Application of selenium and iodine on vegetative traits, yield and nutritional properties of spinach (Spinacia oleracea Linn)
Subject Areas : Sustainable production technologiesAmirali Eslamiparvar 1 , Mehdi Hosseini Farahi 2 * , Sedigheh Amiri 3 , Mohsen Radi 4
1 - PhD student, Department of Horticultural Science, Yas. C., Islamic Azad University, Yasuj, Iran
2 - Associate Professor, Department of Horticultural Science, Yas. C., Islamic Azad University, Yasuj, Iran
3 - Assistant Professor of Food Science and Technology, College of Agriculture, Yasouj Branch, Islamic Azad University, Yasouj, Iran.
4 - Assistant Professor of Food Science and Technology, College of Agriculture, Yasouj Branch, Islamic Azad University, Yasouj, Iran.
Keywords: Phytochemicals, Biofortification, Yield, Quality, Thyroid.,
Abstract :
Objective: Spinach (Spinacia oleracea Linn) is a plant belonged to cruciferous vegetables. Spinach can be widely used raw (salads), in processed foods, or as an ingredient in vegetable and meat dishes. This plant is a good source of vitamins B, K, C, and A, folic acid, minerals such as manganese, magnesium, iron, potassium, calcium, and selenium, as well as dietary fiber.
Material and methods: In order to investigate the effect of foliar application of iodine and selenium on the yield and biofortification of spinach, an experiment was conducted in a randomized complete block design with three replications in Dehdasht city. The experimental factors included control (no foliar application), combined treatments of selenium and iodine at selenium concentrations of 1, 2.5, and 5 mg/L, and iodine at concentrations of 1 and 5 mg/L.
Results: The results of this study showed that enrichment with selenium and iodine 5 mg/L increased plant height (by 19%), leaf area index (by 47%), petiole length (by 20.3 cm), leaf length (by 16.5 cm), leaf diameter (by 11.6 cm), selenium content (by 63.57 ng/g), iodine (13.69 ng/g) and enrichment with selenium 2.5 and iodine 1 mg/L increased the number of leaves (by 20 per plant) and yield (by 60.07 tons) compared to unsprayed plants.
Conclusion: The results clearly show that enrichment of spinach with selenium and iodine led to a significant increase in plant growth parameters. This improvement in growth parameters is of great importance as it contributes to the overall vigor and health of the plant, which can lead to increased yield and better quality. From a consumer perspective, these fortified spinach leaves can be very useful and practical as an additional source of iodine and selenium.
Altınok, S., Sozudogru-Ok, S.and Halilova, H., 2003. Effect of iodine treatments on forage yields of alfalfa. Communications in Soil Science and Plant Analysis 34, 55-64.
Andrade-Sifuentes, A., Gaucin-Delgado, J.M., Fortis-Hernandez, M., Ojeda-Barrios, D.L., Rodríguez-Ortiz, J.C., Sánchez-Chavez, E.and Preciado-Rangel, P., 2024. Iodine biofortification improves yield and bioactive compounds in melon fruits. Horticultura Brasileira 42, e275325.
Babalar, M., Mohebbi, S., Zamani, Z.and Askari, M.A., 2019. Effect of foliar application with sodium selenate on selenium biofortification and fruit quality maintenance of 'Starking Delicious' apple during storage. Journal of the Science of Food and Agriculture 99, 5149-5156.
Boghdady, M.S., Desoky, E., Azoz, S.N.and Abdelaziz, D.M., 2017. Effect of selenium on growth, physiological aspects and productivity of faba bean (Vicia faba L.). Egyptian Journal of Agronomy 39, 83-97.
de Lima Gomes, F.T., Chales, A.S., Borghi, E.J.A., Ferreira, A.C.M., de Souza, B.C.d.O.Q., Nascimento, V.L.and de Souza Silva, M.L., 2025. Agronomic Biofortification with Selenium and Zinc in Tomato Plants (Solanum lycopersicum L.) and their Effects on Nutrient Content and Crop Production. Journal of Soil Science and Plant Nutrition.
de Lima Lessa, J.H., Araujo, A.M., Ferreira, L.A., da Silva Júnior, E.C., de Oliveira, C., Corguinha, A.P.B., Martins, F.A.D., de Carvalho, H.W.P., Guilherme, L.R.G.and Lopes, G., 2019. Agronomic biofortification of rice (Oryza sativa L.) with selenium and its effect on element distributions in biofortified grains. Plant and Soil 444, 331-342.
