crisp representative of the
GN A ∈ [a, b] is denoted by W (A). When the distribution of A is unknown, i.e. no whitenization function

has been defined for it, one usually takes W (A) =
a+ b

2
[5].

The arithmetic of the real intervals introduced by Moore et al. [25] has been used to define the basic arith-
metic operations among the GNs. For general facts on GNs we refer to the book [19]. The present author
has utilized in earlier works GNs as tools in assessment processes; e.g. see section 6 of [37])
A rough set, first described by the Polish computer scientist Zdzislaw Pawlak in 1991 [28] is a formal ap-
proximation of a crisp set in terms of a pair of sets which give the lower and the upper approximation of
the original set. In the standard version of rough set theory the lower and upper-approximation sets are
crisp sets, but in other variations, the approximating sets may be FSs. The theory of rough sets has found
important applications to many scientific fields and in particular in Informatics.
In 1999 Dmtri Molodstov, Professor of the Computing Center of the Russian Academy of Sciences in Moscow,
in order to overpass the existing difficulty for defining properly the membership functions of FSs, IFSs, NSs,
etc. proposed the notion of soft set as a new mathematical tool for dealing with the uncertainty in a para-
metric manner [24].
Let E be a set of parameters, let A be a subset of E and let f be a mapping of A into the set P (U) of all
subsets of U . Then the soft set on U connected to A, denoted by (f,A), is defined as the set of the ordered
pairs

(f,A) = {(e, f(e)) : e ∈ A}. (5)

In other words, a soft set is a paramametrized family of subsets of U . Intuitively, it is ”soft” because the
boundary of the set depends on the parameters.
For example, let V = {C1, C2, C3, C4, C5, C6} be a set of cars and let E = {e1, e2, e3, e4, e5} be the set of the
parameters e1=high-speed, e2 =automatic (gear-box), e3 =hybrid (petrol and electric power), e4 = 4x4 and
e5 =cheap. Consider the subset A = {e1, e2, e3, e5} of E and assume that C1, C2, C6 are the high-speed,
C2, C3, C5, C6 are the automatic, C3, C5 are the hybrid cars and C4 is the unique cheap car. Then a map
g : A −→ P (V ) is defined by g(e1) = {C1, C2, C6}, g(e2) = {C2, C3, C5, C6}, g(e3) = {C3, C5}, g(e5) = {C4}
and the soft set

(g,A) = {(e1, {C1, C2, C6}), (e2, {C2, C3, C5, C6}), (e3, {C3, C5}), (e5, {C4})}. (6)

A FS on U with membership function y = m(x) is a soft set on U of the form (f, [0, 1]), where f(α) = {x ∈
U : m(x) ≥ α} is the corresponding α − cut of the FS, for each α in [0, 1]. Most notions and operations
concerning the crisp sets can be extended to soft sets [20].
Soft sets have found important applications to several sectors of human activity [14, 33]. The present author
has used recently soft sets as tools for assessment processes [40], as well as a combination of soft sets and
GNs for developing a hybrid decision making method under fuzzy conditions [41].
The catalogue of the extensions of FS and of the related to the fuzziness theories does not end here. Several
other alternatives have been proposed, many of them being hybrid constructions of the above mentioned
primary approaches. For example, if in the definition of the soft set the set of all subsets of U is replaced by
the set of all fuzzy subsets of U , one gets the notion of the fuzzy soft set. Also, the notion of neutrosophic set
has been combined with that of the IVFS to form a new hybrid set called interval valued neutrosophic set,
etc.

5 Discussion and Conclusion

The frequently existing in real life situations uncertainty is connected to the available information about the
corresponding situation and appears in several types, like randomness, vagueness, imprecision, etc. The study
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performed in this work leads to the conclusion that there is no ideal model for managing the uncertainty; it
all depends upon the form, the available data and the existing knowledge about the problem under solution.
Probability treats efficiently the cases of randomness, FS describes vagueness, type-2 FS describes vagueness
and imprecision by a 3-dimensional range of membership values, IFS is suitable for simulating imprecision in
human thinking, NS can deal with vagueness, imprecision, ambiguity and inconsistency, etc. The combination
of all these models, however, provides a sufficient framework for tackling the several types of uncertainty, but
further research is needed to improving the existing methods, probably by using hybrid approaches.
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1 Introduction

Digital forensics involve securing and analyzing digital information stored on a computer for use as evidence in
civil, criminal, or administrative cases. Forensics, network forensics, video forensics, and plenty of others are
defined as the application of computer science and investigative procedures for a legal purpose involving the
analysis of digital evidence (information of probative value that is stored or transmitted in binary form) after
proper search authority, chain of keeping, validation with mathematics, use of validated tools, repeatability,
reporting and possible expert presentation. The field of digital forensics can also encompass items such as
research and incident response.

We introduce the notion of forensic dynamic n-valued  Lukasiewicz logic FD Ln (1 < n < ω) which permits
compound investigation built up from given initial investigations and facts as well. Given investigations a
and b, the compound investigations a ∪ b, choice, is performed by performing one of a or b. The compound
investigation a;b, sequence, is performed by performing first a and then b. The compound investigation
a∗, iteration, is performed by performing a one or more times, sequentially. The constant investigation 0
does nothing and does not terminate, whereas the constant action 1, definable as 0∗, does nothing but does
terminate.

Dynamic logic [14, 8] (see also [11] and cited their literature) is a classical formal system for reasoning
about programs. Dynamic logic is a classical modal logic for reasoning about dynamic behavior taking into
account a discrete time. Dynamic logic is an extension of modal logic originally intended for reasoning about
computer programs.

Modal logic is characterized by the modal operators □p asserting that p is necessarily the case, and ♢p
asserting that p is possibly the case. Dynamic logic extends this by associating every action (execution of
the program) a the modal operators [a] and ⟨a⟩, thereby making it a multimodal logic.
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We adapt the dynamic logic, which is presented on the base of classical logic and R-module, to non-
classical finitely valued  Lukasiewicz logic  Ln and R-module, and the investigating group consisting of a set
of investigators with communications between them represented as a Kripke frame, i.e. relational system
- a non-empty set with binary relation on it. The meaning of [a]p is that after performing fact-finding
(investigation) a, i.e. to examine the validity of a hypothesis (proposition), it is necessarily the case that p
holds, that is, a must bring about p. The meaning of ⟨a⟩p is that after performing a it is possible that p, that
is, a might bring about p. These operators are related by [a]p ≡ ¬⟨a⟩¬p and ⟨a⟩p ≡ ¬[a]¬p, analogously to
the relationship between the universal ∀ and existential ∃ quantifiers.

Following D. Kozen [8] and V. Pratt [11], who have been introduced dynamic algebra, we propose the
notion of a forensic dynamic MVn-algebra1 (FDLn-algebra) (1 < n < ω), which integrates an abstract notion
of proposition with an equally abstract notion of investigation. Just as propositions tend to band together
to form MVn-algebras with operations x ⊕ y, and ∼ x, so do experiments organize themselves into regular
algebras, with operations a∪ b, a; b, and a∗. Analogously to the proposition p∨q being the strong disjunction
(the algebraic counterpart of which is x⊕ y), p∨ q being the disjunction of propositions p and q, and ¬p the
negation of p, the investigation a ∪ b is the choice of investigations a or b, a; b, or just ab, is the sequence a
followed by b, and a∗ is the iteration of a indefinitely often.

Just as p ∨ q has natural set theoretic interpretation, namely union, so do a ∪ b, a; b and a∗ have natural
interpretations on such concrete kinds of investigations as additive functions, binary relations, trajectory
sets and languages over regular algebras, to name those regular algebras that are suited to foresinc dynamic
MVn-algebra.

It is natural to think of fact-finding as being able to bring about a proposition (hypothesis about the
fact-findings). We write ⟨a⟩p pronounced ”fact− finding a enables p”, as the proposition that fact-finding
a can bring about proposition p. Then a forensic dynamic MVn-algebra is a MVn-algebra (A,⊕,⊙,∼, 0, 1),
a regular algebra (R,∪, ; ,∗ ), and the enables operation ♢ : R×A→ A.

Suppose now that either p holds, or a can bring about a situation from which a can eventually (by being
iterated) bring about p. Then a can eventually bring about p. That is, p ∨ aa∗p ≤ a∗p. (We write p ≤ q
to indicate that p implies q, defined as p ∨ q = q). In turn, if a can eventually bring about p, then either
p is already the case or a can eventually bring about a situation in which p is not the case but one further
iteration of a will bring about p. That is, a∗p ≤ p ∨ a∗(¬p ∧ ap). [a] is the dual of ⟨a⟩, and [a]p asserts that
whatever a does, p will hold.

We axiomatically define the Forensic Dynamic Lukasiewicz logic, its algebraic counterpart and the corre-
sponding Kripke model which are suitable for digital forensics.

2 Forensic dynamic n-valued  Lukasiewicz logic FD Ln

Forensic dynamic n-valued  Lukasiewicz logic FD Ln is designed for representing and reasoning about propo-
sitional  Lukasiewicz logic expected results (hypothesis) of investigations. Its syntax is based upon two sets
of symbols: a countable set Var (= {p, p1, p2, . . . , q, q1, q2, . . .}) of propositional variables, that encompass
hypotheses, and a countable set Inv (= {a, b, c, ...}) of atomic investigations, that encompass the initial facts
and investigations. So the language L of FD Ln is given by a countable set Var of propositional variables
and a countable set Inv of atomic investigations. We suppose that investigations are performed by some
computer programs. Formulas and investigations FI(L), which we name formulas, over this base are defined
as follows:

• Every propositional variable is a formula;

1MVn-algebras, which are algebraic models of n-valued  Lukasiewicz logic  Ln, where introduced by Grigolia in [6]. The variety
MVn of MVn-algebras is a subvariety of the variety MV [2].
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• ⊥ (false) is a formula;

• If φ is a formula then ¬φ ( notφ ) is a formula;

• If φ and ψ are formulas then (ϕ∨ψ) (∨ is a strong disjunction) is a formula;

• If φ and ψ are formulas then (φ&ψ) (& is a strong conjunction) is a formula;

• If φ and ψ are formulas then (φ ∨ ψ) (φ or ψ) is a formula;

• If a is an investigation and φ is a formula then [a]φ (every made investigation a from the present state
leads to a state where φ is true) is a formula;

• Every atomic investigation is an investigation;

• If a and b are investigations then (a; b) (do a followed by b) is a investigation;

• If a and b are investigations then (a ∪ b) (do a or b, non-deterministically) is an investigation;

• If a is an investigation then a∗ (repeat a a finite, but non-deterministically determined, number of times)
is an investigation.

The other  Lukasiewicz connectives 1,→ and ↔ are used as abbreviations in the standard way (1 ≡
⊥∨¬⊥, p→ q ≡ ¬p∨q, p↔ q ≡ (p→ q) ∧ (q → p)). In addition, we abbreviate ¬[a]¬φ to ⟨a⟩φ (performing
some investigation a from the present state leads to a state where φ is true) as in modal logic. We write an

for a; . . . ; a with n occurrences of a. More formally:

• a1 =df a

• an+1 =df a; an

The axioms of FD Ln are the axioms of  Lukasiewicz logic  L:

(L1) φ→ (ψ → φ),

(L2) (φ→ ψ)→ ((ψ → χ)→ (φ→ χ)),

(L3) (¬φ→ ¬ψ)→ (ψ → φ),

(L4) ((φ→ ψ)→ ψ)→ (ψ → φ)→ φ),

plus the axioms of the logic  Ln, that was given by R. Grigolia [6]:

(Ln5) φn ↔ φn−1,

(Ln6) n(φk)↔ (k(φk−1))n,

for every integer 2 ≤ k ≤ n− 2 that does not divide n− 1 and for any formulas φ, ψ and any investigation:

Ax0 [a](φ→ ψ)→ ([a]φ→ [a]ψ),

Ax1 [a]1↔ 1,

Ax2 [a; b]φ↔ [a][b]φ,

Ax3 [a ∪ b]φ↔ [a]φ ∧ [b]φ,

Ax4 [a](φ ∧ ψ)↔ ([a]φ ∧ [a]ψ).

Ax5 [a∗]φ↔ φ ∧ [a][a∗]φ,

Ax6 φ ∧ [a∗](φ→ [a]φ)→ [a∗]φ,

Ax7 [a](φ&φ)↔ [a]φ&[a]φ,

Ax8 [a](φ ⊻ φ)↔ [a]φ ⊻ [a]φ.

and closed under the following rules of inference:

(MP) from φ and φ→ ψ infer ψ,

(N) from φ infer [a]φ,

(I) from φ→ [a]φ infer φ→ [a∗]φ.
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3 Forensic dynamic MVn-algebras

An algebra A = (A, 0,¬,⊕) with one binary and one unary and one nullary operations is a MV -algebras if
it satisfies: MV1. (A, 0,⊕) is an abelian monoid

MV2. ¬¬x = x
MV2. x⊕ ¬0 = ¬0
MV3. y ⊕ ¬(y ⊕ ¬x) = x⊕ ¬(x⊕ y).

We set 1 = ¬0 and x ⊙ y = ¬(¬x ⊕ ¬y). We shall write ab for a ⊙ b and an for a⊙ · · · ⊙ a︸ ︷︷ ︸
n times

, for given

a, b ∈ A. Every MV -algebra has an underlying ordered structure defined by

x ≤ y iff ¬x⊕ y = 1.

Then (A;≤, 0, 1) is a bounded distributive lattice. Moreover, the following property holds in any MV -algebra:

xy ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.

An MV -algebra A = (A, 0,¬,⊕) is MVn-algebra if it satisfies the identities: xn = xn−1, n(xk) = (k(xk−1))n

for every integer 2 ≤ k ≤ n− 2 that does not divide n− 1 [6].
Recall that MVn-algebras are algebraic models of n-valued  Lukasiewicz logic  Ln.
The unit interval of real numbers [0, 1] endowed with the following operations:

xx⊕ y = min(1, x+ y), x⊙ y = max(0, x+ y − 1),∼ x = 1− x,

becomes an MV -algebra [2]. From these operations are defined the lattice operations

x ∨ y = max(x, y) = (x⊙ ∼ y)⊕ y and x ∧ y = min(x, y) = (∼ x⊕ y)⊙ x.

It is well known that the MV -algebra S = ([0, 1],⊕,⊙,∼, 0, 1) generate the variety MV of all MV -algebras,
i.e. V(S) = MV. The algebra Sn = ({0, 1/n − 1, ..., n − 2/n − 1, 1},⊕,⊙,∼, 0, 1) generates the subvariety
MVn (1 < n < ω), the algebras of which is called MVn-algebras [6], i.e. V(Sn) = MVn. Notice that
MV = V(

∪∞
i=1 MVn).

The algebra S = ([0, 1],⊙,⇒, 0) (which is functionally equivalent to theMV -algebra defined above), where
a binary operation ⊙ called  Lukasiewicz t-norm and defined as x⊙ y = max{0, x+ y− 1}, for all x, y ∈ [0, 1];
a binary operation ⇒ called the residuum (of the t-norm ⊙) and defined as x⇒ y = min{1, 1− x+ y}, and
∼ x = x⇒ 0 = 1− x, x⊕ y =∼ (∼ x⊙ ∼ y) = min(1, x+ y), for all x, y ∈ [0, 1].

Firstly define regular algebras that are also named Kleene algebras. There exist several definitions of
regular algebras. We use J.H. Conway’s definition of regular algebras [3] to whom Kozen follows [8]. A
Kleene algebra is a structure (K,+, ·,∗ , 0, 1) such that (K,+, 0) is a commutative monoid, (K, ·, 1) is a
monoid, and the following laws hold:

a+ a = a, a · (a+ b) = a · a+ a · b,
a · 0 = 0 · a = 0, (a+ b) · c = a · c+ b · c,
1 + a · a∗ = a∗, b+ a · c ≤ c⇒ a∗ · b ≤ c,
1 + a∗ · a = a∗, b+ c · a ≤ c⇒ b · a∗ ≤ c,

where ≤ is the partial order induced by +, that is, a ≤ b⇔ a+ b = b.
For us it is interesting regular algebras represented by algebras of binary relations. Algebras of relations

over a set X: (2X×X ,∪, ; ,∗ , ∅, Id), where ∪ is set-theoretic union, ; is relational composition, ∗ is reflexive-
transitive closure and Id is the identity relation. Notice that this algebra is a complete lattice with respect
to ∪. In the sequel, following Pratt [11], we represent regular algebras as (R,∪, ; ,∗ ).
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Forensic dynamic MVn-algebra, n ∈ Z+, combine MVn-algebra M = (M,⊕,⊙,∼, 0, 1) and regular
algebra R = (R,∪, ; ,∗ ) into a single finitely axiomatized class (M,R,♢) resembling an R-module with scalar
multiplication ♢ : R ×M → M . A forensic dynamic MVn-algebra D = (M,R,♢) satisfies the following
axioms: for any x, y ∈M and a, b ∈ R

1. M is MVn-algebra.
2. a0 = 0.
3. a(x ∨ y) = ax ∨ ay.
4. (a ∪ b)x = ax ∨ bx.
5. (ab)x = a(bx).
6. a(x⊕ x) = ax⊕ ax.
7. a(x⊙ x) = ax⊙ ax.
8. x ∨ aa∗x ≤ a∗x ≤ x ∨ a∗(∼ x ∧ ax).

If in addition a dynamic MVn-algebra satisfies the following condition

9. x?y = x ∧ y,

then it is called test algebra.
Notice that we may think ⟨a⟩x as a function on M . The alternative notation ax is to suggest that we

may think of a itself as a function, in spite of the fact that we may have ax = bx for all x ∈M yet not have
a = b.

In the following instead of a variable x sometimes we will use a propositional variable p. If ap = bp for
all p we call a and b inseparable and write a ≡ b, an equivalence relation which we shall later show to be a
congruence relation on (forensic) dynamic algebras. We call separable any forensic dynamic algebra in which
inseparability is the identity relation [8]. More precisely, forensic dynamic MVn-algebra D = (M,R,♢),
n ∈ Z+, is called separable iff (∀a1, a2 ∈ R)(∃x ∈ M)(a1 ̸= a2 ⇒ a1x ̸= a2x). We let SFDnA denote the
class of separable forensic dynamic MVn-algebras.

On R we define a quasiorder ≤: a ≤ b means that ap ≤ bp for all p. It follows that ≤ on R is reflexive
and transitive but not antisymmetric, and so is a quasiorder. In a separable forensic dynamic MVn-algebra
it becomes a partial order.

Using the axioms 2, 3, 4 and 8, Pratt have proven in [11] that if a ≡ b then a∗ ≡ b∗ and hence ≡ is a
congruence relation on R. Moreover (a) if a ≤ b then a∗ ≤ b∗, (b) a ≤ a∗, (c) a∗ = a∗∗ [11].

Let us consider M as a lattice, and write aS for {as : s ∈ S} for any S ⊂M and a ∈ R. We call a finitely
additive (completely additive) if a(

∨
S) =

∨
a(S) for any finite subset S ⊂ M (for any subset S ⊂ M for

which
∨
S exists). Notice that the regular algebra operations ∪, ; ,∗ preserve finitely additivity (completely

additivity), i.e. if a and b are finite (completely) additive, so are a ∪ b, a; b, a∗ [11].

Example 3.1. Full forensic dynamic MVn-algebras. Given a complete MVn-algebraM = (M,⊕,⊙,∼, 0, 1),
let R be the set of all finitely (resp. completely) additive functions on M , with conditions f(0) = 0,
f(x ⊕ x) = f(x) ⊕ f(x) and f(x ⊙ x) = f(x) ⊙ f(x), and let ♢ : R ×M → M be application of elements of
R to elements of M . We call it the full (completely full) forensic dynamic MVn-algebra on M .

Example 3.2. Functional MVn-algebra. Let W be non-empty set (of states) and

MW = {f : f is a function from W to Sn},

n ∈ Z+, - the set of all functions, which is complete MVn-algebra. More precisely, we have MVn-algebra
(MW ,⊕,⊗,∼, 0, 1), where (f ◦ g)(x) = f(x) ◦ g(x), ∼ f(x) = f(∼ x) with conditions f(x ◦ x) = f(x) ◦ f(x)
where ◦ ∈ {⊕,⊗}, and

R = {r|r : MW →MW is additive (completelly additive) functions}
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with r(f) = r ◦ f . Then the full functional MVn-algebra on W is the completely full forensic dynamic
MVn-algebra on MW .

Remark 3.3. Notice, that the full functional MVn-algebra on W is separable. Indeed, recall that forensic
dynamic MVn-algebra D = (M,R,♢), n ∈ Z+, is called separable iff

(∀a1, a2 ∈ R)(∃x ∈M)(a1 ̸= a2 ⇒ a1x ̸= a2x).

Then, if we take as element x ∈M the constant function 1, then if a1 ̸= a2, then

a11 = a1 ◦ 1 = a1 ̸= a2 = a2 ◦ 1 = a21.

4 Completeness Theorem

Recall that dynamic MVn-algebra D = (M,R,♢) is called separable iff

(∀a1, a2 ∈ R)(∃x ∈M)(a1 ̸= a2 ⇒ ♢(a1, x) ̸= ♢(a2, x)).

In this case x is called a separator for the actions a1 and a2. SFDnA denotes the class of all separable
dynamic MVn-algebras, and Vn denotes the variety generated by SFDnA, i.e. Vn = V(SFDnA).

The notion of heterogeneous algebra and products, subalgebras and homomorphisms of heterogeneous
algebras can be found in [1]. A subalgebra D′ = (M′,R′,♢) of an algebra D = (M,R,♢) is a set of
subsets M ′ ⊂ M,R′ ⊂ R closed under the corresponding operations, and ♢(a′, x′) ∈ M ′ for any a′ ∈ R′ and
x′ ∈ M ′. A homomorphism h : D → D′ is a pair (h1, h2) homomorphisms h1 : M → M ′, h2 : R → R′, and
h(♢(a, x)) = ♢(h1(a), h2(x)). A congruence E on an algebra D is a pair of congruences (E1, E2) on M and
R respectively, and if aE1b and xE2y, then ♢(a, x)E1♢(b, y).

Let Dn be the variety of all forensic dynamic MVn-algebra.

Let F(Var, Inv) denote the absolutely free algebra (or term-algebra) with similarity (2, 2, 1, 0, 0; 2, 2, 1)
and generate by the set of variables and set of investigations. We can restrict the cardinality of the set of
variables (say finite set of variable) and the cardinality of the set of ivestigations (say finite set of investi-
gations). Then we will have finitely generated absolutely free algebra. Denote by F(Varf , Invf ) finitely
generated absolutely free algebra.

Let x, y..., a, b, ..., α, β, ... range over the set of generators in M,R,M∪R respectively, and write M0, R0, D0

for the respective generator sets. Let FVn(M0, R0) denotes the free Vn-algebra (free algebra over Vn) freely
generated by the sets R0 and M0 as free generators of sorts MVn-algebra and actions respectively [5]. We
can represent FVn(M0, R0) as (FMVn(M0),FR(R0),♢).
Notice that (FMVn(M0),FR(R0),♢) is a homomorphic image of the absolutely free term forensic dynamic
MVn-algebra. In other words (FMVn(M0),FR(R0),♢) is a Lindenbaum algebra of the forensic dynamic
Lukasiewicz logic on a finitely many generating sets.

According to well known Birkhoff’s theorem we have

Theorem 4.1. Dn-algebra D = (M,R,♢) is isomorphic to a subdirect product of subdirectly irreducible
Dn-algebras.

According to this theorem (FMVn(M0),FR(R0),♢) is represented as a subdirect product of subdirectly
irreducible Dn-algebras where FMVn(M0) is a subdirect product of finite chain MVn-algebras and FR(R0)
is a separable regular algebras. Notice that when M0 is finite then FMVn(M0) is finite.

Taking into account that the variety of MVn-algebras is locally finite and adapting Segerberg’s technique
of filtration (for modal logic) [14] for dynamic MVn-algebras it holds



Forensic Dynamic  Lukasiewicz Logic-TFSS Vol.1, No.2, (2022) 65

Theorem 4.2. For a free forensic dynamic MVn-algebra FDn(M0, R0) and a finite subset Mg of FMVn(M0),
there exists a forensic dynamic MVn-algebra D = (M,R,♢) and a homomorphism f : FDn(M0, R0) → D
injective on Mg, with f(FDn(M0, R0)) finite and separable.

Theorem 4.3. Every finite separable forensic dynamic MVn-algebra D = (M,R,♢) is isomorphic to a
(finite) functional MVn-algebra.

Proof. Let D = (M,R,♢) be a finite separable forensic dynamic MVn-algebra. Let (W,R, V ) be the Kripke
model such that:

i) W is the set of all additive functions f : M → Sn;
ii) the binary relation R is defined on W by

(u, v) ∈ R if for every formula φ ∈ FMVn(M0) and a ∈ Inv

u([a]φ) = 1⇒ v(φ) = 1;

iii) the valuation map V : W ×Var→ Sn is defined by

V (u, p) = u(p).

By the fact that every finite MVn-algebra is isomorphic to ta direct product
∏
i∈I Si, where i divides n,

and by separability, D is isomorphic to a subalgebra of the full (hence completely full by the finiteness of M)
forensic dynamic MVn-algebra, which is a functional MVn-algebra by definition. □

From the theorems 1 - 3 we can conclude that the variety Vn coincides with Dn.
Let θ(n) = (θ(n)1, θ(n)2 be an equivalence relation on F(Varf , Invf ) defined as follows: αθ1β iff α→ β

and β → α are theorems of FD Ln and aθ2b iff ax = bx for all x ∈M .
It holds

Theorem 4.4. (F(V arf ,Πf )/θ(n) is forensic dynamic MVn-algebra.

Theorem 4.5. (Completeness theorem) A formula φ of forensic dynamic logic FD  Ln is a tautology iff it is
a theorem of the logic.

Proof. It is obvious that if φ is a theorem, then φ is a tautology. Let us suppose that φ is not a theorem. Then
φ/θ(n) ̸= 1 in the Lindenbaum algebra F(Varf , Invf )/θ(n) (n ∈ ω). F(Varf , Invf )/θ(n) is isomorphic to
FVn(M0, R0) for some finite M0 and R0. Then there exists a homomorphism h : FVn(M0, R0) → D with
injection on M0, R0 where D is finite and separable with h(φ/θ(n)) ̸= 1. So, φ is not a tautology. □

5 Kripke semantics

Formulas can be used to describe the properties that hold after the successful investigation. For example,
the formula [a ∪ b]φ means that whenever investigations a or b is successfully finalized, a state is reached
where φ holds, whereas the formula ⟨(a; b)∗⟩φ means that there is a sequence of alternating investigations of
a and b such that a state is reached where φ holds. Semantically speaking, formulas are interpreted by sets
of states and investigations are interpreted by binary relations over states in a Kripke model. More precisely,
the meaning of FD Ln formulas and investigations are interpreted over Kripke models (KM) K = (W,R, V )
where W is a nonempty set of worlds or states, R is a mapping from the set Inv of atomic investigations
into binary relations on W (i.e. R : Inv→ r : W 2 → {0, 1}) and V is a mapping from the set Var of atomic
formulas into Sn. Informally, the mapping R assigns to each atomic investigation a ∈ Inv some binary
relation R(a) on W with intended meaning xR(a)y iff there exists an execution of a from x that leads to
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y, whereas the mapping V assigns to each pair (p, x) ∈ V ar ×W , where p ∈ V ar is an atomic formula and
x ∈ W , some element V (p, x) ∈ Sn with intended meaning V (p, x) = 1 iff p is true in x. Given our readings
of 0,¬φ,φ ⊻ψ, [a]φ, a; b, a∪ b, a∗ and φ?, it is clear that R and V must be extended inductively as follows to
supply the intended meanings for the complex investigations and formulas:

• xR(a; b)y iff there exists a world z such that xR(a)z and zR(b)y,

• xR(a ∪ b)y iff xR(a)y or xR(b)y,

• xR(a∗)y iff there exists a non-negative integer n and there exist worlds z0, . . . , zn such that z0 = x,
zn = y and for all k = 1, . . . , n, zk−1R(a)zk,

• xR(φ?)y iff x = y and V (φ, y) = 1,

• V (⊥) = 0.

• V (¬φ, x) = 1− V (φ, x),

• V (φ ⊻ ψ, x) = V (φ, x)⊕ V (ψ, x),

• V (φ ∨ ψ, x) = V (φ, x) ∨ V (ψ, x),

• V ([a]φ, x) =
∧
{V (φ, y) : xR(a)y},

• V (⟨a⟩φ, x) =
∨
{V (φ, y) : xR(a)y}.

If V (φ, x) = 1 then we say that φ is satisfied at state x in K, or ”K, x sat φ”.

Now consider a formula φ. We say that φ is valid in K or that K is a model of φ, or ”K ⊨ φ”, iff for all
worlds x, V (φ, x) = 1. φ is said to be valid, or ” ⊨ φ”, iff for all models K, K ⊨ φ. We say that φ is satisfiable
in K or that K satisfies φ, or ”K sat φ”, iff there exists a world x such that V (φ, x) = 1. φ is said to be
satisfiable, or ” sat φ”, iff there exists a model K such that K sat φ. Interestingly, sat φ iff not ⊨ ¬φ, ⊨ φ iff
not sat ¬φ.

Some remarkable formulas of FD Ln are valid.

⊨ [a; b]φ↔ [a][b]φ

⊨ [a ∪ b]φ↔ [a]φ ∨ [b]φ

⊨ [a∗]φ↔ φ ∧ [a][a∗]φ

⊨ [φ?]ψ ↔ (φ→ ψ)

Equivalently, we can write them under their dual form.

⊨ ⟨a; b⟩φ↔ ⟨a⟩⟨b⟩φ
⊨ ⟨a ∪ b⟩φ↔ ⟨a⟩ ∧ ⟨b⟩φ
⊨ ⟨a∗⟩φ↔ φ ∨ ⟨a⟩⟨a∗⟩φ
⊨ ⟨φ?⟩ψ ↔ (φ ∧ ψ).

We define propositional forensic dynamic  Lukasiewicz logic FD Ln as the set of all formulas that are valid
in all Kripke models, i.e.

FD Ln = {φ : |=FD Ln
φ}.

Completeness theorem for classical and non-classical case with respect to Kripke models was proven by
many authors. Adapting the existing methods for FD Ln it is easy to prove the following

Theorem 5.1. (Completeness theorem) The following assertions are equivalent: for any formula φ

i) φ is a theorem of FD  Ln (n ∈ Z+),

ii) φ is valid.