Dehkharghanian, M., Adenier, H.and Vijayalakshmi, M.A., 2010. Study of flavonoids in aqueous spinach extract using positive electrospray ionisation tandem quadrupole mass spectrometry. Food Chemistry 121, 863-870.
FAO, 2018. FAOSTAT. Available online, In: Database, S. (Ed.). Food and Agriculture Organization of the United Nations-FAO.
Feng, T., Chen, S., Gao, D., Liu, G., Bai, H., Li, A., Peng, L.and Ren, Z., 2015. Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica 53, 609-612.
Golob, A., Novak, T., Maršić, N.K., Šircelj, H., Stibilj, V., Jerše, A., Kroflič, A.and Germ, M., 2020. Biofortification with selenium and iodine changes morphological properties of Brassica oleracea L. var. gongylodes) and increases their contents in tubers. Plant Physiology and Biochemistry 150, 234-243.
Hartikainen, H., Xue, T.and Piironen, V., 2000. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil 225, 193-200.
Hawrylak-Nowak, B., 2008. Effect of selenium on selected macronutrients in maize plants. Journal of Elementology 13, 513-519.
Izydorczyk, G., Ligas, B., Mikula, K., Witek-Krowiak, A., Moustakas, K.and Chojnacka, K., 2021. Biofortification of edible plants with selenium and iodine – A systematic literature review. Science of the Total Environment 754, 141983.
Kaur, S.and Nayyar, H., 2015. Selenium fertilization to salt-stressed mungbean (Vigna radiata L. Wilczek) plants reduces sodium uptake, improves reproductive function, pod set and seed yield. Scientia Horticulturae 197, 304-317.
Kiferle, C., Martinelli, M., Salzano, A.M., Gonzali, S., Beltrami, S., Salvadori, P.A., Hora, K., Holwerda, H.T., Scaloni, A.and Perata, P., 2021. Evidences for a nutritional role of iodine in plants. Frontiers in Plant Science 12, 616868.
Krzepiłko, A., Zych-Wężyk, I., Molas, J., Skwaryło-Bednarz, B., Święciło, A.and Skowrońska, M., 2016. The effect of iodine biofortification on selected biological quality parameters of lettuce and radish seedlings. Acta Scientiarum Polonorum. Hortorum Cultus 15, 3-16.
Landini, M., Gonzali, S.and Perata, P., 2011. Iodine biofortification in tomato. Journal of Plant Nutrition and Soil Science 174, 480-486.
Lawson, P.G., Daum, D., Czauderna, R., Meuser, H.and Härtling, J.W., 2015. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Frontiers in Plant Science 6.
Li, H.F., McGrath, S.P.and Zhao, F.J., 2008. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New phytologist 178, 92-102.
Medrano-Macías, J., Leija-Martínez, P., González-Morales, S., Juárez-Maldonado, A.and Benavides-Mendoza, A., 2016. Use of iodine to biofortify and promote growth and stress tolerance in crops. Frontiers in Plant Science 7, 1146.
Montes-Bayón, M., Molet, M.J.D., González, E.B.and Sanz-Medel, A., 2006. Evaluation of different sample extraction strategies for selenium determination in selenium-enriched plants (Allium sativum and Brassica juncea) and Se speciation by HPLC-ICP-MS. Talanta 68, 1287-1293.
Nawaz, F., Ashraf, M., Ahmad, R., Waraich, E., Shabbir, R.and Bukhari, M., 2015. Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chemistry 175, 350-357.
Oliveira, V.C.d., Faquin, V., Guimarães, K.C., Andrade, F.R., Pereira, J.and Guilherme, L.R.G., 2018. Agronomic biofortification of carrot with selenium. Ciência e Agrotecnologia 42, 138-147.
Pennanen, A., Xue TaiLin, X.T.and Hartikainen, H., 2002. Protective role of selenium in plant subjected to severe UV irradiation stress.
Pisarek, P., Bueno, M., Thiry, Y., Legout, A., Gallard, H.and Le Hécho, I., 2022. Influence of tree species on selenium and iodine partitioning in an experimental forest ecosystem. Science of the Total Environment 809, 151174.
Puccinelli, M., Malorgio, F., Incrocci, L., Rosellini, I.and Pezzarossa, B., 2021. Effects of individual and simultaneous selenium and iodine biofortification of baby-leaf lettuce plants grown in two different hydroponic systems. Horticulturae 7, 590.