Proof. We give a sketch of the proof.
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i) ⇒ ii). It follows from the immediate inspection, i.e. showing that every axiom Ax0 - Ax8 are valid and
inference rules preserve validity. It is routine to check every axiom and inference rules. But we show validity
of one of them, namely the axiom Ax0. Firstly, notice that the identity∧

i∈I
(xi ⊕ yi) =

∧
i∈I

(xi)⊕
∧
i∈I

(yi) (#)

holds in the MV -algebra S and, hence, in the MVn-algebra Sn. Let Kn = (W,R, V ) be any Kripke model.
Then V ([a](φ→ ψ)→ ([a]φ→ [a]ψ), x) =
V (¬[a](¬φ∨ψ)∨(¬[a]φ∨[a]ψ), x) =
∼ V ([a](¬φ∨ψ), x)⊕ (∼ V ([a]φ, x)⊕ V ([a]ψ), x)) =
∼ (
∧
y∈W {∼ V (φ, y) ⊕ V (ψ, y) : xRay}) ⊕ (∼

∧
y∈W {V (φ, y) : xRay} ⊕

∧
y∈W {V (ψ, y) : xRay}). Using (#)

we have
∼ (

∧
y∈W {∼ V (φ, y) ⊕ V (ψ, y) : xRay}) = (∼

∧
y∈W {V (φ, y) : xRay} ⊕

∧
y∈W {V (ψ, y) : xRay}). So,

V ([a](φ→ ψ)→ ([a]φ→ [a]ψ), x) = 1.
ii)⇒ i). This part is the completeness theorem concerning Kripke models. The completeness theorem for

the classical case was given by Segerberg [13], Parikh [10], Kozen and Parikh [9]. In the proof of the theorem,
they mainly use the fact that the set of the subformulas of the formula is finite and by the Boolean combination
on the given subformulas, we also get finite set (because of locally finiteness of Boolean algebras), and then
use filtration method. Since we have locally finiteness of MVn-algebras (which is an algebraic counterpart of
n-valued  Lukasiewicz logic) G. Hansoul and B. Teheux in [7] adapted the Segerberg’s proof for (mono)modal
n-valued  Lukasiewicz logic where they have proved Kripke completeness of (mono)modal n-valued  Lukasiewicz
logic.

Using an abstract version of the modal logic technique of filtration, which is a Kripke structure setting
is the process of dividing a Kripke model of a given formula φ by an equivalence relation on its worlds to
yield a finite Kripke model of φ. Fischer and Ladner [4] showed that filtration could be made to work for
propositional dynamic logic just as well as for modal logic. Prat [12] has extended their result that filtration
does not depend on any special properties of Kripke structures but works for all dynamic logic. Adapting
G. Hansoul and B. Teheux technique of filtration (for  Lukasiewicz modal logic) [7] for (multimodal) dynamic
propositional  Lukasiewicz logic FD Ln we arrive to the assertion (ii)⇒ (i). □

6 Application

We study logical system and their Kripke semantics (Kripke frames) for an application to the forensic sys-
tem. In turn, the forensic system consists of special kind of investigations interacting between themselves,
depending on the state of an environment, which afterward is predetermined by investigators behavior. So,
their behavior depends on so far as finding facts (evidence) possess full information about the environment
and presented facts.

Our basic aim is to give to the investigators some useful tools for diagnosis about a state of a forensic
system having some initial data. These data represent some properties, which may estimate, that possess
some parts of a forensic system, in particular some evidence being fundamental elements of the forensic
system.

6.1 A fragment of a forensic system as a Kripke Frame

In this section, we try to represent some simple fragment of a forensic system by n-valued Kripke frame with
the following interpretation in forensic models that is different, but similar.

Now we give a naive definition of forensic system FS. A forensic system FS is a set of investigations with
some actions between them. Identifying some investigation with a possible world and an action between
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investigations with the relation between corresponding words we can represent a forensic system FS as a
n-valued descriptive Kripke frame.

FragmFS = (S,Q), where S = {Fact1, ..., Factn, Inv1, ..., Invm}, forms a fragment of a forensic system
with communication between its members which is expressed by some reflexive and transitive binary relation
Q pointed out in Fig. 1. In the sequel, we assume that the binary relation Q is reflexive and transitive.

Now we will give some representation of a fragment of a forensic system by Kripke frame. Let J = (W,R)
be n-valued Kripke frame, where R ⊂ W ×W is a binary reflexive and transitive relation on finite set W
(called the accessibility relation between possible words from W ). By the representation of a forensic system
FragmImS = (S,Q) by Kripke frame J = (W,R) we mean a bijective function φ : S → W such that
(t1, t2) ∈ Q⇒ (φ(t1), φ(t2)) ∈ R.
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6.2 The modal aspects of forensic system

Given a n-valued Kripke frame J which is a representation of a fragment of the forensic system, then we
consider some a forensic system, represented by the Kripke frame J = (W,R),where W is a finite set of
forensic investigations, and let M = (J, e) be n-valued Kripke model and e : V ar×W → Sn. Representing a
Kripke frame as a set of forensic investigations, in addition we can interpret a propositional variable p ∈ V ar
as a sentence about the investigation w ∈W . The value e(p, w) expresses how much p fits a certain property
of w.

We say that w ∈ W , where W is a finite set of investigations, is p-activated if e(p, w) = 1 , it is not
p-activated if e(p, w) = 0, it is p-activated in some degree s ∈ Sn if e(p, w) ∈ Sn − {0, 1}. Note that for
w ∈ W there are finitely many ways to be p-activated for an investigation w. So, for evaluation e we have
the set of points of W (i.e. the set of investigations) such that part of them are activated, part of them is
not activated and part of them is activated to some degree.

A function S : W → Sn is named a state function (or simply state) if for every w,w′ ∈W it holds

(w,w′) ∈ R⇒ (S(w) = 1⇒ S(w′) = 1).

Let e : V ar × W → Sn be an evaluation. A formula φ defines a function Seφ : W → Sn, such that
Seφ(w) = e(w,φ). We say that a formula φ is labelled by the evaluation e if Seφ is an state function and denote
such kind of function by Seφ. The process of transformation of one state function S1 (= Se1φ ) to an another
function S2 (= Se2φ ) will be named ”φ− activation”. So, for a formula φ a transferring of the state function
Se1φ to the state function Se2φ is a φ-activation of points of W .

We described a forensic system as a Kripke Frame. It means that by Kripke frame we capture just the
relational structure of a forensic system.

This representation of the forensic system neglects some information about the forensic system, that is
some knowledge on the points w are not represented. So to recover such information we give the notion of
forensic system state function (or simply forensic state function of a forensic system). This is done by a
function S defined on all possible worlds to Sn. Of course S satisfies some suitable conditions, which are
essentially compatibility conditions with respect to the relational structure of the forensic system. In this
way we have a more faithful representation of the knowledge about the given forensic system. It is reasonable
to think that to get the value S(w) it is needed some intellectual work (maybe an experiment). We plan
mathematically to study the set of all forensic states. Our aim is to help the investigators to have a formal
and canonical way to explore the possible forensic state (function) of a forensic system. We have a variety of
forensic state functions. Roughly speaking we have any allocation of the elements of Sn with any elements
of W . But we need the allocations which are compatible with n-valued Kripke frame. So we single out such
kinds of forensic state functions which are defined by some logical formulas, say φ, and an evaluation e is
denoted as Seφ.

Since a forensic system, as defined in the paper, can be associated whit a logic which is complete with
respect to certain Kripke frames, and since forensic system representation gives us a Kripke Frame, we use
formulas of the logic of our Kripke Frame forensic system, to define some forensic states of the forensic system.
Actually we use a formula φ and an evaluation e of φ, in the following way: Seφ(w) = e(φ,w).

It is worth to note that a single formula φ essentially represents a set of forensic states (investigation),
actually all such states are defined by Seφ when e varies in the set of all evaluations. In this way a given
formula represents a collection of forensic states of the forensic system. It could be of interest to explore the
possibility of checking whether given a collection of forensic states we can find a formula representing such a
collection.

We defined the Activation function as a function defined on the set of all the forensic System States
with value in the same set. This is a way to represent how changes the forensic information after, say an
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experiment, that produces new information about the forensic state values of all points w. To know facts
about the function means to know facts about possible variations of the forensic state of the system, and to
check whether these variations can be described by formulas.
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Abstract. As the research object of modern nonlinear science, a fractal theory has been an important research
content for scholars since it comes into the world. Moreover, iterated function system (IFS) is a significant research
object of fractal theory. On the other hand, the Markov process plays an important role in the stochastic process.
In this paper, the iterated function system with probability(IFSP) and the infinite function system with probabil-
ity(IIFSP) are investigated by using interlink, period, recurrence and some related concepts. Then, some important
properties are obtained, such as: 1. The sequence of stochastic variable {ζn, (n ≥ 0)} is a homogenous Markov
chain. 2. The sequence of stochastic variable {ζn, (n ≥ 0)} is an irreducible ergodic chain. 3. The distribution

of transition probability p
(n)
ij based on n → ∞ is a stationary probability distribution. 4. The state space can be

decomposed of the union of the finite(or countable) mutually disjoint subsets, which are composed of non-recurrence
states and recurrence states respectively.
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1 Introduction

As the research object of modern nonlinear science, a fractal theory has been an important research content for
scholars since it comes into the world. One of its most important features is that fractal can truly describe
natural phenomena. It was founded by an American mathematician Mandelbrot in the 1970s. With the
vigorous promotion of Mandelbrot, fractal makes people’s understanding of object shape change from regular
to irregular gradually, and provides a new mathematical tool for the research of nonlinear characteristics and
irregular phenomena. Fractal is being applied and explored in many fields with a new concept and theory,
and its research has also greatly expanded the human cognitive domain [8, 10].

There are a lot of both this and that phenomenon, which have no clear boundary in the real world. This
makes it necessary to go through a continuous repetition and accumulation change process from complete
coincidence to complete non coincidence. In other words, the fractal set in nature cannot be described by the
characteristic function with only two values of 0 or 1 in classical set theory. In 1965, American cybernetic
expert Zadeh extended the value range of characteristic function in classical set theory from {0, 1} to the
closed interval [0, 1], which is the core idea of fuzzy set. In order to apply fractal set to this fuzzy phenomenon,
Xie Heping et al gave the concept of fuzzy fractal in 1990.

Iterated function system (IFS) is a significant research object of fractal theory founded by Hutchinson
[6]. As the framework of fractal theory, the affine transformation is a critical mathematical tool. According
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to the self similar formation of the part and whole about the objective object, the overall shape is iterated on
the basis of some affine transformations with a given probability until emerging a pretty fractal figure. With
the help of the powerful iterative computing ability of a computer, IFS applies the essence of fractal theory
such as self similarity, a multiplicity of levels and unity of rules at different levels to the field of computer
graphics, and can produce many graphics with infinite detail and exquisite texture.

Markov process plays an important role in the stochastic process. The mathematician Markov proposed
an interesting chain in 1907 called Markov chain nowadays. So far, it has formed a branch of mathematics
with rich content, complete theory and wide application. The Markov process is a significant method for
researching the discrete state space based on the theory of stochastic process [18].

The random fractal is another important field of the fractal theory. Because it is closely related to
nature, it has become hot research in recent years. Moreover, the random iterative function system is also
an important research object of the random fractal, and many scholars have done a lot of research work
in this field. Such as Joanna used two methods to construct a gradually stable IFSP [11]. Weihrauch et
al studied the IFSP from the perspective of measure [3, 9, 21, 22]. Andrzej et al researched the fractal
dimension through IFSP [1, 4, 5, 16]. There is also some literature have researched the related problems
between IFSP and Markov process [7, 13, 15, 19]. In particular, John et al used the Markov process to study
the linear properties of IFS as early as 1990 [12]. However, some specific Markov Characteristics for IFSP
and IIFSP almost no one has studied yet. Therefore, Our main purpose is to find and prove specific Markov
Characteristics for IFSP and IIFSP in this paper.

In this article, we first review some important concepts and properties of the stochastic process and fractal
theory in section 2. Then, we will introduce the homogeneous property for IFSP in section 3. In section 4,
we will introduce the ergolic property for IFSP. In section 5, we will introduce the distribution property for
IFSP. In section 6, we will introduce the decomposition of state space for IFSP. Then, we will extend the
Markov Characteristics to IIFSP in section 7. The last section is conclusion and future work.

2 Preliminaries

Before studying the Markov Characteristics for IFSP and IIFSP, we introduce some important concepts that
will be useful later in the subsections. First, we begin with the concept of the fractal theory.

Definition 2.1. [14] Let yn ∈ Y be a point sequence, if there exists a positive integer number N(ε), such
that d(ym, yn) < ε for all m,n > N(ε) and ∀ε > 0, then yn is said to be a Cauchy sequence. Further, (Y, d)
is known as a complete metric space, if each Cauchy sequence in Y converges to a point y in Y .

According to the complete metric space, we give the definitions of iterated function system(IFS) and
hyperbolic iterated function system (HIFS).

Definition 2.2. [2, 14, 17] Suppose (Y, d) be a complete metric space, if there exists a family of continuous
functions fk(k ∈ {1, 2, · · · , N}) : Y → Y. Then

{Y ; fk, k ∈ {1, 2, · · · , N}}

is called an iterated function system(IFS). Further,

{Y ;H; fk, k ∈ {1, 2, · · · , N}}

is called a hyperbolic iterated function system (HIFS), if fk(k ∈ {1, 2, · · · , N}) is the contraction mapping
(for ∀x, y ∈ X, there exists 0 ≤ α < 1, such that d(fk(x), fk(y)) ≤ αd(x, y)) based on (Y, d).

With the help of IFS, HIFS and probability vector, we will introduce the definition of IFSP and HIFSP
which are the most important concepts in this paper.
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Definition 2.3. [2, 14, 17] Let {Y ; fk, k ∈ {1, 2, · · · , N}} be an IFS, and P = {p1, p2, · · · , pN} be a probability
vector, where

∑N
i=1 pi = 1 and pi ≥ 0 for all i ∈ {1, 2, · · · , N}. We have P (ζn = i) = pi for the given

independent random variables sequence ζ1, ζ2, · · · , ζn, · · · , where i ∈ {1, 2, · · · , N};n ∈ {1, 2, 3, · · · }. Then
we call it is an iterated function system with probability(IFSP), denoted by

{Y ;P ; fk, k ∈ {1, 2, · · · , N}}.

Further,
{Y ;H;P ; fk, k ∈ {1, 2, · · · , N}}

is known as a hyperbolic iterated function system (HIFSP), if fk(k ∈ {1, 2, · · · , N}) is the contraction mapping
based on (Y, d).

Theorem 2.4. [2, 14, 17] Let {Y ;H; fk, k ∈ {1, 2, · · · , N}} be a HIFS based on (Y, d). Then A ⊂ Y is a
unique non-empty compact subset, such that

A = f(A) =

N∪
k=1

fk(A), (1)

and fn(A0)−→A, where A0 is any element of the all nonempty compact subsets of Y . A is the attractor (or
invariant set) of IFS.

The next theorem will give the relationship of probability between the random iterative sequence and the
attractor of IFS through hausdorff distance h. (h(A,B) = max{d(A,B), d(B,A)}, d(A,B) = maxa∈A{minb∈Bd(a, b)}).

Theorem 2.5. [2, 14, 17] Let {Y ;H;P ; fk, k ∈ {1, 2, · · · , N}} be a HIFSP. For any y0 ∈ Y , let yn+1 =
fζn(yn), n ∈ {0, 1, 2, · · · }., where P (ζn = i) = pi, i ∈ {1, 2, · · · , N}. Then there exists n0 = n0(ε) and
k0 = k0(ε), for any ε > 0, we have

P{h({yn, yn+1, · · · , yn+k}, A) < ε} > 1− ε, (2)

if n ≥ n0 and k ≥ k0, where A is the attractor (or invariant set) of IFS.

The above theorem tells us such a fact that if we remove n0 items in front of the random iterative sequence
{yn}. So the possibility of the hausdorff distance between sufficiently long sequence {yn, yn+1, · · · , yn+k} and
the attractor is less than ε will exceed 1− ε. We have introduced the related concepts and properties of IFS
in the previous. And we will introduce some significant concepts about Markov process in the sequel, which
play an important role in this paper.

Definition 2.6. [18, 20, 23] Let (Ω,F , P ) be a probability space, and {X(n), (n ≥ 0)} be a random sequence.
Then we have

P{X(tm+1) = im+1|X(t1) = i1, X(t2) = i2, · · · , X(tm) = im}

= P{X(tm+1) = im+1|X(tm) = im}, (3)

if for any m ≥ 1, and nonnegative integer t1 < t2 < · · · < tm < tm+1, where i1, i2, · · · , im+1 ∈ E, E is the
state space of {X(n), (n ≥ 0)}. If the conditional probabilities at both ends of the equation are meaningful,
then {X(n), (n ≥ 0)} is a Markov chain.

The above equation is often called the markov attribute(or the attribute of no aftereffect) in the Markov
process. We find the random variables at each time have a certain dependence(i.e.,non independence) in the
above Definition. More specifically, the past only affects the present, not the future.
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Definition 2.7. [18, 20, 23] The equation

pµij(m) = P{X(m+ µ) = j|X(m) = i}, i, j ∈ E, µ ≥ 1, (4)

is said to be the µ − step transition probability of transferring to state j after µ steps, if the system is in
state i at m.

It is said to be one-step transition probability apparently if µ = 1, and short for transition probability.
As we know, pµij(m) has the following important properties since it is a probability.{

p
(µ)
ij (m) ≥ 0, j ∈ E,∑
j∈I p

(µ)
ij (m) =

∑
j∈I P{X(m+ µ) = j|X(m) = i} = 1.

(5)

Then the matrix

P (µ)(m) = (p
(µ)
ij (m))i,j∈E , m ∈ T = {0, 1, 2, · · · },

is said to be the k steps transition matrix of {X(m)}.
It is not difficult to see {p(µ)

ij (m), j ∈ E} is a probability distribution for any given i ∈ E and m ≥ 0, µ ≥ 1.
We will introduce other important concepts called absolute probability and initial probability in the next
Definition.

Definition 2.8. [18, 20, 23] pj(µ) = P{X(µ) = j, j ∈ E} is known as absolute probability, if µ is a
nonnegative integer. Particularly, pj = pj(0) = P{X(0) = j, j ∈ E} is known as initial probability.

Similarly, pj(µ) and pj also has the same properties as below:{
pj(µ) ≥ 0, j ∈ E,∑

j∈I pj(µ) = 1,
(6)

{
pj ≥ 0, j ∈ E,∑

j∈I pj = 1,
(7)

Therefore, {pj(µ), (µ ≥ 0)} and {pj} are both probability distributions. Particularly, {pj} is also called
initial distribution. And {pj(µ), (µ ≥ 0)} is the one dimension distribution in Markov chain known as absolute
distribution commonly.

Theorem 2.9. [18, 20, 23] Let {X(n), n ≥ 0} be a Markov chain. Then the following formula holds for any
nonnegative integer µ, ν,m.

p
(µ+ν)
ij (m) =

∑
s∈E

p
(µ)
is (m)p

(ν)
sj (m+ µ), i, j ∈ E. (8)

The above equation is known as Chapman–Kolmogorov equation, abbreviated as C-K equation. The C-K
equation is an important result of transition probability.

3 The homogeneous property for IFSP

Homogeneity is a very important mathematical property, which describes the change characteristics of tran-
sition probability. In this section, we will discuss the homogeneity for IFSP through transition probability in
Markov process.
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Definition 3.1. [18, 20, 23] The Markov chain {X(n), n ≥ 0} is called homogeneous, if its one-step transition
probability {pij(m), i, j ∈ E} is independent of m, where E is the state space.

We will consider stochastic dynamical system which is determined by IFSP in Definition 2.3. In the
stochastic dynamical system:

yn+1 = fζn(yn), n ∈ {0, 1, 2, · · · }.

As we know, the steps of this iterative process are: first, we take the origin point y0 ∈ Y , then we take the
value of probability pj0

y1 = fj0(y0),

further, we take the value of probability pj1

y2 = fj1(y1).

In the same way, we obtain a random iterative sequence {yn, (n ≥ 0)} by iterating one by one. What
interests us is to select a random variable sequence {ζn, (n ≥ 0)} that is determined by the random iterative
sequence {yn, (n ≥ 0)}. (ζn = g(yn) = jn, jn ∈ {1, 2, · · · , N})

Proposition 3.2. Let the random variable sequence {ζn, (n ≥ 0)} be determined by the random iterative
sequence {yn, (n ≥ 0)} on the IFSP, then {ζn, (n ≥ 0)} is a finite homogeneous Markov chain.

Proof. Due to the characteristic of random variable sequence {ζn, (n ≥ 0)} in IFSP, it’s not hard for us to
find out yn+1 is determined by y0, y1, · · · , yn, then the following conditional probability equation holds:

P{yn+1 = fjn(yn)|y1 = fj0(y0), y2 = fj1(y1), · · · , yn = fjn−1(yn−1)}

= P{yn+1 = fjn(yn)|yn = fjn−1(yn−1)}. (9)

Where j0, j1, · · · , jn ∈ {1, 2, · · · , N}, since ζn = jn;n ∈ {0, 1, 2, · · · }. Thus {1, 2, · · · , N} is the state space of
random variable sequence {ζn, (n ≥ 0)}, ζn is determined by xn. So we obtain:

P{ζn = jn|ζ0 = j0, ζ1 = j1, · · · , ζn−1 = jn−1}

P{ζn = jn|ζn−1 = jn−1}, (10)

where j0, j1, · · · , jn ∈ {1, 2, · · · , N}, Obviously, the probabilities at both ends of the equation make sense. So
{ζn, (n ≥ 0)} is a Markov chain. We will proof it is finite and homogeneous in the next.

In the iterative process of IFSP, we let

pij(m) = P{ζm+1 = j|ζm = i}, i, j ∈ {1, 2, · · · , N}

is the transition probability from state i to state j after m-th iteration of the stochastic system. Obviously,
pij(m) is the one-step transition probability of {ζn, (n ≥ 0)}. The iterative process is independent of m, and
N is a finite positive integer in the state space. Thus {ζn, (n ≥ 0)} is a finite homogeneous Markov chain.
This completes the proof. □

Example 3.3. (General random walk) There is a particle in the line segment [1, 3]. It can only stay at the
three points 1, 2, 3, one movement per second. The move rule is: the particle is at any one of the points 1, 2, 3
before moving, it either stays where it is or moves to any of the remaining three points in the next second,
the probability are both 1

3 .



Markov Characteristics for IFSP and IIFSP-TFSS-Vol.1, No.2-(2022) 77

Firstly, according to the above example, we can construct a model of IFSP. i.e.,let

{Y ;P ; fk, k ∈ {1, 2, 3}}

be an IFSP, where {xn, n ≥ 0} is a random iterative sequence,

P = {p1, p2, p3} = {1

3
,
1

3
,

1

3
}

is the probability vector,and
fζn(y) = ζn, ζn ∈ {1, 2, 3}, y ∈ {1, 2, 3}

is the iterated function.
Secondly, we can let X(n) = ζn = i be the particle is at point i at t = n (i = 1, 2, 3, n = 0, 1, 2, · · · )

through the above analysis. Then {yn, (n ≥ 0)} is a random sequence, and the state space is E = {1, 2, 3}.
Thus, ζn is a finite homogeneous Markov chain based on IFSP, owing to

P{X(m+ 1) = j|A,X(m) = i} = P{X(m+ 1) = j|X(m) = i}

= pij(m) =
1

3
,

where A is known as any one event, which is determined by X(0), · · · , X(m− 1).
Finally, we will give the transition probability matrix (one step) of {X(m)} in the following.

P = (pij) =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


It not difficult to obtain the two step (or n step) transition probability matrix of {X(m)} in the following.

P (2) = (p
(2)
ij ) =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


= (p

(n)
ij ) = P (n).

Example 3.4. (The random walk that cannot cross the wall) There is a particle in the line segment [1, 5].
It can only stay at the five points 1, 2, 3, 4, 5, one movement per second. The move rule is: the particle is at
any one of the points 2, 3, 4 before moving, it either stays where it is, or move one space to the left, or move
one space to the right in the next second, the probability are both 1

3 . If the particle is at 5 before moving,
then it will move to point 4 with a probability of 1 in the next second. If the particle is at 1 before moving,
then it will move to point 2 with a probability of 1 in the next second. Because 1 and 5 are “insurmountable
walls” of the particle.

Firstly, similar to Example 3.3, we can construct a model of IFSP. i.e., let

{Y ;P ; fk, k ∈ {1, 2, 3}}

be an IFSP, where {xn, n ≥ 0} is a random iterative sequence.

f1(y) = y, f2(y) = y − 1, f3(y) = y + 1
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are the iterated functions,

P = {p1, p2, p3} = {1

3
,
1

3
,

1

3
}

is the probability vector, if the particle is at any one of the points 2, 3, 4 before moving.

P = {p1, p2, p3} = {0, 0, 1}

is the probability vector, if the particle is at the point 1 before moving.

P = {p1, p2, p3} = {0, 1, 0}

is the probability vector, if the particle is at the point 5 before moving. It’s quite easy to know, ζnϵ{1, 2, 3}
which is determined by X(n) = i, so it is a finite homogeneous Markov chain based on IFSP due to Proposition
3.2.

Secondly, we can let X(n) = i be the particle is at point i at time t = n (i = 1, 2, 3, 4, 5, n = 0, 1, 2, · · · ).
Then {yn, (n ≥ 0)} is a random sequence, and the state space is E = {1, 2, 3, 4, 5}. Thus, X(n) = i is also a
finite homogeneous Markov chain, owing to

P{X(m+ 1) = j|A,X(m) = i} = P{X(m+ 1) = j|X(m) = i}

= pij(m) =


1, if |j − i| = 1, i = 1, 5,
1
3 , if |j − i| ≤ 1, i = 2, 3, 4,
0, otherwise,

where A is known as any one event, which is determined by X(0), · · · , X(m− 1).
Finally, we will give the transition probability matrix (one step) of {X(m)} in the following.

= P = (pij) =



0 1 0 0 0

1
3

1
3

1
3 0 0

0 1
3

1
3

1
3 0

0 0 1
3

1
3

1
3

0 0 0 1 0


.

It not difficult to obtain the transition probability matrix (two step) of {X(m)} in the following.

P (2) = (p
(2)
ij ) =



1
3

1
3

1
3 0 0

1
9

5
9

2
9

1
9 0

1
9

2
9

1
3

2
9

1
9

0 1
9

2
9

5
9

1
9

0 0 1
3

1
3

1
3


.

4 The ergodic property for IFSP

The development of the physical system can be regarded as a random process from the viewpoint of a
quantitative relationships. The physical system always reaches equilibrium after a period of time, if there
is no significant change in the reasons affecting the development of the system. It is of great significance
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to expose the internal law of this phenomenon with mathematical theory. This law is called ergodicity in a
random process. More specifically, The ergodic property is to study the limit case of transition probability

p
(m)
ij , for m→∞.

“Recurrent” is an important concept in the Markov chain. We can use it to further reveal many charac-
teristics of the state. For the state j, we can pull-in random variables

Fj = min{m : X(m) = j, (m ≥ 1)},

It indicates the time when the system enters the state j for the first time. If the set on the right of the above
formula is empty (i.e. for any m ≥ 1, Y (m)

.
= j ), we stipulate minϕ = +∞, and let

g
(m)
ij = P{Fj = m|X(0) = i},m ≥ 1,

be the probability that the system first reaches state j after m steps from state i. Now, we let

gij =

∞∑
m=1

g
(m)
ij =

∞∑
m=1

P{Fj = m|(X0) = i}

= P{Fj < +∞|X(0) = i},

be the probability that the system will arrive sooner or later reaches state j from state i. In particular, gjj
means the probability that the system starting from state j and returning to state j sooner or later if i = j.

Definition 4.1. [18, 20, 23] The state j is said to be recurrence, if gjj = 1; The state j is known as
non-recurrence (or transience), if gjj < 1.

Definition 4.2. [18, 20, 23] The greatest common divisor T of the positive integer set {m : m ≥ 1, p
(m)
jj > 0}

is said to be the period of state j for state j, if the set is non empty. The state j is called periodic, if T > 1.
The state j is known as aperiodic, if T = 1. The period of the state j cannot be defined, if the positive

integer set {m : m ≥ 1, p
(m)
jj > 0} is an empty set.

Remark 4.3. Given recurrence state j, owing to

gjj = P{Fj < +∞} = 1,

this shows that starting from state i must return to itself. We can further subdivide the recurrence state,
because of

gjj =
∞∑
m=1

g
(m)
jj = 1,

thus g
(m)
jj is a probability distribution. We can describe this phenomenon with mathematical expectation, i.e

νj =
∞∑
m=1

mg
(m)
jj =

∞∑
m=1

mP{Fj = m|X(0) = j}

= E{Fj |X(0) = j}.

It not hard to get νj ≥ 1, which signifies the mean of times (or steps) that the system starting from state
j and also returning to state j. The state j is said to be positive recurrence, if νj < +∞. And the state j
is known as null recurrence, if νj = +∞. Then the aperiodic and positive recurrence state is called ergodic
state.
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Lemma 4.4. [18, 20, 23] Let j be a recurrence state and its period is T , then

lim
m→∞

p
(mT )
jj =

T

νj
.

The right end of the equation is equal to zero when νj = +∞. Most notably, the necessary and sufficient
condition of the positive recurrence state j is

lim
m→∞

p
(m)
jj > 0.

Definition 4.5. [18, 20, 23] For the state i and j, if there exists m ≥ 1 satisfy p
(m)
ij > 0, i.e., Starting from

the state i, after certain m steps, it can reach the state j. Then it is called the state i can reach state j,
denoted by i → j. Then, the state i and j are said to be interlinked, if j → i hold simultaneously. A chain
is called irreducible, if any two states are interlinked in this chain.

Based on the above definitions and lemma, we will investigate the ergodic property for Markov chain
{ζn, (n ≥ 0)} in next.

Theorem 4.6. Let {ζn, (n ≥ 0)} be the random variable sequence which is determined by the random iterative
sequence {yn, (n ≥ 0)} in the IFSP. Then {ζn, (n ≥ 0)} is an irreducible ergodic chain.

Proof. Let {1, 2, · · · , N} be the state space of random variable sequence {ζn, (n ≥ 0)}, j is an any state
in the state space{1, 2, · · · , N}. According to the iterative process in IFSP, it is obvious that the positive

integer set {n : n ≥ 1, p
(n)
jj > 0} is an empty set, and its greatest common divisor is T = 1. Therefore, the

state j is called aperiodic owing to Definition 4.2.
Next, we will show the state j of the random variable sequence {ζn, (n ≥ 0)} is a positive recurrence. It is

not difficult to verify that the upper limit of transition probability of the state j returns to itself after n-step
iteration is always greater than zero. i.e.

lim
n→∞

p
(n)
jj > 0.

This completes the proof due to Lemma 4.4. Thus the state i of the random variable sequence {ζn, (n ≥ 0)}
is ergodic.

Finally, we obtain the state i and j are interlinked, for ∀i, j ∈ {1, 2, · · · , N} , by the arbitrariness of
iteration in IFSP. i.e.,

i←→ j.

It shows this chain is irreducible. Therefore, {ζn, (n ≥ 0)} is an irreducible ergodic chain. □

5 The distribution property for IFSP

The law of probability distribution is used to describe the random value of probability variables. The
stationary distribution is an important type of probability distribution, which has a certain kind of invariable
property. It is often used to describe some characteristics of Markov process. In this section, we will consider
the relationship between IFSP and Markov chain through the property of stationary distribution. The
definition of stationary distribution in Markov chain and some properties will be given in the sequel.

Definition 5.1. [18, 20, 23] A probability distribution {uj , j ∈ E} is called stationary in the homogeneous
Markov chain, if it satisfies

uj =
∑
i∈I

uipij , j ∈ E.
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Remark 5.2. For the stationary distribution {uj}, if n ≥ 1 is integer number. It not difficult to verify the
following equation hold

uj =
∑
i∈I

uip
(n)
ij , j ∈ E

Therefore, the initial distribution of the homogeneous Markov chain is stationary.

In the light of the ergodic in the previous section, the Markov chain {yn, (n ≥ 0)} is known as ergodic, if
there exists a constant πj which be independent of i such that the following equation, for all state i and j of
the homogeneous Markov chain {yn, (n ≥ 0)}.

lim
n→∞

p
(n)
ij = πj .

It means the probability of transferring to the state j is approach to a constant πj no matter what state the
system starts, if the “transition step” n is large enough. We will give an important property related to the
constant πj in the next lemma.

Lemma 5.3. [18, 20, 23] Let {yn, (n ≥ 0)} be a finite homogeneous Markov chain (without losing generality,
we can set the state space E = {1, 2, · · · , N}). The Markov chain is ergodic, if there exists positive integer t
for all state i and j satisfy

p
(n)
ij > 0.

Therefore limn→∞ p
(n)
ij = πj, where the constant πj is independent of i. Moreover, πj(j ∈ {1, 2, · · · , N}) is

the unique solution in the following formulas

πj =

N∑
i=1

πipij , j ∈ {1, 2, · · · , N},

if it satisfies the conditions

πj > 0, j ∈ {1, 2, · · · , N},
N∑
j=1

πj = 1.

In the next theorem, we will discuss the distribution property of random iterative sequences based on
IFSP.

Theorem 5.4. Let {ζn, (n ≥ 0)} be the random variable sequence which is determined by the random iterative
sequence {yn, (n ≥ 0)} on the IFSP. The state i, j ∈ {1, 2, · · · , N} are any two states of the state space. Then

the limit distribution of transition probability p
(n)
ij is a stationary probability distribution, if the state i transfers

to the state j after n-step iteration.

Proof. {ζn, (n ≥ 0)} is an irreducible ergodic (aperiodic and positive recurrence) chain owing to Theorem
4.6. Then we will obtain the following equation through Lemma 5.3.

lim
n→∞

p
(n)
ij =

1

ψj
, j ∈ {1, 2, · · · , N}.

where 1
ψj

is similar to πj in Lemma 5.3. On the other hand, according to Definition 2.7 we get

N∑
j=1

p
(n)
ij = 1.
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Through the C-K equation

p
(µ+ν)
ij =

N∑
k=1

p
(µ)
ik p

(ν)
kj .

Without loss of generality, let µ = m, and ν = n. Then if m→∞, we gain

1

ψj
=

N∑
k=1

(
1

ψk
)p

(n)
kj , j ∈ {1, 2, · · · , N}, n ≥ 1. (11)

Thus 1
ψj

is a stationary distribution. We will proof it is also a probability distribution. Also let n→∞, we

have

1

ψj
=

N∑
k=1

(
1

ψk
)( lim
n→∞

p
(n)
kj )

=

N∑
k=1

(
1

ψk
)(

1

ψj
), j ∈ {1, 2, · · · , N}. (12)

From the above equation, we immediately get

N∑
k=1

1

ψk
= 1.

Therefore, the limit of p
(n)
ij , i.e. { 1

ψj
, j ∈ {1, 2, · · · , N}} is a probability distribution. This completes the

proof. □

6 The decomposition of state space for IFSP

The state space is an important concept in Markov process. The system state and the minimum number of
variables in the system can be determined by the ordered set of variables known as the state. Therefore, the
set of all possible states in the system constitutes a state space. It can considered to be the space with state
variables as the coordinate axis. In this section, we will make a new state space that has a little different
from the above, then extend the related properties of the Markov process to the IFSP.

Definition 6.1. {Y ;P ; f1, f2, · · · , fN} is an IFSP, then

E = {y : fζn(yn) = y, n ∈ {0, 1, 2, · · · }}

is the state space based on IFSP, where {yn, (n ≥ 0)} is an random iterative sequence related to IFSP.

Definition 6.2. The subset D of the state space E based on IFSP is called a closed set, if the state inside
D cannot reach the state outside D. i.e., pij = 0, for any i ∈ D, and j ∈ E −D.

As can be seen from the above definition, once the particle enters a closed set, it will always move in it
and cannot reach the outside, denoted by

pnij = 0, n ≥ 1.

It not difficult to find E is the maximum closed set, and the minimum closed set is compose by all absorption
state j, i.e. pjj = 1.
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Proposition 6.3. A is the minimum closed set, if A is the attractor of a HIFS.

According to Theorem 2.4, if A is the attractor of a HIFS, it can be deduced that once the random
iterative sequences y(n) enter to the attractor A, it can not get out. i.e.,

Pij = 0, i ∈ A, j ∈ E −A.

Proposition 6.4. Let {Y ;H;P ; fk, k ∈ {1, 2, · · · , N}} be a HIFSP, if A is the minimum closed set based on
it, then for any y0 ∈ Y , let yn+1 = fζn(yn), n ∈ {0, 1, 2, · · · }., where P (ζn = i) = pi, i ∈ {1, 2, · · · , N}, there
exists n∗ = n∗(ε) and k∗ = k∗(ε), for any ε > 0, such that if n ≥ n∗ and k ≥ k∗, we have

P{h({yn, yn+1, · · · , yn+k}, A) < ε} > 1− ε.

Proof. A is the minimum closed set based on a HIFSP in the above proposition, it not difficult to verify A
is an attractor based on the HIFS in nature. Therefore, according to Theorem 2.5, the relationship between
the minimum closed set A and the random iterative sequence Y (n) can be obtained as follows.

P{h({yn, yn+1, · · · , yn+k}, A) < ε} > 1− ε.

□

Definition 6.5. [18] The closed set D is said to be irreducible, if D does not contain non empty true closed
sets. The Markov chain {Y (n), (n ≥ 0)} is an irreducible chain, if its state space E is an irreducible set.
i.e.there are no non empty sets except E. Otherwise, it is a reducible chain.

Proposition 6.6. Let the random variable sequence {ζn, (n ≥ 0)} be determined by the random iterative
sequence {yn, (n ≥ 0)} based on the HIFS, then {ζn, (n ≥ 0)} is an reducible chain. Otherwise, {ζn, (n ≥ 0)}
is an irreducible chain.

In virtue of Definition 6.1, E = {y : fζn(yn) = y, n ∈ {0, 1, 2, · · · }} is the state space based on IFS. If
the IFS is hyperbolic, then A ⊂ E is the attractor of IFS. Therefore E has non empty true closed sets. so
{ζn, (n ≥ 0)} is an reducible chain. On the other hand, if the IFS is not hyperbolic, {ζn, (n ≥ 0)} is an
irreducible chain.

Proposition 6.7. Let the random variable sequence {ζn, (n ≥ 0)} be determined by the random iterative
sequence {yn, (n ≥ 0)} based on the HIFSP. If {ζn, (n ≥ 0)} is an reducible chain, then there exists n∗ = n∗(ε)
and k∗ = k∗(ε), for any ε > 0, such that if n ≥ n∗ and k ≥ k∗, we have

P{h({yn, yn+1, · · · , yn+k}, A) < ε} > 1− ε,

where A is the attractor of the IFS. Otherwise, {ζn, (n ≥ 0)} is an irreducible chain.

Proof. The key to solving proposition is to ascertain the relationship between the attractor of the IFS and
the random iterative sequence Y (n). Similar to the above, we get the following formula.

P{h({yn, yn+1, · · · , yn+k}, A) < ε} > 1− ε.

Therefore, the conclusion of the proposition is tenable. □

Lemma 6.8. [18] The homogeneous Markov chain is called irreducible, if and only if any two states in its
state space are interlinked.

Proposition 6.9. Let the random variable sequence {ζn, (n ≥ 0)} be determined by the random iterative
sequence {yn, (n ≥ 0)} based on the IFSP. {ζn, (n ≥ 0)} is an reducible chain, if the IFSP is hyperbolic.
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Proof. If IFSP is hyperbolic, we can deduce that the IFSP must have a attractor A. Then there exists an
n∗, such that if n > n∗, we have xn ∈ A. That is to say, the random iterative sequence {yn} can not get out
of A, if n > n∗.

Now we suppose E is the state space of the IFSP, if j ∈ A, i ∈ E − A, it not difficult to get i → j is
true, and j → i is not true. i.e. the states A and E − A are not interlinked. Therefore, {ζn, (n ≥ 0)} is an
reducible chain due to Lemma 6.8. □

Remark 6.10. The random variable sequence {ζn, (n ≥ 0)} are determined by the random iterative sequence
{yn, (n ≥ 0)} based on the IFSP. It is not difficult to verify that {ζn, (n ≥ 0)} is an irreducible chain, if the
IFSP is not hyperbolic.

Lemma 6.11. [18] The equivalence class E(i) is irreducible, if it is a closed set.

Theorem 6.12. Let E be the state space of an IFSP. Then it can be decompose of mutually disjoint subsets
which are the union of the finite(or countable) of states G,D1, D2, · · · . i.e.,

E = G
∪
D1

∪
D2

∪
· · · , (13)

where G is the set that compose of the all non-recurrence states, and every Dn(n = 1, 2, · · · ) is the closed set
that compose of the recurrence states.

Proof. Let F be the set that compose of all the recurrence states based on the IFSP, and G = E − F be
the set that compose of all the non-recurrence states based on the IFSP. Take i1 ∈ F arbitrarily, denoted by
D1 = E(i1).

Now, let any j ∈ E(i1), k ∈ E, if j ↔ i, then j and i are interlinked, thus k ∈ E(i1), D1 = E(i1) is a
closed set. Therefore, D1 is an irreducible closed set owing to Lemma 6.11.

Finally, take any i2 ∈ F −D1, denoted by D2 = E(i2). D2 can be verified is an irreducible closed set as
above. Go on like this, we get D1, D2, D3, · · · , and all of the recurrence state closed sets {Dn} are mutually
disjoint.Moreover,

F = D1
∪
D2

∪
D3

∪
· · · .

This completes the proof. □

Example 6.13. Let Y × Z = [0, 1]× [0, 1],

f1

[
y
z

]
=

[
1
2 0
0 1

2

] [
y
z

]
,

f2

[
y
z

]
=

[
1
2 0
0 1

2

] [
y
z

]
+

[
1
2
0

]
,

f3

[
y
z

]
=

[
1
2 0
0 1

2

] [
y
z

]
+

[
0
1
2

]
.

and P1 = P2 = P3 = 1/3, we can construct a HIFSP, denoted by {Y ;P ; fk, k ∈ {1, 2, 3}}. The attractor A of
{Y ;P ; fk, k ∈ {1, 2, 3}} is called Sierpinski right triangle in fractal theory.

Through the above analysis, Sierpinski right triangle is the minimum closed set of {Y ;P ; fk, k ∈ {1, 2, 3}},
and it is irreducible. Let E be the state space of {Y ;P ; fk, k ∈ {1, 2, 3}}, then it can be decomposed of

E = A
∪
E −A,

where A is the minimum closed set that compose of the all recurrence states, and E − A is the set that
compose of the non-recurrence states.
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7 The Markov characteristics for IIFSP

We have investigated the Markov characteristics for IFSP in the above sections, and obtained many interesting
results. However, these results are based on finite state space. That is to say, the iterative functions in the
iterated function system (IFS) must be finite. We will study further what Markov characteristics will emerge
if the iterative functions in the iterated function system are changed to denumerably infinite in the sequel,
which also leads to denumerably infinite state space. The definition of IIFSP based on IFSP will be given
first.

Definition 7.1. Let {Y ; fk, k ∈ {1, 2, · · · , N, · · · }} be an IIFS, P = {p1, p2, · · · , pN , · · · } is a probability
vector, where pi ≥ 0 for all i ∈ 1, 2, · · · , N, · · ·, and

∑∞
i=1 pi = 1. We have P (ζn = i) = pi for the independent

random variables sequence ζ1, ζ2, · · · , ζn, · · · , where i ∈ {1, 2, · · · , N, · · · }, n ∈ {1, 2, 3, · · · }. Then it is called
infinite iterated function system with probability(IIFSP),denoted by {Y ;P ; fk, k ∈ {1, 2, · · · , N, · · · }}.

Corollary 7.2. Let the random variable sequence {ζn, (n ≥ 0)} be determined by the random iterative se-
quence {yn, (n ≥ 0)} based on the IIFSP, then {ζn, (n ≥ 0)} is an infinite homogeneous Markov chain.

Corollary 7.3. Let {ζn, (n ≥ 0)} be the random variable sequence which is determined by the random iterative
sequence {yn, (n ≥ 0)} in the IIFSP. Then {ζn, (n ≥ 0)} is an irreducible ergodic chain.

Corollary 7.2 and Corollary 7.3 are the important extension of Proposition 3.2 and Theorem 4.6. The
proof thought and process are also similar to the previous two theorems. Therefore, we omit the proof of
Corollary 7.2 and Corollary 7.3 here.

Theorem 7.4. Let {ζn, (n ≥ 0)} be the random variable sequence which is determined by the random iterative
sequence {yn, (n ≥ 0)} in the IIFSP. i, j ∈ Z+ are any two states in the state (positive integer) space of

{ζn, (n ≥ 0)}, where Z+ = {1, 2, · · · , N, · · · }. Then the limit distribution of transition probability p
(n)
ij is said

to be a stationary probability distribution, if the state i transfers to j after n-step iteration.

Theorem 7.4 are an important extension of Theorem 5.4, but the proof thought and process is different to
Theorem 5.4. We will give the detailed proof process in the following.

Proof. Similar to Theorem 5.4, {ζn, (n ≥ 0)} is an irreducible ergodic (aperiodic and positive recurrence)
chain owing to Theorem 4.6. Then we will obtain the following equation through Lemma 5.3.

lim
n→∞

p
(n)
ij =

1

ψj
, j ∈ Z+.

On the other hand,
N∑
j=1

p
(n)
ij ≤

∞∑
j=1

p
(n)
ij =

∑
j∈Z+

p
(n)
ij = 1.

Let n→∞, and N →∞, then we get
∞∑
j=1

1

ψj
≤ 1.

According to the C-K equation again, we have

N∑
k=1

p
(µ)
ik p

(ν)
kj ≤

∞∑
k=1

p
(µ)
ik p

(ν)
kj = p

(µ+ν)
ij .
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Without loss of generality, suppose µ = m, and ν = n, and let m→∞, and N →∞, then we get

∞∑
k=1

(
1

ψk
)p

(n)
kj ≤

1

ψj
, j, n ∈ Z+. (14)

We will prove the equal sign of the above formula is also true by means of counter evidence for j, n ∈ Z+ in
the sequel. Suppose for some j or n, the equal sign of the above formula does not hold, then we get

∞∑
k=1

1

ψk
=

∞∑
k=1

(
1

ψk
)[

∞∑
j=1

p
(n)
kj ]

=
∞∑
j=1

∞∑
k=1

(
1

ψk
)p

(n)
kj <

∞∑
j=1

1

ψj
≤ 1.

This is a contradiction. Thus, for all j, n ∈ Z+, the equal sign hold, i.e.,

1

ψj
=

∞∑
k=1

(
1

ψk
)p

(n)
kj , j, n ∈ Z+. (15)

Thus 1
ψj

is a stationary distribution. We will proof it is also a probability distribution. The following

inequality hold due to the above equation.

N∑
k=1

(
1

ψk
)p

(n)
kj ≤

1

ψj
≤

N∑
k=1

(
1

ψk
)p

(n)
kj +

∞∑
k=N+1

(
1

ψk
).

Then let k →∞,N →∞ again, we get

1

ψj
=

∞∑
k=1

(
1

ψk
) lim
n→∞

(p
(n)
kj )

=

∞∑
k=1

(
1

ψk
)

1

ψj
, j ∈ Z+.

Through the above formula, we can get the following immediately.

∞∑
k=1

1

ψk
= 1.

Therefore, the limit of p
(n)
ij , i.e. { 1

ψj
, j ∈ Z+} is a probability distribution. This completes the proof. □

Corollary 7.5. Let E be the state space of an IIFSP. Then it can be decompose of mutually disjoint subsets
which are the union of the finite (or countable) of states G,D1, D2, · · · . i.e.,

E = G
∪
D1

∪
D2

∪
· · · , (16)

where G is the set that compose of the all non-recurrence states. And every Dn(n = 1, 2, · · · ) is the closed
set that compose of the recurrence states.

The proof process is similar to Theorem 6.12, we omit the proof here.
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8 Conclusions

In this article, we research the Markov Characteristics for IFSP and IIFSP through interlink, period, recur-
rence and some related concepts and properties on the basis of predecessors’s work. Then, there are four
important results are obtained as follows:

1. The sequence of stochastic variable {ζn, (n ≥ 0)} is a homogenous Markov chain.

2. The sequence of stochastic variable {ζn, (n ≥ 0)} is an irreducible ergodic chain.

3. The distribution of transition probability p
(n)
ij based on n→∞ is a stationary probability distribution.

4. The state space can be decomposed of the union of the finite(or countable) mutually disjoint subsets,
which are composed of non-recurrence states and recurrence states respectively.

In the future, we can further study IFSP by some important theories in stochastic processes and fuzzy
fractal, such as martingale theory, Poisson process, renewal process et al. These studies will not only enrich
the fractal theory, but also enhance the relationship between random fractal and real life.
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1 Introduction

Various methods, including quantitative and qualitative, have been proposed to assess the risk. FMEA repre-
sent a preventative method with a teamwork approach. FMEA was first developed as a design methodology
in the aerospace industry for needs related to reliability and safety. And then more widely, used in industry,
to ensure product safety and reliability. This tool is one of the effective models for fault prediction and finding
the most economical solution to prevent faults. FMEA is a structured way to start designing or reviewing
and developing the product or service design in an organization [12]. FMEA mainly prevents the occurrence
of faults, helps in creating and developing products, processes or serious services and records parameters
and indicators in the design and development process or service [3]. FMEA results are in response to the
following questions: What are the faults, bugs, or hazards? Which identified faults, bugs, or hazards are of
greater importance (risk)? What are the possible solutions which could be done to reduce the occurrence of
these situations? The FMEA acts systematically to answer these questions in the best way and, using the
knowledge and expertise of a working group, prioritizes them in addition to identifying faults and problems
or hazards at the heart of the operation.

Another comprehensive method of its kind is FTA. This method was first developed in 1961-62 in Bell
Telephone Laboratories and then developed by Watson to determine and improve the reliability of the inter-
continental ballistic missile control system. This method was developed by Boeing Airlines in the following
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years and became legal. Since 1965, the use of the FTA method has spread to various industries such as
aerospace, nuclear, chemical, etc., and it has been widely used to analyze the reliability and safety of systems
[8].

FTA is an analytical technique that identifies system malfunctions, and by providing a quantitative
analysis of the system, all possible paths to system malfunctions will be identified. FTA is a graphical model,
which shows the sequence of events of a fault. In fact, the fault tree shows how failure occurs by introducing
logical connections to events. Consider that, as the input to the fault tree analysis in the problem recognition
stage, the fault mode selected in the FMEA for investigation or has a higher risk can be used. For example,
items whose risk priority number is known to be higher than the allowable level, or items that have been
identified in the FMEA area chart analyzed as items to review and determine corrective action, could be the
input of FTA. In this article, by using a hypothetical process, the corrective action priorities are identified by
the FMEA method, and the highest risk is used as the input of an FTA. In this article, the faults scenarios
in FMEA are prioritized by the FRPN method, which due to the characteristics of fuzzy logic, the use of
FRPN has a higher priority than RPN.

In general, FTA is a powerful analogical tool for batch analysis of a system’s events. This technique is
mainly used for evaluating complex systems. Today, a variety of computer programs have been developed to
create the logical structure and perform the necessary calculations. The method creates connections between
system events by means of logical symbols that represent the effects of an accident or hazard. The technique
is robust and convenient for situations that have traditionally been decomposed in series or in parallel. This
model is also used for dynamic cases, which performs qualitative and quantitative analysis and allows the
analyzer to evaluate different alternatives in system design and the fault range, reduction time, measure
repair and failure times and other dynamic system operations.

Fault tree analysis is very suitable in complex processes with a large variety of components and parts
and leads to useful results. Although this method qualitatively evaluates a predetermined risk and adverse
event, it can be quantitatively analyzed to obtain interesting and documented results and provide a solution
for management decisions to be able to allocate resources and energy more confidently and ensure the system
against possible damages by highlighting the safety of the system [4].

2 Literature Review

Akyildiz and Mentes (2017) used fuzzy AHP and fuzzy TOPSIS methods to assess the risks of cargo vessel
accidents [1]. Khodadadi-Karimvand and Shirouyehzad (2021) use FMEA as a risk identification tool. Then,
the Fuzzy Risk Priority Number (FRPN) is calculated and triangular-fuzzy numbers are prioritized through
Fuzzy TOPSIS [7]. FMEA is an engineering technique that is used to identify the existing or potential failures
or problems in a design, process, or service structure of a system before they occur, to prevent undesirable
incidents and protect employees from occupational accidents and diseases by taking the necessary measures
[13]. The severity and types of potential failures in the analyzed system are identified by FMEA, which allows
decision makers to take the necessary risk-reducing measures [5].

FTA should be conducted by a team of experts on the scope to be analyzed. The method examines
the causes of incidents and the conditions triggering the incident. The analysis includes the equipment and
components used by the employee while performing the work, together with the components and system
conditions [6].

FTA is a deduction analysis method that allows identifying and analyzing the potential causes, conditions,
and factors that contribute to the occurrence of an unidentified, undesirable major incident. FTA method
is used to analyze, assess, and graphically illustrate the hierarchical flow of potential incidents or situations
that may negatively affect the system reliability and usability [9].

Many studies have been conducted using both FTA and FMEA methods. Li and Gao (2010) pointed out
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the necessity to identify the potential root causes in the system and analyze the critical situation in order
to determine the maintenance operations required based on the reliability-centered maintenance and radical
maintenance approaches using the FTA and failure mode effect and criticality analysis (FMECA) methods.
In addition, the FTA approach is adopted to evaluate the reliability of systems and analyze the probability
of failure occurrence [2].

Barozzi et al. in the paper, a representative biogas production plant was considered, and a risk assessment
was carried out through the combination of Recursive Operability Analysis and Failure Mode and Effects
Criticality Analysis (FMECA). The methodology is rigorous and allows for both the identification and the
quantification of accidental scenarios due to procedural errors and equipment failures, which miss in the
literature for the case of biogas. The analysis allows the automatic generation of the Fault Trees (FTA) for
the identified Top Events, which can be numerically solved [11].

3 Methodology

In order to create a model for calculating the degree of risk priority and prioritizing faults and their effects
using fuzzy logic, the following three main steps must be followed:

– Select fuzzy membership function

– Form a membership function by multiplying the membership functions by severity, probability, detec-
tion.

– De-fuzzy membership function

– Quantitative and qualitative analysis of the fault tree for the highest risk obtained

In this article, a hypothetical system with four modes of faults, failure and lost is analyzed and the highest
risk calculated in the Fuzzy FMEA input of a fault tree analysis is placed.

3.1 Selection of Fuzzy Membership Function

For all the affective factors in the risk-taking degree, such as severity, probability and detection, five linguistic
variables can be used VL, L, M, H and VH. Where 5 linguistic variables are assigned to rank according to
table 1 [7].

Table 1: Fuzzy Numbers of Linguistic Variables Corresponding to Ranks 1 to 10

Fuzzy Number Verbal Variable Rank

(0.9,1,1) VH 9,10

(0.7,0.85,1) H 7,8,9,10

(0.4,0.6,0.8) M 4,5,6,7,8

(0.2,0.35,0.5) L 2,3,4,5

(0,0.15,0.3) VL 1,2,3

{V L,L,M,H, V H} = T (x) = Set of Linguistic Variables Values
[0, 1] = U = Variation Amplitude of the Reference Set
Performing calculations with fuzzy numbers is very complex due to their special structure. To facilitate and
apply fuzzy numbers, special fuzzy numbers are used in calculations. These special numbers are bell-shaped,
triangular, trapezoidal, L-R trapezoidal, L-R triangular. In this paper, triangular fuzzy numbers are used.
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Figure 1: Membership Function of Linguistic Variables

3.2 Forming a Membership Function by Multiplying the Membership Functions of
Severity, Occurrence and Detection

FRPN is calculated from the following relation by multiplying the membership functions of severity, prob-
ability and detection. If M is a linguistic variable, its triangular fuzzy number may be defined as follows
[14]:

M = (l,m, u)

Where u, l and m are the upper limit, the lower limit and the mean of u, respectively where the membership
degree of l is 1.
Algebraic operations rules are applied on triangular numbers as follows to calculate RPN :
RPN = Severity × Occurrence × Detection
FRPN =(l1,m1, u1)× (l2,m2, u2)× (l3,m3, u3) = (l1l2l3,m1m2m3, u1u2u3)

Figure 2: FRPN Model

3.3 Defuzzification

There are several ways to convert a fuzzy number to an exact value. In this paper, the values obtained from
the formation of the membership function multiplied by the membership functions of severity, probability,
detection using the left and right scoring method of fuzzy, non-fuzzy numbers [15].

After determining the linguistic variables instead of the values severity, probability, detection for the three
potential fault modes, we replace the fuzzy values according to the Table 2.

Then, according to Table 3, the fuzzy RPN values are converted to a non-fuzzy number using the left and
right scoring method, or the definite RPN resulting from de-fuzzy.
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Table 2: Membership Function for the Severity, Probability and Detection

Severity Probability Detection Failure Modes #

(0.7, 0.85, 1) (0, 0.15, 0.3) (0.2, 0.35, 0.5) Failure 1 1

(0.7, 0.85, 1) (0.4, 0.6, 0.8) (0.2, 0.35, 0.5) Failure 2 2

(0.4, 0.6, 0.8) (0.4, 0.6, 0.8) (0, 0.15, 0.3) Failure 3 3

(0.7, 0.85, 1) (0.7, 0.85, 1) (0, 0.15, 0.3) Failure 4 4

Table 3: Defuzzification Using the Left and Right Scores

Total Score Left Side Score Right Side Score FRPN #

0.0517 0.9554 0.0587 (0, 0.0446, 0.15) 1

0.1877 0.9489 0.3243 (0.056, 0.1785, 0.4) 2

0.1302 0.9460 0.2064 (0, 0.054, 0.192) 3

0.1096 0.8917 0.1110 (0, 0.1083, 0.3) 4

3.4 Fault Tree Analysis

After determining the risk of activities using the FMEA method, we analyze the state of fault, failure and
breakage, which has the highest risk, using the FTA method and during the following steps.

A: System definition

B: Fault tree formation

C: Qualitative analysis

D: Quantitative analysis [4].

3.5 Define the System as a Fault Tree

This includes the scope of the analysis including defining what is considered a failure. This becomes important
when a system may have an element fail or a single function fails and the remainder of the system still operates.
The highest risk faults, failure and failure modes are considered as the top event and the sub-events G1, G2
and G3 are on one level and the basic events E1, E2, E3 and E4 are on the next level. In fact, intermediate
or sub-events and basic events are the causes of the top event that have been identified.
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3.6 Fault Tree Formation

Figure 3: Drawn Fault Tree

3.7 Qualitative Analysis

Fault tree analysis is done in two stages, the first stage is qualitative analysis, which we will discuss very
briefly. Qualitative analysis refers to the preparation of various combinations of events that cause system
failure. In other words, in this section, the goal is to determine the minimum cut sets for the final fault tree
incident.
In this fault tree the minimum cut sets are:

M cs1 = E1

M cs2 = E2, E3

Minimal cut set No. 1 is more important because of the lower floor and the importance of all events is as
follows: [10]

E1 > E3 > E2 > E4

3.8 Quantitative Analysis

For a quantitative analysis, we need a list of equipment or parts in which sub-events occur due to adverse
conditions and cause the process to fail.
Here we assume the equipment or part according to Table 4 and in front of this equipment we obtain the
failure rate in a specified period of time using statistics and records and reports and repair instructions of
the devices and then calculate the probability of failure by using the failure rate and finally, calculate the
probability of process failure. In this case study, we examine the performance of equipment at 1,200 hours
over 5 years.

Before calculating the probability, using Boolean Algebra, we express a method that can be used to
calculate the failure rate and probability for equipment and parts. The diagram in Figure 2, which is more
commonly used in maintenance topics and is known as the Bathtub Hazard Rate Curve, is divided into three
sections:
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Table 4: Failure Rate and Probability

Probability Failure Rate Symbol Equipment

0.0004 1 E1 No. 1

0.0000 0 E2 No. 2

0.0004 1 E3 No. 3

0.0000 0 E4 No. 4

Figure 4: Bathtub Failure Rate Curve

The first section is related to the initiation of the system. At this time, the probability of failure of
the system is high and during this area, the failure rate decreases with increasing time. In the second time
interval, the average failure per unit time is almost constant, and failures occur randomly and unpredictably,
which can have a variety of reasons, and in the third section, the device wears out and runs out. The working
period is approaching and the probability of failure is high and during this area the failure rate increases with
increasing time. If λ(t) is constant, it can be shown that the probability distribution function of the random
variable at the time of the failure event is an exponent with the parameter λ. Most of the time and during
the operation of the system, the value of λ(t) is independent of time and is constant. This means that failure
can occur independently and accidentally at any time interval from the working area of the device. In this
case we will have:

λ(t) = λ = etc.