Rakoczy-Lelek, R., Smoleń, S., Grzanka, M., Ambroziak, K., Pitala, J., Skoczylas, Ł., Liszka-Skoczylas, M.and Kardasz, H., 2021. Effectiveness of foliar biofortification of carrot with iodine and selenium in a field condition. Frontiers in Plant Science 12, 656283.
Riyazuddin, R., Singh, K., Iqbal, N., Nisha, N., Rani, A., Kumar, M., Khatri, N., Siddiqui, M.H., Yasheshwarand Kim, S.T., 2023. Iodine: an emerging biostimulant of growth and stress responses in plants. Plant and Soil 486, 119-133.
Roberts, J.L.and Moreau, R., 2016. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food & function 7, 3337-3353.
Roughan, i.and Miri, S.M., 2019. Spinach: An important green leafy vegetable and medicinal herb, The 2nd International Conference on Medicinal Plants, Organic Farming, Natural and Pharmaceutical Ingredients, pp. 1-7.
Saeid Nezhad, A.H.and Rezvani Moghaddam, P., 2010. Effect of Biofertilizers and Chemical Fertilizers on Morphological Properties, Yield, Yield Components and Essence Percentage of Cumin (Cuminum cyminum). Journal of Horticultural Science 24, -.
Saffaryazdi, A., Lahouti, M., Ganjeali, A.and Bayat, H., 2012. Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Notulae Scientia Biologicae 4, 95-100.
Shafagh-Kolvanagh, J., Tajkhalili, M.B., Bybordi, A.and Amani, M., 2024. Effect of selenium, silicon and zeolite on yield and yield components and percentage of essential oil of fennel (Foeniculum vulgare Miller.) in Khosrowshahr region. Plant Productions 47, 441-454.
Smoleń, S., Baranski, R., Ledwożyw-Smoleń, I., Skoczylas, Ł.and Sady, W., 2019. Combined biofortification of carrot with iodine and selenium. Food Chemistry 300, 125202.
Smoleń, S., Kowalska, I., Czernicka, M., Halka, M., Kęska, K.and Sady, W., 2016. Iodine and selenium biofortification with additional application of salicylic acid affects yield, selected molecular parameters and chemical composition of lettuce plants (Lactuca sativa l. var. capitata). Frontiers in Plant Science 7, 1553.
Takahashi, H., Watanabe‐Takahashi, A., Smith, F.W., Blake‐Kalff, M., Hawkesford, M.J.and Saito, K., 2000. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. The Plant Journal 23, 171-182.
Teimouri, S., Hasanpour, J.and Tajali, A.A., 2014. Effect of Selenium spraying on yield and growth indices of wheat (Triticum aestivum L.) under drought stress condition. Int. J. Adv. Biol. Biomed. Res 2, 2091-2103.
Terry, N., Zayed, A., De Souza, M.and Tarun, A., 2000. Selenium in higher plants. Annual review of plant biology 51, 401-432.
Tufail, B., Ashraf, K., Abbasi, A., Ali, H.M., Sultan, K., Munir, T., Khan, M.T.and uz Zaman, Q., 2023. Effect of Selenium on Growth, Physio-Biochemical and Yield Traits of Lettuce under Limited Water Regimes. Sustainability 15, 6804.
Turakainen, M., Hartikainen, H.and Sarjala, T., 2008. Impact of selenium enrichment on seed potato tubers. Agricultural and Food Science 17, 278-288.
Turakainen, M., Hartikainen, H.and Seppänen, M.M., 2004. Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. Journal of agricultural and food chemistry 52, 5378-5382.
Voogt, W.and Jackson, W.A., 2010. Perchlorate, nitrate, and iodine uptake and distribution in lettuce (Lactuca sativa L.) and potential impact on background levels in humans. Journal of agricultural and food chemistry 58, 12192-12198.
White, P.J., 2018. Selenium metabolism in plants. Biochimica et Biophysica Acta (BBA)-General Subjects 1862, 2333-2342.
White, P.J.and Broadley, M.R., 2009. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New phytologist 182, 49-84.
Zhao, X.Q., Mitani, N., Yamaji, N., Shen, R.F.and Ma, J.F., 2010. Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiology 153, 1871-1877.
Zhu, Y.-G., Huang, Y., Hu, Y., Liu, Y.and Christie, P., 2004. Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant and Soil 261, 99-105.