Now with having λ(t) and putting it in the Exponential Distribution function we have:

PF = 1− e−λt

Where PF is the probability of failure and t is the time in the subject which we are discussing about at the
failure rate [10].

3.9 Calculation of Probability and Failure Rate

G1 = E1 + E2 = 0.0004 + 0.0000 = 0.0004

G2 = E1 + E3 + E4 = 0.0004 + 0.0004 + 0.0000 = 0.0008
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G3 = E1 + E3 = 0.0004 + 0.0004 = 0.0008

Probability of process failure = G1 +G2 +G3 = 0.0004 + 0.0008 + 0.0008 = 0.0020
Now, using the probability of process failure, we calculate the failure rate:

PF = 1− e−λt

0.0020 = 1− e−λt =⇒ −λt = Ln(1− 0.0020) =⇒ λt = 0.002002002

According to the 5 years time period, we have:

λ =
0.002002002× 1200

5
= 0.4804864

The above value is the number of failures per a unit year. That is, almost every two years, there is a possibility
of failure once.

4 Conclusion

After the results, an expert team from all relevant groups should try to reduce or eliminate the severity
of adverse events and provide suggestions. Finally, it is necessary to mention that today in all industries,
resource and energy management and the right decision to allocate them to achieve full productivity, is the
main concern of managers. Fault and failure state analysis and fault tree analysis are each efficient tools and
due to the time-consuming method of fault tree analysis to investigate the undesirable states of the system,
it seems that if the output or outputs of the analysis method and to put the breakdown and failure analysis
into the input of a fault tree, we have taken steps to reduce or eliminate adverse events by considering the
time and costs involved.

As it turns out, fuzzy logic in risk assessment gives us a more logical output, but in any case, outputs of the
normal or fuzzy failure mode and effects analysis technique and other qualitative and Inductive methods such
as Hazard and Operability Analysis (HAZOP), Hazard Identification (HAZID), Hazard Analysis (HAZAN),
etc. can use as input of a fault tree analysis and other probabilistic risk assessment (PRA) or quantitative
risk assessment (QRA) methods.
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1 Introduction

Some functions are able to transform a set of data into a single one, for example, aggregations functions
[3, 6, 22] and mixture functions [6]. This type of function has applications in several areas; for example,
we can cite [8, 17, 19, 43, 44]. Image processing used in medicine; for example, you can apply it to: detect
tumors [26, 36, 40, 58]; support techniques in advancing dental treatments [14, 25, 52, 54], etc. Such images
are not always obtained with suitable quality, and to detect the desired information, various methods have
been developed in order to eliminate most of the noise contained in these images [29, 42, 50]. These functions
can also be used to reduce the size of images (this process is called image reduction).

The methods of image reduction are used in order to decrease your resolutions, usually aiming the reduc-
tion of memory consumption required for its storage [23]. There are several techniques for image reduction
to achieve this goal in the literature, among these techniques, we can cite Paternain et al. [45], that built
a method of reduction using weighted averaging aggregation functions. The method proposed by Paternain
et al. consists of: (1) Reducing a given image by using a reduction operator (based on weighted averaging
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aggregation functions); (2) Building a new image from the reduced one, and (3) Analyzing the quality of the
last image be using the measures PSNR and MSSIM defined in [23].

Because of its broad capacity of applications, many researchers have invested in aggregate functions
and its extensions [34, 39, 46, 48, 61, 64]. In this sense, thinking about the problem of decision-making,
Yager [60] introduced a special class of aggregate functions, called Ordered Weighted Averaging - OWA, and
ever since several authors have proposed generalizations for these functions [12, 33, 37, 53, 61]. Mixture
functions, presented in [6], and variants of Choquet integrals in [2, 10, 15, 35] are other important examples
of generalization of the OWA. These functions are not aggregate functions, but also are efficient in converting
various information into a single one.

In this paper we studied a class of functions introduced in [46] and called Generalized Mixture - GM. Since
then many other papers on this class of functions have been found, for example [13, 20, 21, 47, 49]. GM also
generalizes the notion of OWA and consequently, also encompass functions as: Arithmetic Mean, Median,
Maximum and Minimum. Besides that, it is a generalized form of another important class of functions: The
Mixture functions - MO, which as well as OWA functions, are determined from weights w1, w2, · · · , wn ∈ [0, 1],

which generally satisfy the condition
n∑
i=1

wi = 1. The GM functions,as well as the MO functions, are weighted

averaging means with dynamic weights, i.e., the weights of these functions depend on the input variables.
This characteristic of more flexible weights of OWA′ allows us to define functions whose weights are suited
for each input, which does not occur in OWA’s. However, we ended up losing the property of monotonicity,
which can be replaced by directional monotonicity [9] in order to obtain preaggregation functions.

Later, in this work, we weaken the condition of the vector of weights

(
n∑
i=1

wi = 1 to
n∑
i=1

wi ≤ 1

)
, thereby

obtaining in another generalization of OWA, called the Bounded Generalized Mixture - BGM function, we
propose a special GM function (denoted by H). This way, we provide a wide range of their properties such
as: idempotence, symmetry, homogeneity and directional monotonicity. To finalize this work, we apply H in
a method of image reduction [4, 7, 44, 51, 56, 59] and we compare this function with Minimum, Maximum,
Arithmetic Mean, Median and cOWA. The method adopted was the same as Paternain et al. [45].

This work is structured in the following way: The next section provides the basic concepts of Aggrega-
tion functions theory; In Section 3, we introduce the concepts of Generalized Mixture - GM and Bounded
Generalized Mixture - BGM operators, we show properties, constructions, examples and propose a particular
GM function (called H). Also in Section 3, we show that H is idempotent, homogeneous, shift-invariant,
symmetric, self dual and directionally monotonic, which is important to the image reduction field [45]. In
Section 4, we provide an illustrative application for GM’s. in image reduction and finally in Section 5 we
close this paper with some final remarks.

2 Aggregation Functions

Aggregation functions are important mathematical tools for applications in various fields, such as: Information
fuzzy [17, 19, 24, 32]; Decision making [8, 11, 41, 44, 64]; Image processing [4, 26, 45] and Engineering [31, 43].
In this section we introduce them together with examples and properties. We also present a special family of
aggregation functions called Ordered Weighted Averaging (OWA), showing some of its features and the notion
of Mixture Operator (MO), a generalized form of OWA.

2.1 Definition and Examples

Aggregation functions are n-ary operations on the unit interval [0, 1] which are able to summarize an n-
dimensional information x = (x1, . . . , xn) ∈ [0, 1]n into a unique data x ∈ [0, 1]. Formally, they are the
following functions:
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Definition 2.1. An n-ary aggregation function is a mapping A : [0, 1]n → [0, 1], which associates each n-
dimensional vector x = (x1, . . . , xn) to a single value A(x) in the interval [0, 1] which satisfies the mononicity
condition2 and also the boundary condition3:

Example 2.2. Given x = (x1, . . . , xn),

(a) Arithmetic Mean: Arith(x) =
1

n
(x1 + x2...+ xn)

(b) Minimum: Min(x) = min{x1, x2, ..., xn};

(c) Maximum: Max(x) = max{x1, x2, ..., xn};

(d) Product: Prod(x) =
n∏
i=1

xi;

(e) Weighted Average: For (w1, · · · , wn) ∈ [0, 1]n, with
n∑
i=1

wi = 1,WAvg(x) =
n∑
i=1

wi · xi.

Remark 2.3. From now on we will use the short term “aggregation” instead of “n-ary aggregation function”.

Aggregations can be divided into four distinct classes: Averaging, Conjunctive, Disjunctive and Mixed.
Since this paper focus on averaging aggregations, we will define only this class.

Definition 2.4. A function f : [0, 1]n −→ [0, 1] satisfies the averaging property, if for all x ∈ [0, 1]n we
have:

Min(x) ≤ f(x) ≤Max(x).

When an aggregation f satisfies the averaging property we say that f is a averaging function. Futher-
more, if a aggregation that satisfies the averaging property is called of averaging aggregation function.
As in this paper we are dedicated to studying only functions that satisfy the averaging property, we will not
detail the Conjunctive, Disjuntive and Mixed functions. A wider approach in aggregation can be found in
[1, 3, 6, 16, 22].

Example 2.5. The functons Min, Max, Arith and WAvg are averaging aggregations.

In the definition below we describe a series of properties that the aggregations functions (like any other
function) can satisfy.

Definition 2.6. Let f : [0, 1]n → [0, 1] be a function. We say that f

(1) is Idempotent if, and only if, f(x, ..., x) = x for all x ∈ [0, 1].

(2) is Homogeneous of order k if, and only if, for all λ ∈ [0, 1] and x ∈ [0, 1]n, f(λx1, λx2, ..., λxn) =
λkf(x1,
x2, ..., xn). When f is homogeneous of order 1 we simply say that f is homogeneous.

(3) is Shift-invariant if, and only if, f(x1 + r, x2 + r, .., xn + r) = f(x1, x2, .., xn) + r, for all r ∈ [−1, 1],
x ∈ [0, 1]n, (x1 + r, x2 + r, ..., xn + r) ∈ [0, 1]n and f(x1, x2, ..., xn) + r ∈ [0, 1].

(4) is Monotonic if, and only if, f(x) ≤ f(y) whenever xi ≤ yi, for all i ∈ {1, · · · , n}.

(5) is Strictly Monotone if, and only if, f(x) < f(y) whenever x < y, i.e., x ≤ y and x ̸= y.

2If x ≤ y, i.e., xi ≤ yi, for all i = 1, 2, ..., n, then A(x) ≤ A(y).
3A(0, ..., 0) = 0 and A(1, ..., 1) = 1.
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(6) has a Neutral Element e ∈ [0, 1], if for all t ∈ [0, 1] it has to be:

f(e, ..., e, t, e, ..., e) = t.

(7) is Symmetric if, and only if, its value is not changed under the permutations of coordinate for any
input vector, i.e.:

f(x1, x2, ..., xn) = f(xp(1) , xp(2) , · · · , xp(n)
)

for all vector x = (x1, x2, ..., xn) and any permutation p : {1, 2, ..., n} → {1, 2, ..., n}.

(8) has an Absorbing Element (Annihilator) a ∈ [0, 1], if:

f(x1, x2, ..., xi−1, a, xi+1, ..., xn) = a.

(9) has a Zero Divisor a ∈ ]0, 1[, if for all i ∈ {1, 2, · · · , n} there is some vector x ∈]0, 1]n, of the form
(x1, ..., xi−1,
a, xi+1, ..., xn), such that f(x) = 0.

(10) has a One Divisor a ∈]0, 1[, if for any i ∈ {1, 2, · · · , n} there is some vector x ∈ [0, 1[n, of the form
(x1, ..., xi−1,
a, xi+1, ..., xn), such that f(x) = 1.

Example 2.7.

(i) The functions: Arith,Min and Max are examples of idempotent, homogeneous, shift-invariant and
symmetric aggregations.

(ii) Min and Max have the elements 0 and 1 as its respective annihilators, but Arith does not have anni-
hiladors.

(iii) Min, Max and Arith does not have zero divisors and one divisors.

2.2 Ordered Weighted Averaging - OWA Functions

In the field of aggregations there is a very important kind of function in which the aggregation behavior
is provided parametrically; they are called: Ordered Weighted Averaging or simply OWA [60]. More
precisely, they are average aggregation whose behavior is in function of a vector of weights. Observe the
following definition.

Definition 2.8. Let be an input vector x = (x1, x2, . . . , xn) ∈ [0, 1]n and a vector of weights w = (w1, . . . , wn) ∈
[0, 1]n, such that

n∑
i=1

wi = 1. Assuming the permutation of x:

Sort(x) = (x(1), x(2), . . . , x(n))

such that x(i) ≥ x(i+1), i.e., x(1) ≥ x(2) ≥ · · · ≥ x(n). The Ordered Weighted Averaging (OWA) function with
respect to w, is the function OWAw : [0, 1]n → [0, 1] such that:

OWAw(x) =
n∑
i=1

wi · x(i)

Remark 2.9. In what follows we remove w from OWAw(x) and write only OWA.
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The main properties of OWA functions are:

(a) For any vector of weights w, the function OWAw(x) is an idempotent aggregation function. Moreover,
OWA’s are strictly increasing if all weights w are positive;

(b) The dual of a OWAw, denoted by (OWA)d, is an OWA with the vector of weights dually ordered, i.e.
(OWAw)d = OWAwd , where wd = (wp(n), wp(n−1), ..., wp(1)).

(c) OWA are continuous, symmetric and shift-invariant;

(d) They do not have neutral or absorption elements, on exception for the second and third case below.

Following is a series of examples of OWA functions

Example 2.10.

(1) If w = (0, 0, 0, ..., 1), then OWA(x) = Min(x);

(2) If w = (1, 0, 0, ..., 0), then OWA(x) = Max(x);

(3) If all weight vector components are equal to 1
n , then OWA(x) = Arith(x);

(4) if wi = 0, for all i, with the exception of a k-th member, i.e, wk = 1, then this OWA is called static
and OWAw(x) = x(k);

(5) Given a vector x and its ordered permutation Sort(x) = (x(1), . . . , x(n)), the Median function

Med(x) =

{
1
2(x(k) + x(k+1)), if n = 2k

x(k+1), if n = 2k + 1

is an OWA function in which the vector of weights is defined by:

• If n is odd, then wi = 0 for all i ̸= ⌈n2 ⌉ and w⌈n/2⌉ = 1.

• If n is even, then wi = 0 for all i ̸= ⌊n+1
2 ⌋ and i ̸= ⌈n+1

2 ⌉, and w⌈(n+1)/2⌉ = w⌊(n+1)/2⌋ = 1
2 .

In addition to the above functions, another important example of OWA, which we will use later in this
work, is the centered OWA or cOWA[61].

Example 2.11. The n-dimensional cOWA function is the OWA operator, with weighted vector defined by:

• If n is even, then wj = 2(2j−1)
n2 , for 1 ≤ j ≤ n

2 , and wn/2+i = wn/2−i+1, for 1 ≤ i ≤ n
2 .

• If n is odd, then wj = 2(2j−1)
n2 , for 1 ≤ j ≤ n−1

2 , wn/2+i = wn/2−i+1, for 1 ≤ i ≤ n
2 , and w(n+1)/2 =

1− 2
(n−1)/2∑
j=1

wi.

The OWA functions are defined in terms of a predetermined vector of weights; namely this vector of wights
is fixed previously by the user. In the next section present a generalized form of OWA in order to relax this
situation. The vector of weights will be in function of the vector of inputs x = (x1, . . . xn). To achieve that we
replace, in the OWA expression, the vector of weights by a family of functions, called Weighted functions.
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3 Weighted functions

As mentioned, the OWA functions are means with previously fixed weights. In the literature we can find some
kind of functions that overcome this situation, by providing variable weights. These functions are called here
weighted functions. An important example of that is the Mean of Bajraktarevic, presented in [6].

Definition 3.1 (Mean of Bajraktarevic). Let w(t) = (w1(t), · · · , wn(t)) be a vector of weights functions
wi : [0, 1] → [0,+∞), and let g : [0, 1] → (−∞,+∞) be a strictly monotone function. The mean of
Bajraktarevic is the function:

f(x) = g−1


n∑
i=1

wi(xi)g(xi)

n∑
i=1

wi(xi)


In the case of g(t) = t, the mean of Bajraktarevic is also called Mixture function, in other words, the

mixture functions have the form:

M(x) =

n∑
i=1

wi(xi) · xi
n∑
i=1

wi(xi)

(1)

Generally, the mixture functions are not aggregation functions in general, since they do not always satisfy
monotonicity, however [38, 39, 48] provides sufficient conditions to overcome this situation.

Remark 3.2. Note in Equation (1) that each weight wi(xi) is the value of a single variable function; namely
the weight is the value of a function wi applied to the i-th position of the input vector x = (x1, . . . , xn).
However, this restriction can be relaxed in order to obtain a weight wi(x), i.e. weight which is in function
of the whole input. This generalization of mixture operators were done by Pereira [46, 47] and the resulting
functions were called of Generalized Mixture Functions (GMF).

Although Pereira has introduced GMFs he did not provide a deep investigation about them. In what
follows we provide some results about such functions; their relation with OWA’s, Mixture Functions and
Preaggregations. We finally generalize GMF’s to the notion of Bounded Generalized Mixture Functions
(BGMF) and provide some relations of them with the notions of monotonicity, directional monotonicity,
Weak-dual and Weak-conjugate functions.

3.1 Weighted Averaging Functions

Before defining the notion of Weighted Averaging functions, we need to establish the notion of weight-
function.

Definition 3.3. A finite family of functions Γ = {fi : [0, 1]n → [0, 1] | 1 ≤ i ≤ n} such that
n∑
i=1

fi(x) = 1 is

called family of weight-functions (FWF).

The Generalized Mixture Function, or simply GM, associated to a FWF Γ is the function GMΓ :
[0, 1]n → [0, 1] given by:

GMΓ(x) =
n∑
i=1

fi(x) · xi

In the Examples 3.4-3.10 we present GM functions.



On Generalized Mixture Functions-TFSS-Vol.1, No.2-(2022) 105

Example 3.4. Let be Γ =
{
fi(x) = 1

n | 1 ≤ i ≤ n
}

. The GM operator associated to Γ, GMΓ(x), is Arith(x).

Example 3.5. The function Minimum can be obtained from Γ = {fi | 1 ≤ i ≤ n}, where for all x ∈ [0, 1]n,
f(n)(x) = 1 and fi(x) = 0, if i ̸= (n) .

Example 3.6. Similarly, the function Maximum is also of type GM with Γ dually defined.

Example 3.7. For any vector of weights w = (w1, w2, ..., wn), A function OWAw(x) is a GM in which the
weight-function are given by: fi(x) = wp(i), where p : {1, 2, · · · , n} −→ {1, 2, · · · , n} is the permutation,
such that p(i) = j with xi = x(j). For example: If w = (0.3, 0.4, 0.3), then for x = (0.1, 1.0, 0.9) we
have x1 = x(3), x2 = x(1) and x3 = x(2). Thus, f1(x) = 0.3, f2(x) = 0.3, f3(x) = 0.4, and GM(x) =
0.3 · 0.1 + 0.3 · 1.0 + 0.4 · 0.9 = 0.69

Remark 3.8. Example 3.7 shows that any OWA function is GM. However, there are GM functions which are
not OWA:

Example 3.9. Let Γ = {sin(x) · y, 1− sin(x) · y}. The respective GM function is

GM(x, y) = (sin(x) · y) · x+ (1− sin(x) · y) · y,

which is not an OWA function.

The following example shows that the mixture functions are also special types of GM function.

Example 3.10. If w(t) = (w1(t), · · · , wn(t)) is a vector of weight functions wi : [0, 1] → [0,+∞), and

the mixture operator is M(x) =

n∑
i=1

wi(xi)·xi
n∑

i=1
wi(xi)

, then M is also a GM function, with weight-functions given by

fi(x) = wi(xi)
n∑

i=1
wi(xi)

.

Remark 3.11. Observe that the GM function at Example 3.9 can not be characterized as a mixture function,
since w1 is not a function that depends only of variable x and w2 is not a function that depends only of
variable y.

At this point of paper, we relax the condition
n∑
i=1

fi(x) = 1 to
n∑
i=1

fi(x) ≤ 1, thus obtaining a new family

of generalized mixture functions.

Definition 3.12. Let Γ = {fi : [0, 1]n → [0, 1] | 1 ≤ i ≤ n} such that:

(I)
n∑
i=1

fi(x) ≤ 1, and

(II)
n∑
i=1

fi(1, · · · , 1) = 1, for all i ∈ {1, 2, · · · , n}.

A Bounded Ganeralized Mixture (BGM) operator associated to a Γ is a function BGMΓ : [0, 1]n →
[0, 1] given by:

BGMΓ(x) =

n∑
i=1

fi(x) · xi
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Remark 3.13.

1. Note that GM functions are BGM operators subject to the condition:

(III)
n∑
i=1

fi(x) = 1, for any x ∈ [0, 1]n,

2. Let Γ = {fi(x, y) = x
n : 1 ≤ i ≤ n}. Then, BGMΓ =

n∑
i=1

x2i
n is not a GM operator, because, for example,

n∑
i=1

fi(0, · · · , 0) = 0.

3. As BGM is a generalized form of GM, it follows that the functions defined in the Examples 3.4-3.10
are also BGM function. In this sense, is worth emphasizing that BGM generalize both: OWA and GM
operators.

Now, we establish several properties of GM and BGM functions.

3.2 Properties of GM and BGM Functions

As we have said previously, GM and BGM are generalized forms of OWA, which in turn belongs to the class of
avegaring functions. However, we can not always guarantee that a BGM is an averaging function, while then
GM functions are averaging function. The next proposition gives us a sufficient condition to achieve that.

Proposition 3.14. If Γ is a FWF with
n∑
i=1

fi(x) = 1, then GMΓ is an averaging function, i.e.:

Min(x) ≤ GMΓ(x) ≤Max(x)

Proof. For all x = (x1, ..., xn),

Min(x) ≤ xi ≤Max(x), ∀i = 1, 2, ..., n.

So,

n∑
i=1

fi(x) ·Min(x) ≤
n∑
i=1

fi(x) · xi ≤
n∑
i=1

fi(x) ·Max(x),

but as
n∑
i=1

fi(x) = 1, it follows that

Min(x) ≤
n∑
i=1

fi(x) · xi ≤Max(x).

□

Remark 3.15. Observe that the restriction of condition
n∑
i=1

fi(x) = 1 can not be removed, i.e., BGM not

always are averaging functions, since for f1(x, y) = x
2 and f2(x, y) = y

2 , we have BGM(0.5, 0.5) = 0.25 <
Min(0.5, 0.5).

Proposition 3.16. Let Γ be a FWF. Then, the BGMΓ is idempotent if, and only, if
n∑
i=1

fi(x, · · · , x) = 1 for

any x ∈ [0, 1].
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Proof. If
n∑
i=1

fi(x) = 1 and x = (x, ..., x), then:

BGMΓ(x) =
n∑
i=1

fi(x) · x = x ·
n∑
i=1

fi(x) = x

Reciprocally, if BGM is an idempotent function and
n∑
i=1

fi(x, · · · , x) < 1 for some x ∈ [0, 1] we have to

BGMΓ(x) =

n∑
i=1

fi(x) · x < x · 1 = x.

Thus, the condition
n∑
i=1

fi(x, · · · , x) = 1 can not be removed. □

Corollary 3.17. Any GM function is idempotent.

Proof. Straightforward.
□

Example 3.18. We can not always guarantee that a BGM is idempotent, because if we take f1(x, y) = x
2 and

f2(x, y) = y
2 , then BGM(0.5, 0.5) = 0.25 ̸= 0.5.

Proposition 3.19. If Γ is a FWF invariant under translations, i.e, fi(x1+λ, x2+λ, ..., xn+λ) = fi(x1, x2, ..., xn)
for any x ∈ [0, 1]n, for i ∈ {1, 2, · · · , n}, satisfying 1 and λ ∈ [−1, 1], then BGMΓ is shift-invariant.

Proof. Let x = (x1, ..., xn) ∈ [0, 1]n and λ ∈ [−1, 1] such that (x1 + λ, x2 + λ, ..., xn + λ) ∈ [0, 1]n. then,

BGMΓ(x1 + λ, ..., xn + λ) =
n∑
i=1

fi(x1 + λ, ..., xn + λ) · (xi + λ)

=

n∑
i=1

fi(x1 + λ, ..., xn + λ) · xi +

n∑
i=1

fi(x1 + λ, ..., xn + λ) · λ

=

n∑
i=1

fi(x1, ..., xn) · xi + λ

= BGMΓ(x1, ..., xn) + λ

□
Remark 3.20. The condition 1 is also important to preserve shift-invariance, since if we define f1(x, y) =

f2(x, y) = |x−y|
2 , for (x, y) ̸= (1, 1), and f1(1, 1) = f2(1, 1) = 1

2 , then f1 and f2 are invariant under transla-
tions, but BGM(0, 0.1) = 0.005 and BGM(0 + 0.1, 0.1 + 0.1) = 0.015 ̸= 0.005 + 0.1.

Proposition 3.21. If Γ is homogeneous of order k (i.e. if each fi is homogeneous of order k), then BGMΓ(x)
is homogeneous of order k + 1.

Proof. Of course that, if λ = 0, then BGMΓ(λx1, ..., λxn) = λf(x1, ..., xn). Now, to λ ̸= 0 we have:

BGMΓ(λx1, ..., λxn) =
n∑
i=1

fi(λx1, ..., λxn) · λxi

= λ ·
n∑
i=1

λkfi(x1, ..., xn)xi

= λk+1 · BGMΓ(x1, ..., xn)

□
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Remark 3.22. Note that if
n∑
i=1

fi(x) = 1, then fi cannot be homogeneous of order k > 0, since

1 =

n∑
i=1

fi(λx1, · · · , λxn) = λk
n∑
i=1

fi(x) = λk,

i.e., there are no GM’s homogeneous of order k > 1. However, if we remove this restriction, then we can
have Γ with homogeneous fis of order k > 0. For example, fi(x) = xi

n is homogeneous of order 1, and so,
according to Proposition 3.21, BGMΓ is homogeneous of order 2.

The next example shows a GM function which is not a mixture operator.

Example 3.23. Let Γ be defined by

fi(x1, ..., xn) =


1
n , if x1 = · · · = xn = 0
xi

n∑
j=1

xj

, otherwise

Then,

GMΓ(x) =


0, if x1, ..., xn = 0
n∑

i=1
x2i

n∑
i=1

xi

, otherwise

Observe that this function, like that in Example 3.9, cannot be characterized as a mixture function, since
fi does not depend exclusively from xi. This GMΓ is idempotent, homogeneous and shift-invariant, but is
not monotonic, since GMΓ(0.5, 0.2, 0.1) = 0.375 and GMΓ(0.5, 0.22, 0.2) = 0.368.

Proposition 3.24. The N -dual4, with respect to stantard fuzzy negation5, of a GM function is also a GM
function.

Proof. If Γ is a FWF, then

GMN
Γ (x1, · · · , xn) = 1−

n∑
i=1

fi(1− x1, · · · , 1− xn) · (1− xi)

= 1−
n∑
i=1

fi(1− x1, · · · , 1− xn) +

n∑
i=1

fi(1− x1, · · · , 1− xn) · xi

=

n∑
i=1

fi(1− x1, · · · , 1− xn) · xi

=

n∑
i=1

gi(x1, · · · , xn) · xi,

where gi(x1, · · · , xn) = fi(1− x1, · · · , 1− xn). □

Proposition 3.25. If Γ = {f1, · · · , fn} is a FWF, then ΓR = {fn, · · · , f1} also is a FWF. Besides that,
GMR

Γ = GMΓR

4The N -dual of a function F : [0, 1]n −→ [0, 1] is FN (x1, · · · , xn) = N(F (N(x1), · · · , N(xn)), where N is a fuzzy negation,
i.e., a function decreasing function N : [0, 1] −→ [0, 1] with N(0) = 1 and N(1) = 0.

5The standard fuzzy negation if N(x) = 1 − x.
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Proof. Direct from the definition. □
Examples 3.9 and 3.10 show that GM functions encompass both: OWA and Mixture functions, and thus

these functions are special cases GM proposed here. It is also important to note that GM and BGM functions,
as well as Mixture functions, are not generally aggregations since it fails to satisfy the monotonicity condition.
In examples 3.4, 3.5, 3.6, 3.7 and 3.9 the respective GM’s are monotonic, but in Example 3.23 (that we bring
forward) the function there is not monotonic. When the GM is monotonic, obviously, this function is an
aggregation, since the boundary condition is trivially satisfied.

Some conditions for monotonicity of GM functions were studied by Pereira et al. in [46, 47, 48]. In this
work we will not study monotonicity criteria, but a more weakened form, called weak monotonicity or
directional monotonicity.

3.3 Directional Monotonicity

There are many n-ary functions that do not satisfy the monotonicity condition, but its restriction to certain
directions are monotonic functions. In this sense, Wilkin and Beliakov in [57] introduce the concept of weakly
monotonicity (see also [5]), which was generalized by Bustince et al. in [9], which defines the notion of
directional monotonicity.

Definition 3.26. Let r = (r1, · · · , rn) a not null n-dimentional vector. A function F : [0, 1]n −→ [0, 1] is
r-increasing if fo all x = (x1, · · · , xn) and t > 0 such that (x1 + tr1, · · · , xn + trn) ∈ [0, 1]n, we have

F (x1, · · · , xn) ≤ F (x1 + tr1, · · · , xn + trn),

that is, F is increasing in the direction of vector r.

Definition 3.27. A function F : [0, 1]n −→ [0, 1] is an n-ary preaggregation function (or simply preag-
gregation) if satisfies the boundary condition, F (0, · · · , 0) = 0 and F (1, · · · , 1) = 1, and is r-increasing for
some direction r ∈ [0, 1]n.

In [34], Lucca et al. was presented properties, constructions and application for preaggregations function.
They show that the following functions are examples of preaggregations.

Example 3.28. 1. Mode(x1, · · · , xn), that is (1, 1)-increasing;

2. F (x, y) = x− (max{0, x− y})2, tha is (0, 1)-increasing;

3. The weighted Lehmer mean (with convention 0/0 = 0)

Lλ(x, y) =
λx2 + (1− λ)y2

λx+ (1− λ)y
, where 0 < λ < 1

is (1− λ, λ)-increasing;

4.

A(x, y) =

{
x(1− x), if y ≤ 3/4
1, otherwise

is (0, a)-increasing for any a > 0, but for no other direction;

5.

B(x, y) =

{
y(1− y), if x ≤ 3/4
1, otherwise

is (b, 0)-increasing for any b > 0, but for no other direction.
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Remark 3.29. Any aggregation functions is also a preaggregation function.

Proposition 3.30. If BGMΓ is shift-invariant, then BGMΓ is a preaggregation function (k, k, · · · , k)-increasing.

Proof. Just see that for all x = (x1, x2, · · · , xn) ∈ [0, 1]n and any t > 0 such that (x1 + tk, x2 + tk, · · · , xn +
tk) ∈ [0, 1] we have

BGMΓ(x1 + tk, · · · , xn + tk) = BGMΓ(x1, · · · , xn) + tk,

and so
BGMΓ(x1, · · · , xn) ≤ BGM(x1 + tk, · · · , xn + tk)

□
Corollary 3.31. If Γ is a FWF invariant under translations, i.e, fi(x1+λ, x2+λ, ..., xn+λ) = fi(x1, x2, ..., xn),
for i ∈ {1, 2, · · · , n}, for any x = (x1, · · · , xn) ∈ [0, 1]n and λ ∈ [0, 1] such that (x1 + λ, x2 + λ, ..., xn + λ) ∈
[0, 1]n satisfying 1, BGMΓ is a preaggregation function (k, k, · · · , k)-increasing.

Proof. By Proposition 3.19, BGMΓ is shift-invariant, and so, by Proposition 3.30, BGMΓ is a preaggregation
function (k, k, · · · , k)-increasing. □

In fact, the conditions required by Corollary 3.31 are very strong. In the following proposition, we relax
these conditions:

Proposition 3.32. If Γ is a FWF with fi(x1, · · · , xn) ≤ fi(x1 + λ, · · · , xi + λ), for i ∈ {1, 2, · · · , n}, for
any x = (x1, · · · , xn) ∈ [0, 1]n and λ ∈ [0, 1] such that (x1 + λ, x2 + λ, ..., xn + λ) ∈ [0, 1]n, then BGMΓ is a
preaggregation function (k, k, · · · , k)-increasing.

Proof. For any x = (x1, · · · , xn) ∈ [0, 1]n and λ ∈ [0, 1] such that (x1 + λ, x2 + λ, ..., xn + λ) ∈ [0, 1]n we
observe that

BGMΓ(x1 + λ, ..., xn + λ) =

n∑
i=1

fi(x1 + λ, ..., xn + λ) · (xi + λ)

=

n∑
i=1

fi(x1 + λ, ..., xn + λ) · xi +

n∑
i=1

fi(x1 + λ, ..., xn + λ) · λ

≥
n∑
i=1

fi(x1, ..., xn) · xi + λ

≥ BGMΓ(x1, ..., xn)

□
Example 3.33. Let Γ whose functions are given by

fi(x1, · · · , xn) =


1
n , if x1 = · · · = xn
x(1)−xi

n∑
j=1

(x(1)−xj)
, otherwise .

We can easily prove that satisfies

fi(x1 + λ, x2 + λ, · · · , xn + λ) = fi(x1, x2, · · · , xn).

More generally, for any α ≥ 1

fi(x1, · · · , xn) =


1
n , if x1 = · · · = xn

x(1)−xi
n∑

j=1
(x(1)−xj)α

, otherwise
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is such that
fi(x1, x2, · · · , xn) ≤ fi(x1 + λ, x2 + λ, · · · , xn + λ).

Thus, the corresponding BGM is (k, · · · , k)-increasing. In additon, note that, for α > 1, Γ = {fi} does not

satisfies
n∑
i=1

fi(x) = 1.

We can also establish a criterion analogous to the Proposition 3.32, substituting the vector (k, · · · , k) for
any direction r, as follow:

Proposition 3.34. If Γ is a FWF such that there is a diretional vector r = (r1, r2, · · · , rn) ∈ [0, 1]n with
fi(x1, · · · , xn) ≤ fi(x1 + λ · r1, · · · , xi + λ · rn), for i ∈ {1, 2, · · · , n}, for any x = (x1, · · · , xn) ∈ [0, 1]n and
λ ∈ [0, 1] such that (x1 + λ · r1, x2 + λ · r2, ..., xn + λ · rn) ∈ [0, 1]n, then BGMΓ is a preaggregation function
r-increasing.

Proof. Is similar to what was done in Proposition 3.32. □

Corollary 3.35. If Γ is a FWF such that there is a diretional vector r with ∂fi
∂r (x) ≥ 0 for any fi ∈ Γ and

x ∈ [0, 1]n, then BGMΓ is a preaggregation function r-increasing.

Note that this condition can not be satisfied, in the case that
n∑
i=1

fi(x) = 1, for all x ∈ [0, 1]n, unless that

the functions fi are constant in the direction of vector r, because:

n∑
i=1

fi(x) = 1 =⇒
n∑
i=1

∂fi(x)

∂r
= 0

and so,
∂fi(x)

∂r
≥ 0 =⇒ ∂fi(x)

∂r
= 0

Example 3.36. Obviously, if fi = wi is constant, then BGMΓ is r-increaing for any direction r. Now, given
a direction r = (r1, · · · , rn) ∈ [0, 1]n we can build a r-increaing BGM function defining:

fi(x1, · · · , xn) =

{
0, if min{x1, · · · , xn} = 0
min

{
xi
ri
,1
}

n , otherwise
,

we obtain a BGM r-increasing.

As previously mentioned, both the Aggregation functions (Min,Max,Med,Arith,OWA, · · · ) and gener-
alized mixture functions (and also bounded generalized mixture functions) can be used in many applications.
To finalize this paper we bring an illustrative example of application, where we apply some functions in the
scope of image processing. More precisely, we will use generalized mixture functions in the image reduction
process.

Before presenting this example of application, we propouse a special GM function, which satisfies several
interesting properties, as we will show in this paper, and will be used in the application.

Definition 3.37. Consider the family Γ of functions

fi(x) =


1
n , if x = (x, ..., x)

1
n−1

1− |xi−Med(x)|
n∑

j=1
|xj−Med(x)|

 , otherwise
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Γ is a FWF, with
n∑
i=1

fi(x) = 1 for all x ∈ [0, 1]n, i.e., BGMΓ is a GM, that will be denoted by H. The

computation of H can be performed using the following expressions:

H(x) =


x, if x = (x, ..., x)

1
n−1

n∑
i=1

xi − xi|xi−Med(x)|
n∑

j=1
|xj−Med(x)|

 , otherwise

Example 3.38. Let be n = 5. So, for x = (0.1, 0.25, 0.3, 0, 1) we have

f1(x) = 0.21875, f2(x) = 0.25, f3(x) = 0.2395, f4(x) = 0.198, f5(x) = 0.09375

And

H(x) = 0.249975.

Note that the larger weights occur in the coordinates closest to the median. Besides, if we take the fixed
vector of weights w = (0.21875, 0.25, 0.2395, 0.198, 0.09375), then OWAw(0.1, 0.25, 0.3, 0, 1) = 0.249975 =
H(0.1, 0.25, 0.3, 0, 1). In other words, the function H can be seen as a function that transforms each input x
into the output of an OWA. More precisely,

H(x) = OWA(f1(x),··· ,fn(x))(x)

It is not difficult to see that the above equation holds for all n ∈ N and x ∈ [0, 1]n.
In the next subsection we discuss others properties of the function H.

3.4 Properties of H

In this part of paper we will discuss about the properties of operator H. It is easy to check that
n∑
i=1

fi(x) = 1

for any x ∈ [0, 1]n and therefore, by Propositions 3.14 and 3.16, H is an averaging and idempotent function.
Furthermore,

Proposition 3.39. The weight-functions at Definition 3.37 are invariant under translations and is also
homogeneous of order 0.

Proof. Let x = (x1, ..., xn) ∈ [0, 1]n and λ ∈ [0, 1] such that x′ = (x1 + λ, ..., xn + λ) ∈ [0, 1]n. Then, since
Med(x′) = Med(x) + λ we have, for x ̸= (x, ..., x):

fi(x
′) = 1

n−1

1− |xi+λ−Med(x′)|
n∑

j=1
|xj+λ−Med(x′)|


= 1

n−1

1− |xi+λ−(Med(x)+λ)|
n∑

j=1
|xj+λ−(Med(x)+λ)|


= 1

n−1

1− |xi−Med(x)|
n∑

j=1
|xj−Med(x)|


= fi(x).
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Therefore, (f1(x′), ..., fn(x′)) = (f1(x), ..., fn(x)). The case in which x = (x, ..., x) is immediate.
To check the second property, make x′′ = (λx1, ..., λxn), note that Med(x′′) = λMed(x) and for x ̸=

(x, ..., x)

fi(x
′′) = 1

n−1

1− |λxi−Med(λx)|
n∑

j=1
|λxj−Med(λx)|


= 1

n−1

1− |λxi−λMed(x)|
n∑

j=1
|λxj−λMed(x)|


= 1

n−1

1− |λ|·|xi−Med(x)|

|λ|·
n∑

j=1
|xj−Med(x)|


= 1

n−1

1− |xi−Med(x)|
n∑

j=1
|xj−Med(x)|


= fi(x)

Hence, (f1(x′′), ..., fn(x′′)) = (f1(x), ..., fn(x)) = f(x). The case in which x = (x, ..., x) is also immedi-
ately. □

Corollary 3.40. H is shift-invariant and homogeneous.

Proof. Straightforward for Propositions 3.19 and 3.21. □
In addition to idempotency, homogeneity and shift-invariance H has the following proprerties.

Proposition 3.41. H has no neutral element.

Proof. Suppose H has a neutral element e, find the vector of weight for x = (e, ..., e, x, e, ..., e). Note that if
n ≥ 3, then Med(x) = e and therefore,

fi(x) = 1
n−1

1− |xi−Med(x)|
n∑

j=1
|xj−Med(x)|


= 1

n−1

1− |xi−e|
n∑

j=1
|xj−e|


= 1

n−1

(
1− |xi−e||x−e|

)
.

So,

fi(x) =

{
1

n−1 , if xi = e

0, if xi = x
, to n ≥ 3

i.e.,

f(x) =
(

1
n−1 , ...,

1
n−1 , 0,

1
n−1 , ...,

1
n−1

)
and
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H(x) = (n− 1) · e

n− 1
= e

But since e is a neutral element of H, H(x) = x. Absurd, since we can always take x ̸= e.

For n = 2, we have Med(x) = x+e
2 , where x = (x, e) or x = (e, x). In both cases it is not difficult to show

that f(x) = (0.5, 0.5) and H(x) = x+e
2 . Thus, taking x ̸= e, again we have H(x, e) ̸= x. □

Proposition 3.42. H has no absorbing elements.

Proof. To n = 2, we have H(x) = x1+x2
2 , which has no absorbing elements. Now for n ≥ 3 we have to

x = (a, 0, ..., 0) with Med(x) = 0 therefore,

f1(x) =
1

n− 1

(
1− a

a

)
= 0 and fi(x) =

1

n− 1
, ∀i = 2, ..., n.

therefore,

H(a, 0, ..., 0) = 0 · a+
1

n− 1
· 0 + ...+

1

n− 1
· 0 = a⇒ a = 0,

but to x = (a, 1, ..., 1) we have to Med(x) = 1. Furthermore,

f1(x) =
1

n− 1

(
1− 1− a

1
− a
)

= 0

and

fi(x) =
1

n− 1
for i = 2, 3, ..., n.

therefore,

H(a, 1, ..., 1) = 0 · a+
1

n− 1
· 1 + ...+

1

n− 1
· 1 = a⇒ a = 1.

With this we prove that H does note have annihiladors. □

Proposition 3.43. H has no zero divisors.

Proof. Let a ∈ ]0, 1[ and consider x = (a, x2, ..., xn) ∈ ]0, 1]n. In order to have H(x) =
n∑
i=1

fi(x) · xi = 0 we

have fi(x) · xi = 0 for all i = 1, 2, ..., n. But as a ̸= 0 and we can always take x2, x3, ..., xn also different from
zero, then for each i = 1, 2, ..., n there remains only the possibility of terms:

fi(x) = 0 for i = 1, 2, ..., n.

This is absurd, for fi(x) ∈ [0, 1] and
n∑
i=1

fi(x) = 1. like this, H has no zero divisors. □

Proposition 3.44. H does not have one divisors

Proof. Just to see that a ∈ ]0, 1[, we have to H(a, 0, ..., 0) = f1(x).a ≤ a < 1. □

Proposition 3.45. H is symmetric.
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Proof. Let P : {1, 2, ..., n} → {1, 2, ..., n} be a permutation. So we can easily see that

Med(xP (1), xP (2), ..., xP (n)) = Med(x1, x2, ..., xn)

for all x = (x1, x2, ..., xn) ∈ [0, 1]n. We also have to
n∑
i=1
|xP (i)−Med(xP (1), xP (2), ..., xP (n))| =

n∑
i=1
|xi−Med(x)|.

Thus, it suffices to consider the case where (xP (1), xP (2), ..., xP (n)) ̸= (x, x, ..., x). But (xP (1), xP (2), ..., xP (n)) ̸=
(x, x, ..., x) we have to:

H(xP (1), xP (2), ..., xP (n)) = 1
n−1

n∑
i=1

xP (i) −
xP (i)|xP (i)−Med(xP (1),...,xP (n))|

n∑
j=1
|xP (i)−Med(xP (1),...,xP (n))|


=

n∑
i=1

xP (i)

n−1 − 1
n−1 ·

n∑
i=1

xP (i)|xP (i)−Med(x1,...,xn)|
n∑

j=1
|xP (i)−Med(x1,...,xn)|

=

n∑
i=1

xi

n−1 −
1

n−1 ·
n∑
i=1

xP (i)|xP (i)−Med(x1,...,xn)|
n∑

j=1
|xi−Med(x1,...,xn)|

=

n∑
i=1

xi

n−1 −
1

n−1 ·
n∑
i=1

xi|xi−Med(x1,...,xn)|
n∑

j=1
|xi−Med(x1,...,xn)|

= H(x1, ..., xn).

□

Proposition 3.46. If N : [0, 1] −→ [0, 1] is the standard fuzzy negation, then HN = H.

Proof. If x = (x, · · · , x), then

HN (x) = 1−H(1− x, 1− x, · · · , 1− x) = 1− (1− x) = x = H(x)

For x ̸= (x, · · · , x), we have:

HN (x) = 1− 1
n−1

n∑
i=1

1− xi − (1−xi)|1−xi−Med(1−x1,··· ,1−xn)|
n∑

j=1

|1−xi−Med(1−x1,··· ,1−xn)|


= 1− 1

n−1

n∑
i=1

1− xi − (1−xi)|1−xi−1+Med(x1,··· ,xn)|
n∑

j=1

|1−xi−1+Med(x1,··· ,xn)|


= 1− 1

n−1

n∑
i=1

1− xi − (1−xi)|−xi+Med(x1,··· ,xn)|
n∑

j=1
|−xi+Med(x1,··· ,xn)|
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= 1− 1
n−1

n∑
i=1

1− xi − (1−xi)|xi−Med(x1,··· ,xn)|
n∑

j=1

|xi−Med(x1,··· ,xn)|


= 1− 1

n−1

n− n∑
i=1

xi − xi|xi−Med(x1,··· ,xn)|
n∑

j=1
|xi−Med(x1,··· ,xn)|

− n∑
i=1

|xi−Med(x1,··· ,xn)|
n∑

j=1
|xi−Med(x1,··· ,xn)|


= 1− 1

n−1

n− 1−
n∑

i=1

xi − xi|xi−Med(x1,··· ,xn)|
n∑

j=1
|xi−Med(x1,··· ,xn)|


= 1

n−1

n∑
i=1

xi − xi|xi−Med(x1,··· ,xn)|
n∑

j=1

|xi−Med(x1,··· ,xn)|


= H(x)

□
Therefore, H satisfies the following properties:

• Idempotence

• Homogeneity

• Shift-invariance

• Symmetry.

• has no neutral element

• has no absorbing elements

• has no zero divisors

• does not have one divisors

• is self dual

Although we have not been able to demonstrate that H is an aggregation function, in the next proposition
we show that H is (k, · · · , k)-increasing (for k > 0), so H is a preaggregation function.

Proposition 3.47. If k > 0, then H is (k, · · · , k)-increasing.

Proof. As H is shift-invariant, its follow of Proposition 3.30 that H is (k, · · · , k)-increasing. □

Corollary 3.48. H is a preaggregation function.

The aggregation functions are very important for computing science, since in many applications the
expected result is a single data, and therefore these applications use an aggregation function to convert this
set of data into a unique output. In fact, a preaggregation can often be applied in place of aggregation.
In this sense, we will apply the function H (which is a GM function) (in an illustrative example) to reduce
images and then we compare the obtained results with the results obtained by some aggregations.
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4 The Image Reduction by GM functions

In this part of our work we use the GM functions Min, Max, Arith, Med, cOWA and H to build image
reduction operators and is an improvement of the done in [18]. But first, we will introduce some important
concepts of image processing.

Definition 4.1. An image is a matrix m × n, M = A(i, j), where each A(i, j) ∈ [0, 1] represents a pixel.
More specifically, the value A(i, j) is proportional to the light intensity at the considered point.

In essence, a reduction operator reduces a given image m× n to another m′ × n′, such that m′ < m and
n′ < n. For example, 

0.1 0.2 0 0.5
0.3 0.3 0.2 0.8
1 0.5 0.6 0.4
0 0.3 0.5 0.7

 7−→ [
0.1 0
1 0.6

]

There are several possible ways to reduce a given image, as shown in the following example:

Example 4.2. The image

M =


0.8 0.7 0.2 1 0.5 0.5
0.6 0.2 0.3 0.1 1 0
0 0 0.6 0.4 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6

 ,
can be reduced to another 2× 3 by partitioning M in blocks 2× 2 and applying to each block, for example,

the function f(x, y, z, w) = Max(x, y, z, w). In this case, we obtain the image:

M∗ =

[
0.8 1 1
0.2 0.6 1

]
The Figure 1 illustrates the reduction process of an image.

Figure 1: Example of image redction.

In fact, if we apply any other function, we get a new image, usually different from the previous one, but
what is the best?

One possible answer to this question involves a method called magnification or extension (see [27, 62,
63]), which is a method which magnifies the reduced image to another with the same size of the original one.
The magnified image is then compared with the original input image.
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Example 4.3. From M∗ we can build a 4×6 image imply cloning each pixel (also known as nearest neighbor
interpolation), as below: [

x
]
7−→

[
x x
x x

]
Thus, we obtain the following image:

M1 =


0.8 0.8 1 1 1 1
0.8 0.8 1 1 1 1
0.2 0.2 0.6 0.6 1 1
0.2 0.2 0.6 0.6 1 1


This simple magnification method is also called of nearest neighbor interpolation. The Figure 2 illustrates

the magnification process.

Figure 2: Example of magnification.

Given two different reductions of the same image (let’s say M ′ and M∗), We compare the reductions
following the steps: (1) Use a magnification method to magnify M ′ and M∗ for the original size; (2) Compare
each obtained image with the original one, using a some similarity measure.

There are several similarity measures, as for example, the measure PSNR (see [23]), that is calculated as
follows:

PSNR(I,K) = 10 · log10

(
MAX2

I

MSE(I,K)

)
,

where I = I(i, j) and K = K(i, j) are two images, MSE(I,K) = 1
nm

m∑
i=1

n∑
j=1

[I(i, j)−K(i, j)]n and MAXI is

the maximum possible pixel value of pixel.
The degree of similarity between two images is proportional to the value of the PSNR, i.e., how much

larger if the PSNR, more approximated are the analyzed images6.
In what follows, we use the GM functions: Min, Mix, Med, Arith cOWA and H to reduce images in

grayscale7, applying the following method:

6In particular, if the input image are equal, then the MSE value is zero and the PSNR will be infinity.
7The reduction of color images is similar.
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Method 1

1. Reduce the input images using the Min, Max, Arith, Med, cOWA and H;

2. Magnify the reduced images to the original size using the nearest neighbor interpolation;

3. Compare the last image with the original one using the measure PSNR.

Remark 4.4. This is a general method which can be applied to any kind of image. In this work we applied
it to 10 images in grayscale of size 512× 5128 (as shown in Figure 3).

Figure 3: Imput images

In the Tables 1 and 2 (see Appendix) we present the PSNR values between the output images provided
by Method 1 and original inputs.

According to PSNR, Arith provided the higher quality images. However, the reduction operators gener-
ated by H and cOWA provide with us quite similar images to those given by Arith.

Note that although the magnification method by cloning of pixels is a simple and quick method (in
running time) it brings us some limitations. The results obtained by this method are not good, in addition,
the method itself causes that the Arith operator is better than other operators, since by reducing a set of
pixels x1, x2, x3, x4 to a single pixel y, and then compare MSE = (x1, y)2 + (x2 − y)2 + (x3 − y)2 + (x4 − y)2

(because each pixel y is repeated 4 times in the process of magnification), so of course y = 1
4(x1 +x2 +x3 +x4)

has the lowest measurement error.
For this reason we also analyze two other methods of magnification: (1) Bilinear interpolation and (2)

Bicubic interpolation (see [23, 28, 30, 55]). Thus, we have two other methods: Method 2 and Method 3,
respectively

In Tables 3, 4, 5 and 6 (see Appendix), we present the results obtained with the use of these others
magnification methods.

Tables 1, 2, 3, 4, 5 and 6 (see Appendix) show us that among the analyzed GM, the averaging functions
(Arith, Med, cOWA and H) are responsible for generating better quality images. However it is difficult
to determine the most appropriate function to reduce images, since each particular function may be more
suitable for a certain method of magnification, for example: Arith is closer to magnifying by pixels cloning.

We can also observe that a more complex method of magnification, interpolation, are able to reconstruct
images with higher quality. Obviously, the computational cost (running time) of these methods are also
higher.

8In this paper we made two reductions: using 2 × 2 blocks and 4 × 4 blocks.
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Ii is worth to emphasize that the reduction with H operator together with magnification by bicubic
interpolation scored the highest quality among all analyzed methods (function together magnification) or
both reduction: In scale as 2× 2 and in scale 4× 4.

This shows that in some applications, the use of a generating function of weights (i.e., a weight-function)
in order to obtain a GM function may be more interesting than the use of a single weight vector.

This idea of replacing the weight vector by a weight function may also be used in others areas of computing,
for example: In decision making and in artificial intelligence. These publications will be investigated in future
work.

5 Final Remarks

In this paper we study two generalized forms of Ordered Weighted Averaging function and Mixture func-
tion, calls respectively of Generalized Mixture and Bounded Generalized Mixture functions. These
functions are defined by weights, which are obtained dynamically from each input vector x ∈ [0, 1]n. We
demonstrated, among other results, that OWA and mixture functions are particular cases of GM and BGM
functions, and thus we obtain that functions such as Arithmetic Mean, Median, Maximum, Minimum and
cOWA are also examples of GM functions.

In the second part of this work, we present some properties as well as constructs and examples of GM func-
tions. In particular we define a special GM function, called H, and show that H satisfies important properties
for image applications: Idempotence, symmetry, homogeneity, shift-invariance, and moreover, it has no zero
divisors and one divisors, and also does not have neutral elements. We further prove that H is a preaggre-
gation function (k, · · · , k)-increasing, and then we use GM functions (Min,Max,Med,Arith, cOWA and H)
to verify the applicability of these functions, in this paper for image reduction.

To determine whether these functions are good reducers of images, we need a method of magnification.
In Method 1, we magnify images by simply cloning the pixels. However this method brings some limitations,
therefore also analyzes the other two magnification methods (bilinear and bicubic interpolation), giving rise
to Methods 2 and 3. This other methods are more suitable, and we see that H is a fine function to perform
this task, using Method 3.

Note that the generalized mixture functions can also be used in others fields of application, for example
in data classification [13] and decision making [49]. In this paper, your focus is on just one of this possibility
of applications. However, other applications will be investigated in future works.
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6 Appendix

Table 1: PSNR values of reconstruction of imagens of Figure 3 by nearest neighbor interpolation. The
underline value represents the second high quality image

USING 2× 2 BLOCKS

Min Max Med Arith cOWA H
Img 01 26,68848 26,60371 30,66996 30,89667 30,73823 30, 75448
Img 02 33,50403 33,46846 37,51525 37,64240 37,57713 37, 58138
Img 03 26,80034 26,74460 30,47904 30,55504 30, 52128 30,51564
Img 04 28,90415 28,83284 32,88120 33,01225 32, 94828 32,94146
Img 05 25,04896 25,04438 28,75582 28,85475 28, 81506 28,79901
Img 06 38,10156 38,07248 42,08612 42,13003 42, 12316 42,11653
Img 07 24,48520 24,38872 28,31229 28,45667 28,35114 28, 37668
Img 08 23,69576 23,73464 27,41557 27,51579 27, 46383 27,45864
Img 09 26,19262 26,09448 30,06427 30,22940 30,11893 30, 13332
Img 10 21,48459 21,41350 25,37475 25,58054 25,43016 25, 45073

Avg 27,49057 27,43978 31,35543 31,48735 31,40872 31, 41279

Table 2: PSNR values of reconstruction of imagens of Figure 1 by nearest neighbor interpolation. The
underline value represents the second high quality image

USING 4× 4 BLOCKS

Min Max Med Arith cOWA H
Img 01 21,37117 20,83960 26,73708 27,07854 27,01270 27, 07067
Img 02 19,70858 19,54290 23,92198 24,07786 24,05762 24, 07478
Img 03 20,46198 20,82576 25,64113 26,16092 26,08186 26, 14607
Img 04 22,59335 22,24354 27,94347 28,26449 28,19574 28, 25700
Img 05 18,86628 19,55278 24,12507 24,68962 24,58713 24, 67322
Img 06 29,48308 29,26559 34,89670 35,11481 35,09436 35, 11023
Img 07 18,95771 18,72670 24,18918 24,55073 24,48373 24, 54269
Img 08 17,71071 18,59348 23,11305 23,54332 23,43522 23, 53119
Img 09 20,97846 20,44416 26,23824 26,53197 26,42064 26, 52562
Img 10 16,47636 16,22205 21,89755 22,22614 22,10356 22, 21825

Avg 20,66077 20,62565 25,87034 26,22384 26,14726 26, 21497
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Table 3: PSNR values of reconstruction of imagens of Figure 3 by bilinear interpolation. The underline
value represents the second high quality image

USING 2× 2 BLOCKS

Min Max Med Arith cOWA H
Img 01 27,25658 27,41249 31, 70137 31,66148 31,64818 31,70944
Img 02 29,07393 29,09065 29,98667 30,00618 29, 99790 29,99295
Img 03 28,07377 27,53953 31,96271 31,87901 31,87085 31, 94673
Img 04 29,70934 29,78913 34,39128 34,28215 34,31414 34, 37504
Img 05 26,30684 25,74955 30,17965 30,08193 30,05530 30, 16533
Img 06 40,09734 39,94107 48,99047 48,55730 48,52986 48, 86710
Img 07 25,10689 25,04408 28, 93328 28,92340 28,89276 28,94254
Img 08 24,63619 24,10410 28, 19100 28,17758 28,16818 28,19312
Img 09 26,60297 26,71398 30,54028 30,56126 30,52693 30, 55733
Img 10 21,93973 21,90280 25,71329 25,74295 25,69402 25, 73353

Avg 27,88036 27,72874 32,05900 31,98732 31,96981 32, 04831

Table 4: PSNR values of reconstruction of imagens of Figure 3 by bilinear interpolation. The underline
value represents the second high quality image

USING 4× 4 BLOCKS

Min Max Med Arith cOWA H
Img 01 21,84394 21,46624 28, 12885 28,03911 28,13262 28,08806
Img 02 20,22210 19,99324 24,09349 24,09114 24, 09696 24,10058
Img 03 21,36383 21,65788 27,34577 27,53279 27,57114 27, 56163
Img 04 23,23057 22,96007 29,81717 29,65596 29, 77096 29,71475
Img 05 19,54307 20,06159 25,32192 25,47922 25, 51400 25,51442
Img 06 30,92215 30,60188 42,72668 41,77064 41, 99358 41,97442
Img 07 19,43662 19,19604 24,96897 25,00413 25,05911 25, 02899
Img 08 18,28578 18,86696 23,87169 24, 09781 24,07356 24,10310
Img 09 21,32747 20,91360 27,09762 27,10526 27,16280 27, 13073
Img 10 16,77848 16,57833 22,58040 22,61488 22, 63949 22,63987

Avg 21,29540 21,22958 27, 59525 27,53909 27,60142 27,58566
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Table 5: PSNR values of reconstruction of imagens of Figure 3 by bicubic interpolation. The underline
value represents the second high quality image

USING 2× 2 BLOCKS

Min Max Med Arith cOWA H
Img 01 27,39667 27,45993 32,53367 32,62657 32,52946 32, 58602
Img 02 30,06149 30,00816 31,28820 31,31873 31, 30611 31,29877
Img 03 28,09952 27,62931 32, 92967 32,90897 32,87767 32,93859
Img 04 29,92114 29,94430 35, 70586 35,70361 35,68906 35,73313
Img 05 26,38597 25,93655 31, 32017 31,30790 31,25508 31,33640
Img 06 40,05229 40,02173 51,35284 51,07478 51,01447 51, 31081
Img 07 25,23188 25,16984 29,85564 29,93609 29,85733 29, 89915
Img 08 24,72669 24,32047 29,10402 29,15066 29,11737 29, 12822
Img 09 26,73252 26,79140 31,27454 31,38274 31,29368 31, 32452
Img 10 22,04218 21,98136 26,39147 26,52171 26,41585 26, 44659

Avg 28,06504 27,92630 33,17561 33, 19318 33,13561 33,20022

Table 6: PSNR values of reconstruction of imagens of Figure 3 by bicubic interpolation. The underline
value represents the second high quality image

USING 4× 4 BLOCKS

Min Max Med Arith cOWA H
Img 01 21,83423 21,39364 28,64265 28,74908 28,80893 28, 78768
Img 02 20,20038 19,88701 24,49596 24, 56989 24,56761 24,57359
Img 03 21,25132 21,55589 27,82091 28, 31402 28,28961 28,32229
Img 04 23,22310 22,89860 30,47704 30,54773 30,60332 30, 59348
Img 05 19,45423 20,06391 25,74518 26, 18606 26,15139 26,20092
Img 06 30,81953 30,48357 44,31891 43,83439 44,03526 44, 05492
Img 07 19,36949 19,11221 25,29211 25,49221 25, 49999 25,50641
Img 08 18,21007 18,91559 24,17857 24,57330 24,49174 24, 56575
Img 09 21,32252 20,85345 27,41366 27, 56839 27,55860 27,58354
Img 10 16,76501 16,53815 22,82004 23, 00025 22,96201 23,01459

Avg 21,24499 21,17020 28,12050 28,28353 28, 29685 28,32032
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1 Introduction

The notion of ideals introduced by Dedekind for the theory of algebraic numbers was generalized by E.
Noether for associative rings. The one and two-sided ideals presented by her are still central concepts in
ring theory. We know that the notion of a one-sided ideal of any algebraic structure is a generalization of
the notion of an ideal. The quasi ideals are the generalization of left and right ideals, whereas the bi-ideals
are the generalization of quasi ideals. The notion of bi-ideals in semigroups was introduced by Lajos [8].
Iseki introduced the concept of quasi ideal for semiring [4, 5, 6]. M. Henriksen studied ideals in semirings
[3]. As a further generalization of ideals, Steinfeld first introduced the notion of quasi ideals for semigroups
and then for rings. We know that the notion of the bi-ideal in semirings is a special case of the (m, n) ideal
introduced by S. Lajos. The concept of bi-ideals was first introduced by R. A. Good and D. R. Hughes for a
semigroup[2]. Lajos and Szasz introduced the concept of bi-ideals for rings[9].

Many real-world problems are complicated due to various uncertainties. In addressing them, classical
methods may not be the best option. To overcome such, several theories like randomness, rough set, and
fuzzy set were introduced. L. A. Zadeh developed the fuzzy set theory in 1965 [18]. Many papers on fuzzy
sets appeared, showing the importance of the concept and its applications to logic, set theory, group theory,
ring theory, real analysis, topology, measure theory etc. N. Kuroki studied fuzzy interior ideals in semigroups
[7].

Molodtsov introduced the concept of soft set theory as a new mathematical tool for dealing with uncer-
tainties, only partially resolving the problem because objects in a universal set often do not precisely satisfy
the parameters associated to each of the elements in the set[11]. Soft set theory has wide applications in fields
like game theory, operations research, data analysis, decision making, probability theory, and measurement
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theory. Acar et. al. gave the basic concept of soft rings. Feng et al. studied soft semirings using the soft set
theory[1]. Then Maji et. al.[10] extended soft set theory to fuzzy soft set theory. Fuzzy soft set theory is a
unification of fuzzy set theory and soft set theory. Aktas and Cagman defined the soft set and soft groups.
Fuzzy soft set theory has wide applications in medical diagnosis.

M. Murali Krishna Rao introduced the notion of (quasi-interior, bi-interior, bi-quasi, tri, and tri-quasi
interior) ideals as a generalization of (quasi, bi and interior) ideals of a semiring, semigroup, Γ−semiring,
Γ−semigroup and studied their properties[12, 13, 14, 15, 17]. M. Murali Krishna Rao studied fuzzy bi-interior
ideals of Γ−semiring [16].

This paper aims to introduce the notion of fuzzy quasi-interior ideal and fuzzy soft quasi-interior ideal of
a semiring. We prove that every fuzzy soft left quasi-interior ideal over a regular semiring if and only if it is a
fuzzy soft quasi ideal over a semiring. Regular semiring is characterized in terms of fuzzy(soft) quasi-interior
ideals of a semiring. We study, M is regular if and only if µa = χM ◦ µa ◦ χM ◦ µa, a ∈ A, for any fuzzy left
quasi-interior ideals of fuzzy soft quasi-interior ideals (µ,A) over a semiring M.

2 Preliminaries

In this section, we recall some of the fundamental concepts and definitions which are necessary for this paper.

Definition 2.1. [13] A set M together with two associative binary operations called addition and multipli-
cation (denoted by + and · respectively) will be called semiring provided

(i) addition is a commutative operation.

(ii) multiplication distributes over addition both from the left and from the right.

(iii) there exists 0 ∈M such that x+ 0 = x and x · 0 = 0 · x = 0 for all x ∈M.

Example 2.2. Let M be the set of all natural numbers. Then (M, max, min) is a semiring.

Definition 2.3. [13] A non-empty subset A of a semiring M is called:

(i) a subsemiring of M , if (A,+) is a subsemigroup of (M,+) and AA ⊆ A,

(ii) a quasi ideal of M , if A is a subsemiring of M and AM ∩MA ⊆ A,

(iii) a bi-ideal of M , if A is a subsemiring of M and AMA ⊆ A,

(iv) an interior ideal of M , if A is a subsemiring of M and MAM ⊆ A,

(v) a left (right) ideal of M , if A is a subsemiring of M and
MA ⊆ A(AM ⊆ A),

(vi) an ideal, if A is a subsemiring of M,AM ⊆ A and MA ⊆ A,

(vii) a left(right) bi-quasi ideal of M , if A is a subsemiring of M and MA ∩AMA(AM ∩AMA) ⊆ A,

(ix) a bi- quasi ideal of M , if A is a left bi- quasi ideal and a right bi- quasi ideal of M.

(x) a left(right) quasi-interior ideal of M, if A is a subsemiring of M and
MAMA(AMAM) ⊆ A.

Definition 2.4. [13] An element a of a semiring M is called a regular element if there exists an element b of
M such that a = aba.
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Definition 2.5. [13] A semiring M is called a regular semiring if every element of M is a regular element.

Definition 2.6. [16] Let A be a non-empty subset of M. The characteristic function of A is a fuzzy subset
of M, defined by

χ
A

(x) =

{
1, if x ∈ A;
0, if x /∈ A.

Definition 2.7. [16] A function f : R → M , where R and M are semirings. Then f is called a semiring
homomorphism, if f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ R.

Definition 2.8. [16] Let U be an initial Universe set and E be the set of parameters. Let P (U) denotes the
power set of U. A pair (µ,E) is called a soft set over U where µ is a mapping given by µ : E → P (U).

Definition 2.9. [16] Let U be an initial Universe set and E be the set of parameters, A ⊆ E. A pair (µ,A)
is called fuzzy soft set over U where µ is a mapping given by µ : A→ IU where IU denotes the collection of
all fuzzy subsets of U. µ(a), a ∈ A, be a fuzzy subset and is denoted by µa.

Definition 2.10. [16] Let (µ,A), (λ,B) be fuzzy soft sets over U then (µ,A) is said to be a fuzzy soft subset
of (λ,B), denoted by (µ,A) ⊆ (λ,B) if A ⊆ B and µa ⊆ λa (µa, λa are fuzzy subsets ) for all a ∈ A.

Definition 2.11. [16] Let (µ,A), (λ,B) be fuzzy soft sets. The intersection of (µ,A) and (λ,B), denoted
by (µ,A) ∩ (λ,B) = (γ,C), where C = A ∪B, is defined as:

γc =


µc, if c ∈ A \B;
λc, if c ∈ B \A;
µc ∩ λc, if c ∈ A ∩B.

Definition 2.12. [16] Let (µ,A), (λ,B) be fuzzy soft sets. The union of (µ,A) and (λ,B), denoted by
(µ,A) ∪ (λ,B) = (γ,C), where C = A ∪B, is defined as:

γc =


µc, if c ∈ A \B;
λc, if c ∈ B \A;
µc ∪ λc, if c ∈ A ∩B.

Definition 2.13. [16] Let M be a semiring, E be a parameter set and A ⊆ E. Let µ : A → [0, 1]M be a
mapping, where [0, 1]M denotes the collection of all fuzzy subsets of M. Then (µ,A) is called a fuzzy soft left
(right) ideal over M , if for each a ∈ A, the corresponding fuzzy subset µa : M → [0, 1] is a fuzzy left(right)
ideal of M, i.e., for all x, y ∈M,

(i) µa(x+ y) ≥ min {µa(x), µa(y)}, (ii) µa(xy) ≥ µa(y)(µa(x)).
(µ,A) is called a fuzzy soft ideal over M , if

(i) µa(x+ y) ≥ min {µa(x), µa(y)}, (ii) µa(xy) ≥ max {µa(x), µa(y)}.

Definition 2.14. [16] Let M be a semiring, E be a parameter set, let A ⊆ E and let µ : A → [0, 1]M be
a mapping. Then (µ,A) is called a fuzzy soft quasi ideal over M , if for each a ∈ A, the corresponding fuzzy
subset µa : M → [0, 1] is a fuzzy quasi ideal of M, i.e. for all x, y ∈M,

(i) µa(x+ y) ≥ min(µa(x), µa(y)), (ii) µa ◦ χM ∧ χM ◦ µa ⊆ µa.
(µ,A) is called a fuzzy soft interior ideal over M , if for each a ∈ A, the corresponding fuzzy subset µa :
M → [0, 1] is a fuzzy interior ideal of M, i.e., for all x, y ∈ M, (i) µa(x + y) ≥ min {µa(x), µa(y)}, (ii)
µa(xyz) ≥ max {µa(y)}.
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3 Fuzzy quasi interior ideals

In this section, we introduce the notion of fuzzy (right, left) quasi interior ideal and study the properties of
fuzzy (right, left) quasi interior ideals of semirings.

Definition 3.1. A fuzzy subset µ of a semiring M, is called a fuzzy left (right) quasi interior ideal if µ
satisfies the following conditions

(i) µ(x+ y) ≥ min{µ(x), µ(y)} for all x, y ∈M.

(ii) χM ◦ µ ◦ χM ◦ µ ⊆ µ
(
µ ◦ χM ◦ µ ◦ χM ⊆ µ

)
.

A fuzzy subset µ of a semiring M, is called a fuzzy quasi interior ideal if it is both left fuzzy quasi interior
ideal and right fuzzy quasi interior ideal of M.

Theorem 3.2. Let I be a non-empty subset of a semiring M and χI be the characteristic function of I. Then
I is a right quasi interior ideal of a semiring M if and only if χI is a fuzzy right quasi interior ideal of a
semiring M.

Proof. Let I be a non-empty subset of the semiring M and χI be the characteristic function of I. Suppose
I is a right quasi interior ideal of the semiring M. Obviously, χI is a fuzzy subsemiring of M. We have
IMIM ⊆ I. Then χI ◦ χM ◦ χI ◦ χM = χIMIM ⊆ χI . Therefore χI is a fuzzy right quasi interior ideal of the
semiring M.
Conversely, suppose that χI is a fuzzy right quasi interior ideal of M. Then I is a subsemiring of M. We have
χI ◦ χM ◦ χI ◦ χM ⊆ χI , implies that χIMIM ⊆ χI . Therefore IMIM ⊆ I. Hence I is a right quasi interior
ideal of the semiring M. □

Theorem 3.3. Let I be a right quasi interior ideal of a semiring M and µ be a fuzzy subset of M, is defined

by µ(x) =

{
α0 if x ∈ I,
α1, otherwise.

for all x ∈M, α0, α1 ∈ [0, 1] such that α0 > α1. Then µ is a fuzzy right quasi interior ideal of M and µα0 = I.

Theorem 3.4. Every fuzzy (right, left) ideal of a semiring M is a fuzzy right quasi-interior ideal of M.

Proof. Let µ be a fuzzy right ideal of the semiring M and x ∈M.

µ ◦ χM (x) = sup
x=ab

min{µ(a), χM (b)} a, b ∈M.

= sup
x=ab

µ(a)

≤ sup
x=ab

µ(ab)

= µ(x).

Therefore µ ◦ χM (x) ≤ µ(x). Then

µ ◦ χM ◦ µ ◦ χM (x) = sup
x=uvs

min{µ ◦ χM (uv), µ ◦ χM (s)}

≤ sup
x=uvs

min{µ(uv), µ(s)}

= µ(x).

Hence µ is a fuzzy right quasi-interior ideal of M.
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Let µ be a fuzzy left ideal of the semiring M and x ∈M.

χM ◦ µ(x) = sup
x=ab

min{χM (a), µ(b)} a, b ∈M.

= sup
x=ab

µ(b)

≤ sup
x=ab

µ(ab)

= µ(x).

Therefore χM ◦ µ(x) ≤ µ(x). Then

χM ◦ µ ◦ χM ◦ µ(x) = sup
x=uvs

min{χM ◦ µ(u), χM ◦ µ(vs)}

≤ sup
x=uvs

min{µ(u), µ(vs)}

= µ(x).

Hence µ is a fuzzy left quasi-interior ideal of M. □

Example 3.5. Let M = {a, b, c, d}. The binary operation is defined by
the following tables

+ a b c d

a a b c d
b b b b b
c c b c d
d d b d d

· a b c d

a a a a a
b a b b b
c a c c c
d a b b a

then (M,+, ·) is a semiring.
I) Let J = {a, d}, then J is a subsemiring.
J is not a(ideal, left, right, bi, quasi, interior) ideal.
J is a right quasi-interior ideal.
1) Define µ = M → [0, 1]

µ(x) =

{
1 if x ∈ J,
0, otherwise.

Then µ is a fuzzy right quasi-interior ideal of M and µ is not a fuzzy ideal.
2) Define µ = M → [0, 1]

µ(x) =

{
0.7 if x ∈ J,
0.4, otherwise.

Then µ is a fuzzy right quasi-interior ideal of M and µ is not a fuzzy ideal.

II) Let J1 = {a, c}, then J1 is a subsemiring.
J1 is not a(ideal, left, right, bi, quasi, interior) ideal.
J1 is a left quasi-interior ideal.
1) Define µ = M → [0, 1]

µ(x) =

{
1 if x ∈ J1,

0, otherwise.
Then µ is a fuzzy left quasi-interior ideal of M and µ is not a fuzzy left ideal.
2) Define µ = M → [0, 1]
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µ(x) =

{
0.6 if x ∈ J1,

0.3, otherwise.
Then µ is a fuzzy right quasi-interior ideal of M and µ is not a fuzzy ideal.

Theorem 3.6. Let M be a semiring and µ be a non-empty fuzzy subset of M. A fuzzy subset µ is a fuzzy
left quasi interior ideal of a semiring M if and only if the level subset µt of µ is a left quasi interior ideal of
a semiring M for every t ∈ [0, 1], where µt ̸= ϕ.

Proof. Let M be a semiring and µ be a non-empty fuzzy subset of M. Suppose µ is a fuzzy left quasi
interior ideal of the semiring M, µt ̸= ϕ, t ∈ [0, 1] and a, b ∈ µt. Then µ(a) ≥ t, µ(b) ≥ t, so µ(a + b) ≥
min{µ(a), µ(b)} ≥ t, therefore a+ b ∈ µt and µ(ab) ≥ min{µ(a), µ(b)} ≥ t, hence ab ∈ µt.
Let x ∈MµtMµt. Then x = badc, where b, d ∈M,a, c ∈ µt, thus
χM ◦ µ ◦ χM ◦ µ(x) ≥ t, so µ(x) ≥ χM ◦ µ ◦ χM ◦ µ(x) ≥ t.
Therefore x ∈ µt. Hence µt is a left quasi interior ideal of M.
Conversely, suppose that µt is a left quasi interior ideal of the semiring M, for all t ∈ Im(µ). Let x, y ∈
M,µ(x) = t1, µ(y) = t2 and t1 ≥ t2. Then x, y ∈ µt2 , so x + y ∈ µt2 and xy ∈ µt2 , then µ(x + y) ≥ t2 =
min{t1, t2} = min{µ(x), µ(y)}. Therefore µ(x + y) ≥ t2 = min{µ(x), µ(y)} and µ(xy) ≥ t2 = min{t1, t2} =
min{µ(x), µ(y)}. Therefore µ(xy) ≥ t2 = min{µ(x), µ(y)}. We have MµlMµl ⊆ µl, for all l ∈ Im(µ). Suppose
t = min{Im(µ)}. Then MµtMµt ⊆ µt. Therefore χM ◦ µ ◦ χM ◦ µ ⊆ µ. Hence µ is a fuzzy left quasi interior
ideal of M. □
Corollary 3.7. Let M be a semiring and µ be a non-empty fuzzy subset of M. A fuzzy subset µ is a fuzzy
(right) quasi interior ideal of a semiring if and only if the level subset µt of µ is a (right) quasi-interior ideal
of a semiring M for every t ∈ [0, 1], where µt ̸= ϕ.

Theorem 3.8. If µ and λ are fuzzy left quasi interior ideals of a semiring M , then µ∩λ is a fuzzy left quasi
interior ideal of a semiring M.

Proof. Let µ and λ be fuzzy left quasi interior ideals of M and x, y ∈M.

µ ∩ λ(x+ y) = min{µ(x+ y), λ(x+ y)}
≥ min{min{µ(x), µ(y)},min{λ(x), λ(y)}}
= min{min{µ(x), λ(x)},min{µ(y), λ(y)}}
= min{µ ∩ λ(x), µ ∩ λ(y).}

µ ∩ λ(xy) = min{µ(xy), λ(xy)}
≥ min{min{µ(x), µ(y)},min{λ(x), λ(y)}}
= min{min{µ(x), λ(x)},min{µ(y), λ(y)}}
= min{µ ∩ λ(x), µ ∩ λ(y)}

Then µ ∩ λ is a fuzzy subsemiring. And

χM ◦ µ ∩ λ(x) = sup
x=ab

min{χM (a), µ ∩ λ(b)}

= sup
x=ab

min
{
χM (a),min{µ(b), λ(b)}

}
= sup
x=ab

min
{

min{χM (a), µ(b)},min{χM (a), λ(b)}
}

= min
{

sup
x=ab

min{χM (a), µ(b)}, sup
x=ab

min{χM (a), λ(b)}
}

= min{χM ◦ µ(x).χM ◦ λ(x)}
=χM ◦ µ ∩ χM ◦ λ(x).
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Therefore χM ◦ µ ∩ χM ◦ λ = χM ◦ µ ∩ λ.

(χM ◦ µ ∩ λ) ◦ (χM ◦ µ ∩ λ)(x)

= sup
x=abc

min{χM ◦ µ ∩ χM ◦ λ(a), χM ◦ µ ∩ λ(bc)}

= sup
x=abc

min{χM ◦ µ ∩ λ(a), χM ◦ µ ∩ χM ◦ λ(bc)}

= sup
x=abc

min{χM ◦ µ(a), χM ◦ λ(a)}},min{χM ◦ µ(bc), χM ◦ λ(bc)}}

= sup
x=abc

min
{

min{χM ◦ µ(a), χM ◦ µ(bc)},min{χM ◦ λ(a), χM ◦ λ(bc)}
}

= min
{

sup
x=abc

min{χM ◦ µ(a), χM ◦ µ(bc)}, sup
x=abc

min{χM ◦ λ(a), χM ◦ λ(bc)}
}

= min{χM ◦ µ ◦ χM ◦ µ(x), χM ◦ λ ◦ χM ◦ λ(x)}
= χM ◦ µ ◦ χM ◦ µ ∩ χM ◦ λ ◦ χM ◦ λ(x).

Then χM ◦ µ ∩ λ ◦ χM ◦ µ ∩ λ = χM ◦ µ ◦ χM ◦ µ ∩ χM ◦ λ ◦ χM ◦ λ
Therefore χM ◦ µ ∩ λ ◦ χM ◦ µ ∩ λ = χM ◦ µ ◦ χM ◦ µ ∩ χM ◦ λ ◦ χM ◦ λ ⊆ µ ∩ λ.
Hence µ ∩ λ is the fuzzy left quasi-interior ideal of M. □

Corollary 3.9. If µ and λ are fuzzy (right) quasi interior ideals of a semiring M , then µ ∩ λ is a fuzzy
(right) quasi interior ideal of a semiring M.

Theorem 3.10. If µ and λ are fuzzy left quasi interior ideals of a semiring M , then µ ∪ λ is a fuzzy left
quasi interior ideal of a semiring M.

Proof. Let µ and λ be fuzzy left quasi interior ideals of M and x, y ∈M.

µ ∪ λ(x+ y) = max{µ(x+ y), λ(x+ y)}
≥ max{min{µ(x), µ(y)},min{λ(x), λ(y)}}
= min{max{µ(x), λ(x)},max{µ(y), λ(y)}}
= min{µ ∪ λ(x), µ ∪ λ(y).}

µ ∪ λ(xy) = max{µ(xy), λ(xy)}
≥ max{min{µ(x), µ(y)},min{λ(x), λ(y)}}
= min{max{µ(x), λ(x)},max{µ(y), λ(y)}}
= min{µ ∪ λ(x), µ ∪ λ(y).}

Then µ ∪ λ is a fuzzy subsemiring. And

χM ◦ µ ∪ λ(x) = sup
x=ab

min{χM (a), µ ∪ λ(b)}

= sup
x=ab

min{χM (a),max{µ(b), λ(b)}}

= sup
x=ab

max{min{χM (a), µ(b)},min{χM (a), λ(b)}}

= max{ sup
x=ab

min{χM (a), µ(b)}, sup
x=ab

min{χM (a), λ(b)}}

= max{χM ◦ µ(x), χM ◦ λ(x)}
=χM ◦ µ ∪ χM ◦ λ(x).
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Therefore χM ◦ µ ∪ χM ◦ λ = χM ◦ µ ∪ λ.

(χM ◦ µ ∪ λ) ◦ (χM ◦ µ ∪ λ)(x)

= sup
x=abc

min{χM ◦ µ ∪ χM ◦ λ(a), χM ◦ µ ∪ χM ◦ λ(bc)}

= sup
x=abc

min
{

max{χM ◦ µ(a), χM ◦ λ(a)},max{χM ◦ µ(bc), χM ◦ λ(bc)}
}

= sup
x=abc

min
{

max{χM ◦ µ(a), χM ◦ λ(a)},max{χM ◦ µ(bc), χM ◦ λ(bc)}
}

= sup
x=abc

min
{

max{χM ◦ µ(a), χM ◦ µ(bc)},max{χM ◦ λ(a), χM ◦ λ(bc)}
}

= max
{

sup
x=abc

min{χM ◦ µ(a), χM ◦ µ(bc)}, sup
x=abc

min{χM ◦ λ(a), χM ◦ λ(bc)}
}

= max{χM ◦ µ ◦ χM ◦ µ(x), χM ◦ λ ◦ χM ◦ λ(x)}
= χM ◦ µ ◦ χM ◦ µ ∪ χM ◦ λ ◦ χM ◦ λ(x).

Then χM ◦ µ ∪ λ ◦ χM ◦ µ ∪ λ = χM ◦ µ ◦ χM ◦ µ ∪ χM ◦ λ ◦ χM ◦ λ
Therefore χM ◦ µ ∪ λ ◦ χM ◦ µ ∪ λ = χM ◦ µ ◦ χM ◦ µ ∪ χM ◦ λ ◦ χM ◦ λ ⊆ µ ∪ λ.
Hence µ ∪ λ is a fuzzy left quasi-interior ideal of M. □
Corollary 3.11. If µ and λ are fuzzy (right) quasi-interior ideals of a semiring M , then µ ∪ λ is a fuzzy
(right) quasi-interior ideal of a semiring M.

Theorem 3.12. Let M be a semiring. Then M is a regular if and only if
µ = χM ◦ µ ◦ χM ◦ µ, for any fuzzy left quasi interior ideal µ of a semiring M.

Proof. Let µ be a fuzzy left quasi interior ideal of the regular semiring M and x, y ∈M. Then χM ◦µ◦χM ◦µ ⊆
µ.

χM ◦ µ ◦ χM ◦ µ(x) = sup
x=xyx

{
min{χM ◦ µ(x), χM ◦ µ(yx)}

}
≥ sup

x=xyx

{
min{µ(x), µ(x)}

}
= µ(x).

Therefore µ ⊆ χM ◦ µ ◦ χM ◦ µ. Hence χM ◦ µ ◦ χM ◦ µ = µ.
Conversely suppose that µ = χM ◦ µ ◦χM ◦ µ, for any fuzzy left quasi interior ideal µ of the semiring M. Let
B be a left quasi interior ideal of the semiring M.
By Theorem 3.2, χB is a fuzzy left quasi interior ideal of the semiring M.
Then χB = χM ◦ χB ◦ χM ◦ χB = χMBMB. Therefore B = MBMB.
Hence M is the regular semiring . □

4 Fuzzy Soft (left, right) Quasi Interior Ideals

In this section, we introduce the notion of fuzzy soft right(left) quasi interior ideal, fuzzy soft quasi interior
ideal of a semiring and study their properties.

Definition 4.1. Let M be a semiring, E be a parameter set and A ⊆ E. Let µ be a mapping given by
µ : A→ [0, 1]M where [0, 1]M denotes the collection of all fuzzy subsets of M. Then (µ,A) is called a fuzzy
soft left (right) quasi interior ideal over M if and only if for each a ∈ A, the corresponding fuzzy subset
satisfies the following conditions
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(i) µa(x+ y) ≥ min{µa(x), µa(y)} for all x, y ∈M.

(ii) χM ◦ µa ◦ χM ◦ µa ⊆ µa
(
µa ◦ χM ◦ µa ◦ χM ⊆ µa

)
.

A fuzzy soft set(µ,A) over a semiring M, is called a fuzzy soft quasi interior ideal if it is both fuzzy soft left
quasi interior ideal and fuzzy soft right quasi interior ideal over M.

Example 4.2. Let M = {0, a, b, c}, define the binary operations ” + ” and ” · ” on M, with the following
tables

+ 0 a b c

0 0 a b c
a a a b c
b b b b c
c b b b c

· 0 a b c

0 0 0 0 0
a 0 a a a
b 0 a b b
c 0 a b c

Then (M,+, ·) is a semiring.
Let E = {e1, e2, e3}. Choose the fuzzy set (F,E) over M.

Define

0 a b c

fe1 0.7 0.4 0.6 0
fe2 0.8 0.5 0.7 0
fe3 0.9 0.6 0.8 0

{fei}, i = 1, 2, 3 is a fuzzy right quasi interior ideal of M, and {fei} is not a fuzzy right ideal of M. Therefore
(F,E) is not a fuzzy soft right ideal and (F,E) is a fuzzy soft right quasi interior ideal over M.

Theorem 4.3. Let M be a semiring, E be a parameter set and A ⊆ E. If (µ,A) is a fuzzy soft right ideal
over M, then (µ,A) is a fuzzy soft right quasi interior ideal over M.

Proof. Let µa be a fuzzy soft right ideal of the semiring M and x ∈M.

µa ◦ χM (x) = sup
x=ab

min{µa(a), χM (b)} a, b ∈M.

= sup
x=ab

µa(a)

≤ sup
x=ab

µa(ab)

= µa(x).

Therefore µa ◦ χM (x) ≤ µa(x). Now

µa ◦ χM ◦ µa ◦ χM (x) = sup
x=uvs

min{µa ◦ χM (uv), µa ◦ χM (s)}

≤ sup
x=uvs

min{µa(uv), µa(s)}

= µa(x).

Thus µa is fuzzy right quasi-interior ideal of M. Hence (µ,A) is a fuzzy soft right quasi-interior ideal over M.
□

Corollary 4.4. Every fuzzy soft (left) ideal of a semiring M is a fuzzy soft(left) quasi interior ideal over M.

Theorem 4.5. Let M be a semiring, A ⊆ E and (η,A) be a non-empty fuzzy soft over M. Then (η,A) is a
fuzzy soft left quasi interior ideal over M, if and only if the level subset (ηa)k of (η,A) is a left quasi interior
ideal of M, a ∈ A, for every k ∈ [0, 1], where (ηa)k ̸= ϕ.
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Proof. The proof of the following theorem is similar to Theorem 3.6, so we omit the proof. □

Theorem 4.6. Let M be a semiring, E be a parameter set and A ⊆ E, B ⊆ E. If (µ,A) and (λ,B) are
fuzzy soft left quasi interior ideals over M , then (µ,A) ∩ (λ,B) is a fuzzy soft left quasi interior ideal over
M.

Proof. Let (µ,A) and (λ,B) are fuzzy soft left quasi interior ideals of a semiring M. By Definition 2.11, we
have that (µ,A) ∩ (λ,B) = (γ, C) where C = A ∪B.
Case (i): If c ∈ A \ B, then γc = µc. Thus γc is a fuzzy left quasi interior ideal of M, since (µ,A) is a fuzzy
soft left quasi interior ideal over M.
Case (ii): If c ∈ B \ A, then γc = λc. Therefore γc is a fuzzy left quasi interior ideal of M, since (λ,B) is a
fuzzy soft left quasi interior ideal over M.
Case (iii): If c ∈ A ∩B, and x, y ∈M, then γc = µc ∩ λc and
Therefore By Theorem 3.8, γc is a fuzzy left quasi interior ideal of M. Hence (µ,A) ∩ (λ,B) is a fuzzy soft
left quasi interior ideal over M. □

Corollary 4.7. If (µ,A) and (λ,B) are fuzzy soft(right) quasi interior ideals over semiring M, then (µ,A)∩
(λ,B) is a fuzzy soft(right) quasi-interior ideal over M.

Theorem 4.8. Let M be a semiring, E be a parameter set and A ⊆ E, B ⊆ E. If (µ,A) and (λ,B) are
fuzzy soft left quasi-interior ideals of M , then (µ,A) ∪ (λ,B) is a fuzzy soft left quasi interior ideal over M.

Proof. Let (µ,A) and (λ,B) are fuzzy soft left quasi interior ideals over the semiring M. By Definition 2.12,
we have that (µ,A) ∪ (λ,B) = (γ, C) where C = A ∪B.
Case (i): If c ∈ A \ B, then γc = µc. Thus γc is a fuzzy left quasi-interior ideal of M, since (µ,A) is a fuzzy
soft left quasi-interior ideal over M.
Case (ii): If c ∈ B \ A, then γc = λc. Therefore γc is a fuzzy left quasi-interior ideal of M, since (λ,B)is a
fuzzy soft left quasi-interior ideal over M.
Case (iii): If c ∈ A ∪B, and x, y ∈M, then γc = µc ∪ λc.
Therefore By Theorem 3.10, γc is a fuzzy left quasi-interior ideal of M. Hence (µ,A) ∪ (λ,B) is a fuzzy soft
left quasi-interior ideal over M. □

Corollary 4.9. If (µ,A) and (λ,B) are fuzzy soft(right) quasi-interior ideals over semiring M, then (µ,A)∪
(λ,B) is a fuzzy soft(right) quasi-interior ideal over M.

Theorem 4.10. Let M be a semiring, E be a parameter set and A ⊆ E. Then (µ,A) is a fuzzy soft left
quasi-interior ideal over a regular semiring M if and only if (µ,A) is a fuzzy soft quasi ideal over a semiring
M.

Proof. Let (µ,A) be a fuzzy soft left quasi interior ideal over the regular semiring M and x ∈M. Then for
each a ∈ A, χM ◦ µa ◦ χM ◦ µa ⊆ µa.
Suppose χM ◦ µa(x) > µa(x) and µa ◦ χM (x) > µa(x).
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Since M is regular, there exists y ∈M, such that x = xyx.

µa ◦ χM (x) = sup
x=xyx

min{µa(x), χM (yx)}

= sup
x=xyx

min{µa(x), 1}

= sup
x=xyx

µa(x)

> µa(x). And

µa ◦ χM ◦ µa ◦ χM (x) = sup
x=xyx

min{µa ◦ χM (x), µa ◦ χM (yx)}

> sup
x=xyx

min{µa(x), µa(yx)}

= µa(x)

Which is a contradiction. Hence (µ,A) is a fuzzy soft quasi ideal of M.
Let (µ,A) be a soft quasi interior ideal over the semiring M, and a ∈ A.
Then µa ◦ χM ∧ χM ◦ µa ⊆ µa.
µa ◦ χM ◦ µa ◦ χM ⊆ µa ◦ χM , and χM ◦ µa ◦ χM ◦ µa ⊆ χM ◦ µa.
Therefore χM ◦ µa ◦ χM ◦ µa ∧ µa ◦ χM ◦ µa ◦ χM ⊆ χM ◦ µa ∧ µa ◦ χM ⊆ µa.
Hence (µ,A) is the fuzzy soft quasi interior ideal over M. □

Corollary 4.11. Let M be a regular semiring, E be a parameter set and A ⊆ E. Then (µ,A) is a fuzzy
soft(right) quasi interior ideal over a semiring M if and only if (µ,A) is a fuzzy soft quasi ideal over a
semiring M.

Theorem 4.12. Let M be a semiring, E be a parameter set and A ⊆ E. Then M is a regular if and only if
µa = χM ◦ µa ◦ χM ◦ µa, a ∈ A, for any fuzzy left quasi interior ideal of fuzzy soft quasi interior ideal (µ,A)
over a semiring M.

Proof. Let (µ,A) be a fuzzy soft left quasi interior ideal over the regular semiring M and x, y ∈M. Then to
each a ∈ A, χM ◦ µa ◦ χM ◦ µa ⊆ µa.

χM ◦ µa ◦ χM ◦ µa(x) = sup
x=xyx

{min{χM ◦ µa(x), χM ◦ µa(yx)}}

≥ sup
x=xyx

{min{µa(x), µa(x)}}

= µa(x).

Therefore µa ⊆ χM ◦ µa ◦ χM ◦ µa. Hence χM ◦ µa ◦ χM ◦ µa = µa.
Conversely suppose that µa = χM ◦µa◦χM ◦µa, for any fuzzy soft quasi interior ideal (µ,A) over the semiring
M and a ∈ A. Let B be a quasi interior ideal of the semiring M. By Theorem 3.2, χB be a fuzzy quasi interior
ideal of the semiring M. Then χB = χM ◦ χB ◦ χM ◦ χB = χMBMB. Thus B = MBMB.
Hence M is the regular semiring . □

Theorem 4.13. Let M be a semiring, E be a parameter set and A ⊆ E,B ⊆ E. Then M is a regular if and
only if µb ∩ γa ⊆ µb ◦ γa ◦ µb ◦ γa, for every fuzzy soft left quasi interior ideal (γ,A) and every fuzzy soft ideal
(µ,B) over a semiring M, a ∈ A, b ∈ B.
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Proof. Let M be a regular semiring and x ∈ M. Then there exist y ∈ M such that x = xyx, for each
a ∈ A, b ∈ B, γa is a fuzzy left quasi interior ideal, µb is a fuzzy ideal of the semiring M. Then

µb ◦ γa ◦ µb ◦ γa(x) = sup
x=xyx

{
min{µb ◦ γa(xy), µb ◦ γa(x)}

}
= min

{
sup

xy=xyxy
{min{µb(x), γa(yxy)}, sup

xy=xyxy
{min{µb(x), γa(yxy)}}

}
≥ min

{
min{µb(x), γa(x)},min{µb(x), γa(x)}

}
= min{µb(x), γa(x)} = µb ∩ γa(x).

Hence µb ∩ γa ⊆ µb ◦ γa ◦ µb ◦ γa.
Conversely, suppose that the condition holds. Let (µ,B) be a fuzzy soft left quasi interior ideal of the semiring
M. Then to each b ∈ B, µb∩χM ⊆ χM ◦µb ◦χM ◦µb, µb ⊆ χM ◦µb ◦χM ◦µb. Hence M is the regular semiring.
□

5 Conclusion

In this paper, we discussed the algebraic properties of fuzzy right(left) quasi interior ideal and fuzzy soft
quasi interior ideal of a semiring. Regular semiring is characterized in terms of fuzzy quasi interior ideals and
fuzzy soft quasi-interior ideals. We proved, that if M is a semiring, E be a parameter set and A ⊆ E, B ⊆ E
and if (µ,A) and (λ,B) are fuzzy soft left quasi interior ideals over M , then (µ,A) ∩ (λ,B), ((µ,A) ∪ (λ,B))
are fuzzy soft left quasi interior ideal over M. One can extend this work by studying the other algebraic
structures.
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1 Introduction

The Yang–Baxter equation first appeared in theoretical physics, and in statistical mechanics. Finding solu-
tions of this equation represents a research topic of current interest. W. Rump proved in [19] that every set A
with a binary operation · satisfying equation (L) (x ·y) · (x ·z) = (y ·x) · (y ·z) corresponds to a solution of the
quantum Yang–Baxter equation if the left multiplication is bijective. Equation (L) also appears in algebraic
logic, classical or intuitionistic logic, as well as in infinite-valued  Lukasiewicz logic (see [20] for details). Based
on equation (L), W. Rump developed in [20] the concept of L-algebras, proving that for every L-algebra A
there exists a self-similar closure S(A), unique up to isomorphism, with an embedding of A to S(A). The
self-similar closure S(A) admits a left group of fractions G(A) with a natural map A ↪→ S(A) −→ G(A) and,
if A is a semiregular L-algebra, then the structure group G(A) is an ℓ-group ([20, Th. 3, Th. 4]). W. Rump
and Y. Yang proved that an L-algebra is representable as an interval in an ℓ-group if and only if it is semireg-
ular with the smallest element and bijective negation ([21, Th. 3.11]), and that the pseudo MV-algebras can
be characterized as semiregular L-algebras with negation ([30]). Since L-algebras have applications in many
areas such as number theory ([24]), group theory ([22], [23], [25]), lattice theory ([26]), the study of these
algebras is a topic of great interest nowadays (see for example [7], [14], [28], [29]). The categories of algebras
of fuzzy logic have been investigated for Hilbert algebras ([3], [4], [13]), BCI-algebras ([1]), p-semisimple
BCI-algebras ([32]), BCH-algebras ([6]), EQ-algebras ([2]), pseudo BCI-algebras ([11], [12]).
Motivated by the fact that the studies on L-algebras are of current interest, in this paper we study the
category Lalg of L-algebras and prove that the category Lalg has equalizers, and coequalizers, kernel pairs
and products. We also prove that any coequalizer is surjective and it is a coequalizer of its kernel pair. We
construct the product of two particular objects in Lalg, and finally we give an example of two objects in
Lalg having a co-product. We introduce the notion of divisible cyclic L-algebras and prove that the cyclic
L-algebras and MV-algebras are categorial equivalent. We also investigate the existence of injective objects
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in the category Lalg and prove that {1} is the only injective object in this category. The main result consists
of proving that an object X in the category CyLalg of cyclic L-algebras is injective if and only if X is a
complete and divisible cyclic L-algebra.

2 Preliminaries

In this section we recall some basic notions and results regarding L-algebras that we use in this paper (see
[20]).

Magma is a structure (A,→), where → is a binary operation of a set A. In a magma (A,→), an element
e ∈ A is a logical unit if

e→ x = x, x→ x = x→ e = e. (U)
The logical unit is unique. Indeed, if e, e′ are logical units, then e = e → e = e′. We denote the logical unit
by 1. Then (A,→, 1) is called a unital magma. A magma (A,→) is a cycloid such that

(x→ y)→ (x→ z) = (y → x)→ (y → z). (L)
A unital cycloid is a cycloid with logical unit (see [20]). If a unital cycloid (A,→, 1) satisfies

x→ y = y → x = 1 implies x = y, (An)
then it is called an L-algebra. If an L-algebra (A,→, 1) satisfies

x→ (y → x) = 1, (K)
then it is called a KL-algebra. A CL-algebra is an L-algebra (A,→, 1) such that

(x→ (y → z))→ (y → (x→ z)) = 1. (C)
It follows that in any L-algebra A satisfying condition (C) we have x → (y → z) = y → (x → z), for all
x, y, z ∈ A. Given an L-algebra (A,→, 1), a binary relation ≤ is defined by x ≤ y iff x → y = 1, for all
x, y ∈ A.
The notion of a self-similar closure was introduced by W. Rump in [20] and it proved to play a crucial role in
the study of L-algebras. Let H be a self-similar L-algebra and let A be a subalgebra of H. As we mentioned,
H is a left hoop. If the monoid H is generated by A, we call H a self-similar closure of A and it is denoted
by S(A). According to [20, Th. 3], for any L-algebra A, the self-similar closure S(A) exists and it is unique,
up to isomorphism. Obviously, if H is a self-similar left hoop, then S(H) = H. By condition (H), any
self-similar left hoop H satisfies the left Ore condition (for each pair of elements a, b ∈ H, there are c, d ∈ H
such that ca = db - see [20]), hence the self-similar closure S(A) of an L-algebra A has the left Ore condition.
Due to the left Ore condition, S(A) admits a left group of fractions G(S(A)) (consisting of left fractions
x−1y, for all pairs x, y ∈ S(A)), denoted by G(A). The morphism A ↪→ S(A) −→ G(A) defines a natural
map q : A −→ G(A) with q(x) = q(y) if and only if there is c ∈ S(A) such that cx = cy (see [20, Def. 5]).
By [20, Prop. 10], if A is a KL-algebra, then S(A) is also a KL-algebra. A monoid H with an additional
operation → is a left hoop if the following hold for all a, b, c ∈ H: (E) a→ a = 1, (A) ab→ c = a→ (b→ c),
(H) (a→ b)a = (b→ a)b. It was proved in [20, Prop. 3] that every left hoop is an L-algebra. An L-algebra
A is said to be self-similar if and only if for any x ∈ A, the map ρ :↓ x = {y ∈ X | y ≤ x} −→ A, defined by
ρ(y) = x→ y is a bijection. It is easy to see that ρ is isotone, more precisely, it is monotone increasing. Based
on the bijective map ρ we define a new operation on A, namely, for all x, y ∈ A, the product xy is defined
as the inverse image of x. In other words, xy is unique, and it is determined by xy ≤ y and y → xy = x.
By [20, Th. 1], every self-similar L-algebra with the new product operation is a left-hoop. An L-algebra A is
called commutative if S(A) is commutative as a monoid. According to [20, Prop. 19], S(A) is commutative
if and only if A is a KL-algebra and, for all x, y ∈ A :

(x→ y)→ y = (y → x)→ x. (Com)
In this case S(A) ∼= G(A)− and x∨y = (x→ y)→ y holds for all x, y ∈ S(A). Indeed, since L is a KL-algebra
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we have x ≤ (y → x) → x = x ∨ y and y ≤ (x → y) → y = x ∨ y. If u ∈ L such that x ≤ u and y ≤ u,
then u → y ≤ x → y, so that x ∨ y = (x → y) → y ≤ (u → y) → y = (y → u) → u = 1 → u = 1. Similarly,
u → x ≤ y → x and x ∨ y = (y → x) → x ≤ (u → x) → x = (x → u) → u = 1 → u = u. Hence x ∨ y is the
lower upper bound of {x, y}.
Let (A,→, 1) be an L-algebra. We call I ⊆ A an ideal of A if it satisfies the following conditions for all
x, y ∈ A ([20]): (I0) 1 ∈ I; (I1) x, x→ y ∈ I imply y ∈ I; (I3) x ∈ I implies y → x, y → (x→ y) ∈ I. Denote
by ID(A) the set of all ideals of A. Obviously {1}, A ∈ ID(A).
Let (A,→, 1) be an L-algebra and let I ∈ ID(A). According to [20], [7] we have:
(1) If A satisfies condition (K), then (I3) can be omitted.
(2) If A satisfies condition (D), then (I2) can be omitted.
(3) If A satisfies condition (C), then (I2) and (I3) can be omitted.
Let A be an L-algebra. For every subset B ⊆ A, the smallest ideal of A containing B (i.e. the intersection
of all ideals I ∈ ID(A) such that B ⊆ I) is called the ideal generated by B and it will be denoted by [B). If
B = {x} we write [x) instead of [{x}). In this case [x) is called a principal ideal of A. Let (A,→, 1) be an
L-algebra. Then every ideal I of A defines a congruence:

x ∼ y iff x→ y, y → x ∈ I.
Conversely, each congruence ∼ of A defines an ideal I := {x ∈ X | x ∼ 1}.
A congruence ∼ of A is called a relative congruence if the quotient algebra (A/∼,→, [1]∼) is an L-algebra.
According to [20, Cor. 1], for an L-algebra X, there is a bijective correspondence between ideals and relative
congruences. We denote by θI =∼I a relative congruence defined by an ideal I, and (A/I,→, [1]I) the
corresponding quotient algebra. We write [x]∼I = x/I and obviously I = 1/I. The function πI : A −→ A/I
defined by πI(x) = x/I for any x ∈ A is a surjective homomorphism which is called the canonical projection
from A to A/I. One can easily prove that Ker (πI) = I. If A is a self-similar L-algebra and I is an ideal of
A, then by [20, Cor. 3] A/I is a self-similar L-algebra.

Let (A,→, 1) and (B,→, 1) be two L-algebras. A map f : A −→ B is called a morphism if f(x →
y) = f(x) → f(y), for all x, y ∈ A. Denote by HOM (A,B) the set of all morphisms from A to B. If
f ∈ HOM (A,B), then Ker (f) = {x ∈ A | f(x) = 1} is called the kernel of f .
For any f ∈ HOM (A,B) the following hold: (i) f(1) = 1, (ii) f(x) ≤ f(y), whenever x, y ∈ A, x ≤ y, (iii)
Ker (f) ∈ ID(A).

Proposition 2.1. Let A, B be two self-similar L-algebras. If f ∈ HOM (A,B), then f(xy) = f(x)f(y), for
all x, y ∈ A.

Proof. For all x, y ∈ A we have xy ≤ y and y → xy = x. It follows that f(y)→ f(xy) = f(x). On the other
hand, f(x)f(y) ≤ f(y) and f(y) → f(x)f(y) = f(x). Since the product is unique we get f(xy) = f(x)f(y).
□

3 MV-algebras as L-algebras

We recall the definition and certain results on MV-algebras, and we define the notion of cyclic L-algebras.
The main result consists of proving that an algebra (A,⊕, 0) is an MV-algebra if and only if (A,→, 1) is a
cyclic L-algebra.

Let A be an L-algebra having a smallest element 0, and denote x− = x → 0, for all x ∈ A. We say that
A has a negation if the map − : A −→ A, defined by x 7→ x− is bijective. Using the inverse of negation
−, denoted by ∼, we define the second implication on A by x ⇝ y = y∼ → x∼. Clearly, x ⇝ 0 = x∼ and
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x−∼ = x∼− = x, for any x ∈ A. By [21, Prop. 2.8], if A is a semiregular L-algebra with negation, then
x ≤ y iff x− ≥ y−. According to [21, Th. 3.8], for any semiregular L-algebra with a negation (A,→, 1), the
structure Aop := (A,⇝, 1) is a semiregular L-algebra with negation such that (Aop)op = A. For a semiregular
L-algebra with negation A, a product operation · was defined in [21] by x · y = (x → y−)∼, for all x, y ∈ A,
and it is proved that x · y ≤ z iff x ≤ y → z iff y ≤ x⇝ z, for all x, y, z ∈ A ([21, Prop. 3.2]). Moreover, from
x → y ≤ x → y and x ⇝ y ≤ x ⇝ y we get x ≤ (x → y) ⇝ y and x ≤ (x ⇝ y) → y, respectively. It follows
that a semiregular L-algebra with negation is a CL-algebra. According to [21, Prop. 3.5], a semiregular
L-algebra with negation is a left hoop, so that the operation · is associative. For a semiregular L-algebra with
negation A we set:

x ∧ y := ((x→ y)→ x−)∼, x ∨ y = (x∼ → y∼)→ x,
for all x, y ∈ A. It is proved in [21, Prop. 2.9] that (A,∧,∨) is a lattice.

Proposition 3.1. ([8]) Let (A,→, 1) be a semiregular L-algebra with negation. Then the following hold for
all x, y ∈ A :
(1) x · 0 = 0 · x = 0, x · 1 = 1 · x = x;
(2) x− · x == 0;
(3) x→ y = y− → x−;
(4) x− → y = y− → x;
(5) y ≤ x→ y.

Let (A,→, 0, 1) be a semiregular L-algebra with negation. We define the sum of the elements x and y of
A:

x+ y := y− → x = x− → y.

Proposition 3.2. ([8]) Let A be a semiregular L-algebra with negation. Then the following hold for all
x, y ∈ A :
(1) 0 + x = x+ 0 = x;
(2) 1 + x = x+ 1 = 1;
(3) x+ x− = 1;
(4) x · y = (y− + x−)−;
(5) x+ y = (y− · x−)−;
(6) x+ y = y + x.

Proof. The proof is straightforward. □

Definition 3.3. A semiregular L-algebra with negation A is said to be cyclic if x− = x∼, for all x ∈ A.

If A is cyclic, then we can easily see that x ∨ y = (x→ y)→ y = (y → x)→ x, for all x, y ∈ A.
The MV-algebras were defined by Chang in 1958 ([5]) as algebraic counterparts of ℵ0-valued  Lukasiewicz
logic. For details on MV-algebras we refer the reader to [9].
An MV-algebra is an algebra (A,⊕,−, 0) with a binary operation ⊕, a unary operation − and a constant 0
satisfying the following equations, for all x, y, z ∈ A: (MV1) (x⊕ y)⊕ z = x⊕ (y ⊕ z);
(MV2) x⊕ y = y ⊕ x;
(MV3) x⊕ 0 = x;
(MV4) (x−)− = x;
(MV5) x⊕ 0− = 0−;
(MV6) (x− ⊕ y)− ⊕ y = (y− ⊕ x)− ⊕ x.
Axioms (MV1)-(MV3) state that (A,⊕, 0) is a commutative monoid. As a consequence, in any MV-algebra
A we have 1− = 0 and x⊕x− = 1, for all x ∈ A. We can easily see that the map x 7→ x− is bijective. Indeed,
if x1, x2 ∈ A with x−1 = x−2 , then x−−1 = x−−2 , and by (MV4) we get x1 = x2. Moreover, since x = (x−)−, the
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map x 7→ x− is bijective. If (A,⊕,−, 0) is an MV-algebra, we define the following operations, for all x, y ∈ A:
x ⊙ y = (x− ⊕ y−)−, x → y = x− ⊕ y = (x ⊙ y−)−, 1 = 0−. We can see that x− = x → 0. A partial order
relation ≤ is defined on A by x ≤ y iff x− ⊕ y = 1. Two auxiliary operations ∨ and ∧ are defined, by setting
x ∨ y = x⊕ y ⊙ x− = y ⊕ x⊙ y− and x ∧ y = x⊙ (y ⊕ x−) = y ⊙ (x⊕ y−). Then (A,∧,∨, 0, 1) is a lattice.

Lemma 3.4. If (A,⊕,−, 0) is an MV-algebra, then the following hold for all x, y ∈ A :
(1) x ≤ y iff y− ≤ x−;
(2) (x→ y) ∨ (y → x) = 1;
(3) y → x⊙ y = x− ∨ y.

Proof. (3) Replacing y by y− in (MV6), we get y−⊕(y−⊕x−)− = (x⊕y)−⊕x, so that y−⊕x⊙y = (x⊕y)−⊕x.
It follows that y → x⊙ y = (x− → y)→ x = x− ∨ y. □

A monoid (H,⊙, 1) with an additional binary operation → will be called a left hoop if the following are
satisfied for x, y, z ∈ H: (h1) x → x = 1, (h2) x → (y → z) = x ⊙ y → z, (h3) (x → y) ⊙ x = (y → x) ⊙ y
([20, Def. 3]).

Lemma 3.5. If (A,⊕,−, 0) is an MV-algebra, then (A,⊙,→, 1) is a left hoop.

Proof. For all x, y, z ∈ A, we have: x → x = x− ⊕ x = 1, x ⊙ y → z = (x ⊙ y)− ⊕ z = (y− ⊕ x−) ⊙ z =
x− ⊕ (y− ⊕ z) = x→ (y → z), and (x→ y)⊙ x = (x− ⊕ y)⊙ x = x∧ y = (y− ⊕ x)⊙ y = (y → x)⊙ y. Hence
(A,⊙,→, 1) is a left hoop. □

Proposition 3.6. If (A,⊕,−, 0) is an MV-algebra, then (A,→, 0, 1) is a cyclic L-algebra.

Proof. We check axioms (U), (L) and (An) from the definition of L-algebras.
Since x → x = x− ⊕ x = 1, 1 → x = 1− ⊕ x = 0 ⊕ x = x, and x → 1 = x− ⊕ 1 = 1, axiom (U) is
satisfied. If x → y = y → x = 1, then x− ⊕ y = y− ⊕ x = 1, so that x ≤ y and y ≤ x. It follows that
x = y, that is axiom (An) is also verified. Let x, y, z ∈ A. Replacing x by x− and y by y− in (MV6) we get
(x ⊕ y−)− ⊕ y− = (y ⊕ x−)− ⊕ x−, so that (y ⊕ x−)− ⊕ (x− ⊕ z) = (x ⊕ y−)− ⊕ (y− ⊕ z). It follows that
(x→ y)− ⊕ (x→ z) = (y → x)− ⊕ (y → z), that is (x→ y)→ (x→ z) = (y → x)→ (y → z), and so, axiom
(L) is satisfied. It follows that (A,→, 1) is an L-algebra. By Lemma 3.5, A is a left hoop and according to
[21, Thm. 3.7], an L-algebra with negation is semiregular if and only if it is a left hoop satisfying conditions
from Lemma 3.4. We conclude that (A,→, 0, 1) is a cyclic L-algebra. □

Proposition 3.7. If (A,→, 0, 1) is a cyclic L-algebra, then (A,+, 0) is an MV-algebra.

Proof. We check axioms (MV1)-(MV6) from the definition of MV-algebras. Since (x + y) + z = (x− →
y) + z = z− → (x− → y) = x− → (z− → y) = x+ (y + z), axiom (MV1) is satisfied. Axioms (MV2), (MV3)
and (MV5) follow from Proposition 3.2(6),(1),(2), respectively, while axiom (MV4) is true by the definition
of negation. Finally, the identity (x → y) → y = (y → x) → x(= x ∨ y) implies (MV6), so that (A,+, 0) is
an MV-algebra. □

Theorem 3.8. An algebra (A,⊕, 0) is an MV-algebra if and only if (A,→, 1) is a cyclic L-algebra.

Proof. It follows by Propositions 3.6 and 3.7. □

Example 3.9. Consider the set A = {0, a, b, 1} and the operation → given by the following table:

→ 0 a b 1

0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

.
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The structure (A,→, 1) is a cyclic L-algebra. The negation − and the operations ·, + are given in the tables
below.

x 0 a b 1

x− 1 b a 0

· 0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

+ 0 a b 1

0 0 a b 1
a 0 a 1 1
b b 1 b 1
1 1 1 1 1

.

Then (A,+, 0) is an MV-algebra.

Proposition 3.10. The meets and unions (∧MV ,∨MV ) of an MV-algebra coincide with the meets and unions
(∧L,∨L) of its corresponding cyclic L-algebra (A,→, 0, 1).

Proof. Recall that:
x ∧MV y = x⊙ (y ⊕ x−) = y ⊙ (x⊕ y−), x ∨MV y = x⊕ y ⊙ x− = y ⊕ x⊙ y−,
x ∧L y = ((x→ y)→ x−)− = ((y → x)→ y−)−, x ∨L y = (x→ y)→ y = (y → x)→ x,

for all x, y ∈ A. Then we have:
x ∧MV y = x⊙ (y ⊕ x−) = (x− ⊕ y)⊙ x = ((x− ⊕ y)⊙ x)−− = ((x− ⊕ y)− ⊕ x−)−

= ((x→ y)− ⊕ x−)− = ((x→ y)→ x−)− = x ∧L y,
x ∨MV y = y ⊕ x⊙ y− = x⊙ y− ⊕ y = (x− ⊕ y)− ⊕ y = (x→ y)− ⊕ y

= (x→ y)→ y = x ∨L y.
Hence the two pairs of lattice operations coincide. □

4 The Category of L-algebras

In this section, we define the category Lalg of L-algebras and prove that this category has equalizers, co-
equalizers, and kernel pairs. We also prove that any coequalizer is surjective and it is a coequalizer of its
kernel pair.
We consider the category of L-algebras, denoted by Lalg whose objects are L-algebras and whose morphisms
are L-algebras homomorphisms. Denote by Ob(Lalg) the class of objects of Lalg, and for any X,Y ∈ Lalg,
we denote by Lalg(X,Y) the class of morphisms of Lalg. For details regarding the notions and results of
category theory we refer the reader to [17], [18], [16], [3].

In a category C, an object 0 is called an initial object if, for every object X of C, there is exactly one
morphism from 0 to X. And dually, an object 1 is called a terminal or final object if, for every object X,
there is exactly one morphism from X to 1. If an object is simultaneously an initial and a final object, it is
called a nullary object or a zero object.

Proposition 4.1. The category Lalg has an initial and final object.

Proof. We can see that in the category Lalg, 0 = 1 = ({1},→, 1) is an initial object as well as a final object.
Indeed, for any X ∈ Ob(Lalg) there is a unique morphism f : {1} −→ X and there is a unique morphism
f : X −→ {1}. Hence {1} is a nullary object of Lalg. □

Generally speaking, if C is an algebraic category and X,Y ∈ Ob(C), then f ∈ C(X,Y ) is a monomorphism
if for any Z ∈ Ob(C) and g, h ∈ C(Z,X) such that f ◦ g = f ◦ h, we have g = h. Similarly, if g ◦ f = h ◦ f
implies g = h for any g, h ∈ C(Y, Z), then f is called an epimorphism.
In this section we extend to the case of Lalg some results proved in [11] and [6] for the categories of pseudo-
BCI algebras and pseudo-BCH algebras, respectively.
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Theorem 4.2. In the category Lalg monomorphisms and injective morphisms coincide.

Proof. Let X,Y ∈ Ob(Lalg) and let f ∈ Lalg(X,Y ) injective. Consider X ′ ∈ Ob(Lalg) and g, h ∈
Lalg(X ′, X) such that f ◦ g = f ◦ h, that is (f(g(x)) = f(h(x)), for any x ∈ X ′. Since f is injective, we
get f(x) = g(x) for all x ∈ X ′, hence g = h. It follows that f is a monomorphism of Lalg. Conversely,
suppose that f is a monomorphism, so that f ◦ g = f ◦ h implies g = h. It is enough to prove that
Ker (f) = {1}. Let Ker (f) such that x ̸= 1, and define g, h : Ker (f) −→ X, by g(x) = x, h(x) = 1,
for all x ∈ Ker (f). We have f(x) = f(1) = 1, hence f ◦ g = f ◦ h). Since f is a monomorphism, we
get g = h, a contradiction. Thus Ker (f) = {1}, that is f is injective. (Indeed, if x1, x2 ∈ A such that
f(x1) = f(x2), we have f(x1 → x2) = f(x1) → f(x2) = 1 and f(x2 → x1) = f(x2) → f(x1) = 1. It follows
that x1 → x2, x2 → x1 ∈ Ker (f) = {1}, that is x1 → x2 = x2 → x1 = 1. We get x1 ≤ x2 and x2 ≤ x1, hence
by (L3) we have x1 = x2). □

Proposition 4.3. In the category Lalg surjective morphisms are epimorphisms.

Proof. Let X,Y ∈ Ob(Lalg) and let f ∈ Lalg(X,Y) surjective. Consider Z ∈ Ob(Lalg) and g, h ∈
Lalg(Y,Z) such that g ◦ f = h ◦ f . Let y ∈ Y . Since f is surjective, there is x ∈ X such that f(x) = y.
It follows that g(y) = g(f(x)) = h(f(x)) = h(y), for all y ∈ Y , that is g = h. We conclude that f is an
epimorphism in Lalg. □

Remark 4.4. The converse of Proposition 4.3 is not always true. Indeed, in [4, Ex. 4.1] is given an example
of an epimorphism of Hilbert algebras which is not surjective. Since by [7, Rem. 4.12] any Hilbert algebra is
an L-algebra, it follows that not any surjective morphism in Lalg is an epimorphism.

We recall that f ∈ Lang(X,Y ) is a bimorphism if it is both monomorphism and epimorphism. If any
bimorphism in a category is an isomorphism, the category is called balanced or perfect.

Corollary 4.5. The category Lang is not perfect.

Proposition 4.6. Let f : X −→ Y be an epimorphism of L-algebras. Then [Im (f)) = Y .

Proof. Let I = [Im (f)) and suppose that I ̸= Y . Consider the map 1Y : Y −→ Y/I defined by 1Y (x) = 1/I,
for all x ∈ Y . Since f(x) ∈ Im (f) ⊆ I, for any x ∈ X, we have (πI ◦ f)(x) = πI(f(x)) = 1/I = 1Y (f(x)) =
(1Y ◦ f)(x). Hence πI ◦ f = 1Y ◦ f . On the other hand, πI(x) = 1B(x) if and only if x ∈ I ̸= Y . It follows
that f is not an epimorphism, a contradiction. We conclude that [Im (f)) = Y . □

Corollary 4.7. If f : X −→ Y is an epimorphism of L-algebras such that Im (f) ∈ ID(Y ), then f is
surjective.

Definition 4.8. A homomorphism f : X −→ Y of L-algebras satisfying Im (f) ∈ ID(Y ) is said to be regular.
A category has ES property (epimorphism surjectivity property) if all its epimorphisms are surjective.

Corollary 4.9. The category Lalg does not have ES property.

Let C be a category, and let X,Y ∈ Ob(C) and f, g ∈ C(X,Y ). An equalizer of the couple (f, g) is a pair
(E, e) with E ∈ Ob(C) and e ∈ C(E,X) such that:
(i) f ◦ e = g ◦ e;
(ii) if (E′, e′) is another pair that satisfies (i), then there exists a unique morphism u ∈ C(E′, E) such that
e′ = e ◦ u.
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If a couple of morphisms in C has an equalizer (E, e), then it is unique up to an isomorphism ([3, Rem.
4.2.14]) and e is a monomorphism in C([3, Rem. 4.2.16]). We say that the category C has equalizers if any
couple of morphisms in C has an equalizer.

Theorem 4.10. The category Lalg has equalizers.

Proof. Let X,Y ∈ Ob(Lalg) and let f, g ∈ Lalg(X,Y ). Then E = {x ∈ X | f(x) = g(x)} is a nonempty
subalgebra of X and consider the embedding e : E −→ X (e(x) = x, for any x ∈ E). Obviously, E ∈
Ob(Lalg), e ∈ Lalg(E,X) and f ◦ e = g ◦ e. Moreover, it is easy to see that e is a monomorfism in Lalg.
Let E′ ∈ Ob(Lalg) and let e′ ∈ Lalg(E′, X) such that f ◦ e′ = g ◦ e′. Define u : E′ −→ X, by u(x) = e′(x)
for any x ∈ E′. Since f(e′(x)) = g(e′(x)), it follows that e′(x) ∈ E for all x ∈ E′, hence u is well defined. We
have e(u(x)) = e(e′(x)) = e′(x) for any x ∈ E′, so that e ◦ u = e′. By the fact that e is a monomorphism,
it follows that u is unique. We conclude that (E, e) is an equalizer of the couple (f, g), that is Lalg has
equalizers. □
Corollary 4.11. If a couple of morphisms in the category Lalg has an equalizers (E, e), then e is injective.

Proof. It follows by Theorem 4.2, since e is a monomorphism in Lalg. □
Example 4.12. Let X1 = {0, 1}, Y1 = {0, 1, 2} and consider the following binary operations →1,⊙1 and
→2,⊙2 defined on X1, Y1, respectively.

→1 0 1

0 1 1
1 0 1

⊙1 0 1

0 0 0
1 0 1

→2 0 1 2

0 2 2 2
1 1 2 2
2 0 1 2

⊙2 0 1 2

0 0 0 0
1 0 0 1
2 0 1 2

Then the structures (X1,⊙1,→1, 1), (Y1,⊙2,→2, 1) are BL-algebras ([15, Ex. 7.1]), and according to
to [7, Prop. 4.7], X = (X1,→1, 1), Y = (Y1,→2, 1) are L-algebras. Hence X,Y ∈ Ob(Lalg), and let
f, g ∈ Lalg(X,Y ) defined by f(0) = 0, f(1) = 2, g(0) = 1, g(1) = 2. Consider E = {x ∈ X | f(x) = f(y)} =
{1} ∈ Ob(Lalg), and let e ∈ Lalg(E,X) defined by e(x) = x. Then (E, e) is an equalizer of the pair (f, g).

Let C be a category, and let X,Y ∈ Ob(C) and f, g ∈ C(X,Y ). A coequalizer of the couple (f, g) is a pair
(Q, q) with Q ∈ Ob(C) and q ∈ C(Y,Q) such that:
(i) q ◦ f = q ◦ g;
(ii) if (Q′, q′) is another pair which satisfies (i), then there exists a unique morphism u ∈ C(Q,Q′) such that
q′ = u ◦ q.
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We say that the category C has coequalizers if any couple of morphisms in C has a coequalizer.

Theorem 4.13. The category Lalg has coequalizers.

Proof. Let X,Y ∈ Ob(Lalg) and let f, g ∈ Lalg(X,Y ). Denote Z = {(f(x), g(x)) ∈ Y × Y | x ∈ X} and
let Q = Y/[Z) ∈ Ob(Lalg) (by [20, Cor. 1]). If q : Y −→ Q is the canonical projection, then q ∈ Lalg(Y,Q),
and we prove that (Q, q) is a equalizator for (f, g). Obviously, (f(x), g(x)) ∈ θ[Z) for all x ∈ X, so that
(q ◦ f)(x) = q(f(x)) = [f(x)]θ[Z)

= [g(x)]θ[Z)
= q(g(x)) = (q ◦ g)(x), for all x ∈ X. Hence q ◦ f = q ◦ g.

Let Q′ ∈ Ob(Lalg) and let q′ ∈ Lalg(Y,Q′) such that q′ ◦ f = q′ ◦ g, that is q′(f(x)) = q′(g(x)) for all
x ∈ X. It follows that f(x) → g(x), g(x) → f(x) ∈ Ker (q′), hence (f(x), g(x)) ∈ θK , where K = Ker (q′).
Thus Z ⊆ θK , that is θ[Z) ⊆ θK . Define the morphism u : Q −→ Q′ by u(y/[Z)) = q′(y) (u is well defined,
since y1/[Z) = y2/[Z) implies (y1, y2) ∈ θ[Z) ⊆ θK , that is q′(y1) = q′(y2)). Obviously u ◦ q = q′. Since q is
surjective, it is an epimorphism, that is u is unique. We conclude that (Q, q) is a coequalizator for the couple
(f, g). □

Example 4.14. ConsiderX,Y ∈ Ob(Lalg) and f, g ∈ Lalg(X,Y ) from Example 4.12. Let Z = {(f(x), g(x)) ∈
Y × Y | x ∈ X} = {(f(0), g(0)), (f(1), g(1))} = {(0, 1), (2, 2)}.
Then [Z) = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 2)} and Q = Y/[Z) = {[0] = [1] = {0, 1}, [2] = {2}}. We have
Q ∈ Ob(Lalg) and let q ∈ Lalg(Y,Q) be the canonical projection: q(0) = q(1) = [0] = [1], q(2) = [2]. Then
(Q, q) is a coequalizator for the pair (f, g).

Let C be a category, and let X,Y ∈ Ob(C) and f ∈ C(X,Y ). A kernel pair of the f is a system (P, p1, p2)
with P ∈ Ob(C) and p1, p2 ∈ C(P,X) such that:
(i) f ◦ p1 = f ◦ p2;
(ii) if (Q, q1, q2) is another system which satisfies (i), then there exists a unique morphism u ∈ C(Q,P ) such
that p1 ◦ u = q1 and p2 ◦ u = q2.
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We say that the category C has kernel pairs if any morphisms in C has a kernel pair.

Theorem 4.15. The category Lalg has kernel pairs.

Proof. Let X,Y ∈ Ob(Lalg) and let f ∈ Lalg(X,Y ). Obvioulsy, the structure (X × X,→, (1, 1)) is an
L-algebra, where (x1, y1) → (x2, y2) = (x1 → x2, y1 → y2). Denote P = {(x1, x2) ∈ X × X | f(x1) =
f(x2)}, and clearly P is an L-subalgebra of X × X, that is P ∈ Ob(Lalg). Let p1, p2 : P −→ X be
the canonical projections, that is p1(x1, x2) = x1, p2(x1, x2) = x2, for all (x1, x2) ∈ X × X. Obviously
p1, p2 ∈ Lalg(P,X) such that f ◦ p1 = f ◦ p2. Consider now Q ∈ Ob(Lalg) and q1, q2 ∈ Lalg(Q,X) such
that f ◦ q1 = f ◦ q2, and define u : Q −→ P by u(x) = (q1(x), q2(x)), for all x ∈ Q. Since f(q1(x)) = f(q2(x))
implies (q1(x), q2(x)) ∈ P for all x ∈ Q, it follows that u is well defined. Moreover, u(x1 → x2) = (q1(x1 →
x2), q2(x1 → x2)) = (q1(x1)→ q1(x1), q2(x1)→ q2(x1)) = (q1(x1), q2(x1))→ q1(x2), q2(x2)) = u(x1)→ u(x2),
that is u ∈ Lalg(Q,P ). For any x ∈ Q, we have (p1 ◦ u)(x) = p1(u(x)) = p1((q1(x), q2(x))) = q1(x) and
(p2 ◦ u)(x) = p2(u(x)) = p2((q1(x), q2(x))) = q2(x), that is p1 ◦ u = q1 and p2 ◦ u = q2. For another
u′ ∈ Lalg(Q,P ) such that p1 ◦ u′ = q1 and p2 ◦ u′ = q2, let u′(x) = (x1, x2). From p1 ◦ u′ = p1 ◦ u and
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p2 ◦ u′ = p2 ◦ u we get p1(x1, x2) = p1(q1(x), q2(x)) = q1(x), p2(x1, x2) = p2(q1(x), q2(x)) = q2(x), hence
x1 = q1(x) and x1 = q2(x). It follows that u′(x) = (x1, x2) = (q1(x), q2(x)) = u(x) for all x ∈ Q. Thus u is
unique, and we conclude that (P, p1, p2) is a kernel pair of f . □

Example 4.16. Consider X,Y ∈ Ob(Lalg) and f ∈ Lalg(X,Y ) from Example 4.12, that is f(0) = 0,
f(1) = 2. We have X ×X = {(0, 0), (0, 1), (1, 0), (1, 1)} and P = {(x1, x2) | f(x1) = f(x2)} = {(0, 0), (1, 1)}.
Let p1, p2 : P −→ X be the canonical projections, that is p1(0, 0) = 0, p1(1, 1) = 1, p2(0, 0) = 0, p2(1, 1) = 1.
Then p1, p2 ∈ Lalg(P,X) and f ◦ p1 = f ◦ p2, hence (P, p1, p2) is a kernel pair of f .

Let f : X −→ Y be a morphism in the category C, and let f ∈ C(X,Y ). If there exists Z ∈ Ob(C) and
φ,ψ ∈ C(Z,X) such that (Y, f) is a coequalizer of the couple (φ,ψ), then we say that f is a coequalizer in C.

Proposition 4.17. Any surjective morphism in Lalg is a coequalizer of its kernel pair.

Proof. Let X,Y ∈ Ob(Lalg) and let f ∈ Lalg(X,Y ) be a surjective morphism. According to Theorem 4.15,
f has a kernel pair (P, p1, p2), where P = {(x1, x2) ∈ X ×X | f(x1) = f(x2)} and p1, p2 : P −→ X are the
canonical projections. We prove that the pair (Y, f) is a coequalizer of (p1, p2). Obviously, f ◦ p1 = f ◦ p2.
Suppose that there exists Y ′ ∈ Ob(Lalg) and f ′ ∈ Lalg(X,Y ′) auch that f ′ ◦p1 = f ′ ◦p2. Let y ∈ Y . Since f
is surjective, there exists x ∈ X such that f(x) = y. Consider u : Y −→ Y ′ defined by u(y) = f ′(x). If x1, x2 ∈
X such that f(x1) = f(x2) = y, then (x1, x2) ∈ P and u(y) = f ′(x1) = (f ′ ◦ p1)(x1, x2) = (f ′ ◦ p2)(x1, x2) =
f ′(x2), so that u is well defined. Consider y1, y2 ∈ Y , so that there exist x1, x2 ∈ X such that f(x1) = y1 and
f(x2) = y2. It follows that f ′(x1) = u(y1), f ′(x2) = u(y2) and y1 → y2 = f ′(x1) → f ′(x2) = f ′(x1 → x2).
We get u(y1 → y2) = f ′(x1 → x2) = f ′(x1)→ f ′(x2) = u(y1)→ u(y2), so that u ∈ Lalg(Y, Y ′). We can easy
chck that u ◦ f = f ′, while u is unique, since f is an epimorphism. We conclude that f is a coequalizer of its
pair kernel. □

Proposition 4.18. Any coequalizer in Lalg is a coequalizer of its kernel pair.

Proof. Let X,Y ∈ Ob(Lalg) and let f ∈ Lalg(X,Y ) be a coequalizer in Lalg, that is there exists Z ∈ Ob(C)
and φ,ψ ∈ C(Z,X) such that f is a coequalizer of the couple (φ,ψ). According to Theorem 4.15, f has a
kernel pair (P, p1, p2), where P = {(x1, x2) ∈ X ×X | f(x1) = f(x2)} and p1, p2 : P −→ X are the canonical
projections. We have f◦p1 = f◦p2, so that it is enough to prove that for any other morphism f ′ ∈ Lalg(X,Y ′)
such that f ′◦p1 = f ′◦p2, there exists a unique morphism u ∈ Lalg(Y, Y ′) such that f ′ = u◦f . Since (P, p1, p2)
is a kernel pair of f and f ◦ φ = f ◦ ψ, there exists a unique morphism v ∈ Lalg(Z,P ) such that φ = p1 ◦ v
and ψ = p2 ◦ v.
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We have f ′ ◦ φ = (f ′ ◦ p1) ◦ v = (f ′ ◦ p2) ◦ v = f ′ ◦ ψ. Since f is a coequalizer of the couple (φ,ψ), there
exists a unique morphism u ∈ Lalg(Y, Y ′) such that f ′ = u ◦ f . We conclude that f is a coequalizer of its
kernel pair (P, p1, p2). □

Lemma 4.19. Let X,Y, Z ∈ Ob(Lalg) and let f ∈ Lalg(X,Y ), g ∈ Lalg(X,Z). If f is surjective and
Ker (f) ⊆ Ker (g), then there exists a unique morphism h ∈ Lalg(Y, Z) such that h ◦ f = g.



152 L. C. Ciungu-TFSS-Vol.1, No.2-(2022)

Proof. According to Theorem 4.15, f has a kernel pair (P, p1, p2), where P = {(x1, x2) ∈ X ×X | f(x1) =
f(x2)} and p1, p2 : P −→ X are the canonical projections. Since f is surjective, by Theorem 4.17, (Y, f) is a
coequalizer of (p1, p2). For any (x1, x2) ∈ P , we have f(x1) = f(x2), so that x1 → x2, x2 → x1 ∈ Ker (f) ⊆
Ker (g), that is g(x1) = g(x2). It follows that g ◦ p1 = g ◦ p2. Since f is a coequalizer of (p1, p2), then there
exists a unique morphism h ∈ Lalg(Y, Z) such that h ◦ f = g. □
Theorem 4.20. Any coequalizer in Lalg is surjective.

Proof. Let f be a coequalizer Lalg. According to Theorem 4.18, f is a coequalizer of its kernel pair (P, p1, p2),
where P = {(x1, x2) ∈ X ×X | f(x1) = f(x2)} = {(x1, x2) ∈ X ×X | x1 → x2, x2 → x1 ∈ Ker (f)}. Since
Ker (f) ∈ ID(X), then X/Ker (f)} ∈ Ob(Lalg), and let p : P −→ X/Ker (f) be the canonical projection.
We can see that (p ◦ p1)(x1, x2) = x1/Ker (f) = x2/Ker (f) = (p ◦ p2)(x1, x2), for any (x1, x2) ∈ X × X,
that is p ◦ p1 = p ◦ p2. Since (Y, f) is a coequalizer of the couple (p1, p2), there exists a unique morphism
u : Y −→ X/Ker (f) such that u ◦ f = p.
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For any x ∈ Ker (p) we have p(x) = 1/Ker (f), so that p(x) = x/Ker (f) = 1/Ker (f). It follows
that x ∈ Ker (f), that is Ker (p) ⊆ Ker (f). According to Lemma 4.19, there exists a unique morphism
v : X/Ker (f) −→ Y such that v ◦ p = f . It follows that (u ◦ v) ◦ p = u ◦ f = p = 1X/Ker (f) ◦ p and
(v ◦ u) ◦ f = v ◦ p = f = 1Y ◦ f . But p and f are epimorphisms (p is surjective, while f is a coequalizer),
so that u ◦ v = 1X/Ker (f) and v ◦ u = 1Y . It follows that v is an isomorphism (u the inverse of v, and v the
inverse of u), that is v is surjective. Hence f = v ◦ p is surjective. □

5 Products and co-products in the Category Lalg

We prove that the category Lalg has products, and the subcategory CLalg of CL-algebras has co-products.
As an example, we construct the product of two objects in Lalg, and finally we give an example of two
objects in Lalg having co-product.
Let C be a category, and let (Xi)i∈I be a family of objects in C. A direct product of the family (Xi)i∈I is a
pair (X, (pi)i∈I), with X ∈ Ob(C) and pi ∈ C(X,Xi), for any i ∈ I, such that for any other pair (X ′, (p′i∈I))
with X ′ ∈ Ob(C) and p′i ∈ C(X ′, Xi), there is a unique u ∈ C(X ′, X) such that pi ◦ u = p′i, for any i ∈ I, that
is the following diagram is commutative, for any i ∈ I.

X =
∏
i∈I Xi
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pi
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If the direct product of a family (Xi)i∈I of objects in C exists, then it is unique up to an isomorphism ([3,
Rem. 4.6.2]), and it is denoted by

∏
i∈I Xi. The map pj :

∏
i∈I Xi −→ Xj will be called the j-th canonical

projection. We say that a category C has products if there exists the direct product of any family of objects
in C.

Theorem 5.1. The category Lalg has products.

Proof. Let (Xi)i∈I be a family of objects in Lalg and let X =
∏
i∈I Xi be the set of all maps f : I −→

∪
i∈I Xi

such that f(i) ∈ Xi for all i ∈ I. If 1i and →i are the logical unit and the implication in L-algebra Xi, we
consider the map 1 : I −→

∪
i∈I Xi defined by 1(i) = 1i. For any f, g ∈ X define the operation → on X by

(f → g)(i) = f(i) →i g(i), for all i ∈ I. It is easy to check that (X,→, 1) is an L-algebra, so that it is an
object in Lalg. For i ∈ I, the projection pi : X −→ Xi is defined by pi(f) = f(i), for all f ∈ X. For any
X ′ ∈ Ob(Lalg) and p′i ∈ Lalg(X ′, Xi), define u : X ′ −→ X by (u(x))(i) = p′i(x), for all x ∈ X ′ and i ∈ I.
Then we have (u(x → y))(i) = p′i(x) →i p

′
i(y) = (u(x))(i) →i (u(y))(i), for all x, y ∈ X ′ and i ∈ I, that is u

is an L-algebras homomorphism. Moreover, (pi ◦ u)(x) = pi(u(x)) = (u(x))(i) = p′i(x), for all x ∈ X ′, that is
pi ◦ u = p′i. Suppose that there exists another morphism v : X ′ −→ X such that pi ◦ v = p′i for all i ∈ I. It
follows that (pi ◦ v)(x) = p′i(x) = (pi ◦u)(x) for all i ∈ I and x ∈ X ′. Hence (v(x))(i) = (u(x))(i) for all i ∈ I,
so that v(x) = u(x) for all x ∈ X ′, that is v = u. We conclude that the category Lalg has products. □
Example 5.2. Let X1 = {a, b, c, 11}, X2 = {0, x, y, 12} and let →1,→2 be binary operation on X1, X2 given
in the following tables.

→1 a b c 11

a 11 a c 11

b 11 11 c 11

c 11 11 11 11

11 a b c 11

→2 0 x y 12

0 12 12 12 12

x y 12 y 12

y x x 12 12

12 0 x y 12

Then (X1,→1, 11), (X2,→2, 12) ∈ Ob(Lalg), and let I = {1, 2}. Let X = {f1, f2, . . . , f15, 1} be the set all
functions f : I −→ X1 ∪X2 with f(1) ∈ X1, f(2) ∈ X2, and define pi : X −→ Xi, by pi(f) = f(i), for i ∈ I
(see the tables below).

i 1 2

f1(i) a 0
f2(i) a x
f3(i) a y
f4(i) a 12

f5(i) b 0
f6(i) b x
f8(i) b y
f8(i) b 12

f9(i) c 0
f10(i) c x
f11(i) c y
f12(i) c 12

f13(i) 11 0
f14(i) 11 x
f15(i) 11 y
1(i) 11 12

f f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 1

p1(f) a a a a b b b b c c c c 11 11 11 11

p2(f) 0 0 0 0 x x x x y y y y 12 12 12 12
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We have (X,→, 1) ∈ Ob(Lalg) and X1
∏
X2 = (X, p1, p2).

Let C be a category, and let (Xi)i∈I be a family of objects in C. A co-product (also called a direct sum)
of the family (Xi)i∈I is a pair ((αi)i∈I), X), with X ∈ Ob(C) and αi ∈ C(Xi, X), for any i ∈ I, such that for
any other pair ((α′i∈I), X

′) with X ′ ∈ Ob(C) and α′i ∈ C(Xi, X
′), there is a unique f ∈ C(X,X ′) such that

f ◦ αi = α′i, for any i ∈ I, that is the following diagram is commutative, for any i ∈ I.

Xi
- X =

⨿
i∈I Xi

αi

X ′
?

f

@
@
@
@

@
@@R

α′i

If the co-product of a family (Xi)i∈I of objects in C exists, then it is unique up to an isomorphism ([3,
Rem. 4.6.7]), and it is denoted by

⨿
i∈I Xi. The map αj : Xj −→

⨿
i∈I Xi will be called the j-th canonical

injection. We say that a category C has co-products if there exists the co-product of any family of objects in
C.

We give the following example using an idea from [2].

Example 5.3. Let X1 = {u, a, b, 1}, X2 = {0, u}, X = X1 ∪X2 and let →1,→2,→ be binary operations on
X1, X2, X given in the following tables.

→1 u a b 1

u 1 1 1 1
a u 1 1 1
b u b 1 1
1 u a b 1

→2 0 u

0 u u
u 0 u

→ 0 u a b 1

0 1 1 1 1 1
u 0 1 1 1 1
a 0 u 1 1 1
b 0 u b 1 1
1 0 u a b 1

Then (X1,→1, u), (X2,→2, 1), (X,→, 1) ∈ Ob(Lalg), and let I = {1, 2}. Define α1 : X1 −→ X by by
α1(x) = x for all x ∈ X1, and α2 : X2 −→ X, by α2(x) = x for all x ∈ X2. Then (X,α1, α2) is the co-product
of X1 and X2.

X ′

� X2α2
X

6

f

-X1 α1

�
�
�
�
�

��

α′2

@
@

@
@

@
@I

α′1

Indeed, suppose that X ′ is another L-algebra with two homomorphisms α′1 : X1 −→ X ′, α′2 : X2 −→ X ′.

f(x) =

{
α′1(x) x ∈ X1

α′2(x) x ∈ X2.
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Since α′1 and α′2 are homomorphism, then f is homomorphism. We can easily check that f ◦ α1 = α′1 and
f ◦ α2 = α′2. Suppose that there exists another homomorphism g : X −→ X ′ such that g ◦ α1 = α′1 and
g ◦ α2 = α′2, that is g(α1(x)) = f(α1(x)) for all x ∈ X1 and g(α2(x)) = f(α2(x)) for all x ∈ X2. It follows
that g(x) = f(x) for all x ∈ X, hence f is unique. We conclude that (X,α1, α2) is the co-product of X1 and
X2.

Example 5.4. Consider the elements 0 ≤ c ≤ u ≤ a ≤ b ≤ 1 and the sets X1 = {u, a, b, 1}, X2 = {0, u},
X = X1∪X2, Y = {0, c, u}. Let→1,→2,→,→′ be binary operations on X1, X2, X, Y given in the following
tables.

→1 u a b 1

u 1 1 1 1
a u 1 1 1
b u b 1 1
1 u a b 1

→2 0 u

0 u u
u 0 u

→ 0 u a b 1

0 1 1 1 1 1
u 0 1 1 1 1
a 0 u 1 1 1
b 0 u b 1 1
1 0 u a b 1

→′ 0 c u

0 u u u
c 0 u u
u 0 c u

Then (X1,→1, 1), (X2,→2, u), (X,→, 1), (Y,→′, u) ∈ Ob(Lalg). Let α1 ∈ Lalg(X1, X) and α2 ∈ Lalg(X2, X)
defined by α1(u) = a, α1(a) = α1(b) = α1(1) = 1, α2(0) = b, α2(u) = 1. We show that the pair (X,α1, α2) is
not a co-product of the family (X1, X2).
Consiter α′1 ∈ Lalg(X1, Y ) and α′2 ∈ Lalg(X2, Y ) defined by α′1(u) = c, α′1(a) = α1(b) = α1(1) = u,
α′2(0) = c, α′2(u) = u. We must prove that there exists f ∈ Lalg(X,Y ) such that f ◦α1 = α′1 and f ◦α2 = α′2.

Y

� X2α2
X

6

f

-X1 α1

�
�
�
�
�

��

α′2

@
@

@
@

@
@I

α′1

The homomorphisms Lalg(X,Y ) are given in the following table.

x 0 u a b 1

f1(x) 0 c u u u
f2(x) 0 u u u u
f3(x) c u u u u
f4(x) u u u u u

For any i = 1, 2, 3, 4, we have (fi ◦ α1)(u) = fi ◦ (α1(u)) = fi(a) = u ̸= c = α′1(u), and (fi ◦ α2)(0) =
fi ◦ (α2(0)) = fi(b) = u ̸= c = α′2(0). It follows that f ◦ α1 ̸= α′1 and f ◦ α2 ̸= α′2, for all f ∈ Lalg(X,Y ), so
that the pair (X,α1, α2) is not a co-product of the family (X1, X2).

A category C′ is a subcategory of a category C if the following conditions are satisfied: (i) Ob(C ′) ⊆
Ob(C); (ii) C′(X,Y ) ⊆ C(X,Y ), for all X,Y ∈ Ob(C ′); (iii) the composition of any two morphisms in C′

is the same as their composition in C; (iv) 1X is the same in C′ as in C, for all X ∈ Ob(C ′) ([3, Def. 4.1.3]).
We can easily check that the category CLalg of CL-algebras is a subcategory of Lalg.

Theorem 5.5. The subcategory CLalg of CL-algebras has co-products.
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Proof. According to [7, Prop. 2.3], any CL-algebra is a BCK-algebra, so that CLalg is also a subcategory
of the category BCK of BCK-algebras. It was proved in [31] that the category BCK has co-products, hence
the sucategory CLalg also has co-products. □

Open problem 5.6. Investigate whether the category Lalg has co-products or not.

6 On the Injective Objects in the Category Lalg

In this section, we introduce the notion of divisible cyclic L-algebras and prove that the cyclic L-algebras and
MV-algebras are categorial equivalent. The main result consists of proving that an object X in the category
CyLalg of cyclic L-algebras is injective if and only if X is a complete and divisible cyclic L-algebra.
Using an idea from [12] we prove that {1} is the only injective object in the category Lalg.

An object Q in a category C is called injective if for any morphism f : X −→ Q and any monomorphism
g : X −→ Y , there is a morphism h : Y −→ Q such that h ◦ g = f .

X -Q
f

Y

?

g

�
�
�
�

�
���

h

A retraction of a morphism f : X −→ Y is a morphism g : Y −→ X such that f ◦ g = IdY . If f has a
retraction, then f is a monomorphism ([3, Def. 4.2.6, Prop. 4.2.7]).

Lemma 6.1. Let (X,→, 1) be an L-algebra and let 0 /∈ X. Then (X ∪ {0},→, 1) is an L-algebra with 0 as
the smallest element, where x→ 0 = 0, 0→ x = 1, 0→ 0 = 1, for any x ∈ X.

Proof. The proof is straightforward. □

Lemma 6.2. {1} is an injective object in Lalg.

Proof. Obviously, if f : X −→ {1} is a morphism, then f(x) = 1, for all x ∈ X. For any monomorphism
g : X −→ Y , define the morphism h : Y −→ {1}, by h(y) = 1, for all y ∈ Y . Then, for any x ∈ X we have
(h ◦ g)(x) = h(g(x)) = 1 = f(x), that is h ◦ g = f . Hence {1} is an injective object in Lalg. □

Theorem 6.3. An object X in Lalg is injective if and only if X = {1}.

Proof. By Lemma 6.2, {1} is an injective object in Lalg. Conversely, assume that X is an injective object
in Lalg. Consider the L-algebra X ∪ {0} from Lemma 6.1 and let i : X −→ X ∪ {0} be the inclusion map.
Obviously i is injective, so that i is a monomorphism. Since X is an injective object, there exists a retraction
r : X ∪ {0} −→ X such that r ◦ i = IdX .
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X -X ∪ {0}
i

X

?

IdX

�
�

�
�

�
��	

r

Then r(x) = x for any x ∈ X, and let y = r(0). It follows that y = r(0) = r(y → 0) = r(y) → r(0) =
y → y = 1, that is r(0) = 1. For any x ∈ X, we have 1 = r(0) = r(0→ x) = r(0)→ r(x) = 1 → x = x. We
conclude that X = {1}. □

Theorem 6.4. The cyclic L-algebras and MV-algebras are categorial equivalent.

Proof. Denote by MValg and CyLalg the categories of MV-algebras and cyclic L-algebras, respectively.
In order to prove the categorial equivalence, with the notations from Section 3 we define two functors
Φ : MValg −→ CyLalg, Ψ : CyLalg −→ MValg. by Φ(X,⊕, 0) = (X,→, 0, 1), Ψ(X,→, 0, 1) =
(X,⊕, 0), Φ(f)(x) = f(x), Ψ(g)(x) = g(x), for any (X,⊕, 0) ∈ Ob(MV alg), (X,→, 0, 1) ∈ Ob(CyLalg),
f ∈ MValg(X,Y ), g ∈ CyLalg(X,Y ), x ∈ X. By Theorem 3.8, Φ and Ψ are mutually inverse, hence
MValg and CyLalg are categorial equivalent. □

Let (X,⊕, 0) be an MV-algebra. For any x ∈ X and n ∈ N, define 0x = 0 and nx = x ⊕ (n − 1)x, for
n ≥ 1. An MV-algebra X is called divisible if for any a ∈ X and for any n ∈ N, there is x ∈ X such that
nx = a and a− ⊕ (n− 1)x = x−.

Theorem 6.5. ([27]) For any MV-algebra X the following are equivalent:
(a) X is an injective object in the category MValg;
(b) X is complete and divisibile MV-algebra.

Definition 6.6. A cyclic L-algebra (X,→, 0, 1) is called divisible if its corresponding MV-algebra (X,⊕, 0)
is divisible.

Theorem 6.7. For any cyclic L-algebra X the following are equivalent:
(a) X is an injective object in the category CyLalg;
(b) X is a complete and divisibile cyclic L-algebra.

Proof. It follows by Theorems 6.7 and 6.4. □

7 Concluding Remarks

Studying the L-algebras is a topic of great current interest; motivated by this fact, in this paper we define
and study the category Lalg of L-algebras. We prove that this category has equalizers, coequalizers, kernel
pairs and products, and we investigate the existence of injective objects in Lalg. We prove that an object
of the subcategory of cyclic L-algebras is injective if and only it is a complete and divisible cyclic L-algebra.
It was proved in [7, Rem. 4.12] that any Hilbert algebra is an L-algebra, so the category Halg of Hilbert
algebras is a subcategory of Lalg. According to [13], the category Halg has co-products. We give an example
of two L-algebras having a co-product, but we leave as an open problem whether the category of L-algebras
has co-products or not.
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Dvurečenskij and Zahiri studied the epicomplete objects in the category of MV-algebras ([10]), and they
found a relation between injective MV-algebras and epicomplete MV-algebras. As another topic of research,
one could investigate the epicomplete objects in various subcategories of Lalg.
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[10] A. Dvurečenskij and O. Zahiri, On epicomplete MV-algebras, FLAP, 5 (2018), 165-184.

[11] G. Dymek, On the category of pseudo BCI-algebras, Demonstr. Math., 4 (2013), 631-644.

[12] G. Dymek, An injective pseudo-BCI algebra is trivial, Discuss. Math. Gen. Algebra Appl., 39 (2019)
221-229.
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