The Effect of the Ibuprofen on the Genetic Changes of Zebrafish (Danio rerio) Using QPCR Methods
Subject Areas :مهسا افشاری کاشانیان 1 * , پرگل قوام مصطفوی 2 , علی ماشینچیان مرادی 3
1 - دانشگاه علوم و تحقیقات
2 - دانشگاه علوم و تحقیقات
3 - دانشگاه علوم و تحقیقات
Keywords: qPCR, Zebrafish, Ibuprofen, P53 Gene,
Abstract :
Inroduction & Objective: Ibuprofen, as a drug contaminant, has deleterious and in some cases irreversible effects on aquatic organisms and in general on living things, which in many cases can result in genetic damage and damage to the DNA structure. The effects of different concentrations of ibuprofen on DNA damage and damage to zebrafish are investigated. In this study, genetic changes of p53 gene and its expression in zebrafish after two weeks of exposure to 0.1, 1 and 10 mg / l ibuprofen in vitro were investigated. Material and Method: In this study zebrafish were exposed to the above mentioned concentrations for two weeks and then RNA extracted from them. The results were analyzed using QPCR method. Results: The low drug, 0.1 mg / l had no effect on p53 gene expression, while the other two concentrations, which were 1 and 10 mg / l ibuprofen, respectively, showed a significant difference between the control and the drug containing sample. As a result, the p53 gene was highly expressed. Also for the internal control gene that was GAPDH, there was no significant difference at the lowest drug concentration. Ray did not show a significant difference between the treatment and control samples, while in the subsequent treatments there was a significant difference between control and treatment samples.The final result of this study was that p53 gene expression increased 1.09, 0.57 and 2.2 fold in sample with lowest drug concentration, mean concentration and highest drug concentration, respectively.
- رستمی، ر.، حسنی، ا.، برقعی، م.، ترابیان، ع. 1396. اندازه گیری میکروآلاینده های دیکلوفناک و ایبوپروفن در فاضلاب ورودی و خروجی تصفیه خانه های فاضلاب شهری و بررسی عملکرد سیستم در کاهش آن ها مطالعه موردی تصفیه خانه فاضلاب جنوب تهران. هشتمین سمینار ملی شیمی و محیط زیست ایران، 1 تا 7.
2-صیادی، ا.، اسدپور، م.، شعبانی، ز.، صیادی، م. 1391. برهمکنشی داروهای موجود در محیط زیست و اثرات آن بر سلامت جامعه. مجله دانشگاه علوم پزشکی رفسنجان دوره یازدهم، شماره 2 و 3.
3-طهماسبی پور، ن.، رضوی، ر. 1397. نقش داروها در آلودگی کیفیت آب زیرزمینی. سیزدهمین همایش ملی علوم و مهندسی آبخیزداری ایران و سومین همایش ملی صیانت از منابع طبیعی و محیط زیست.
4-ناصح، ن.، باریک بین، ب.، تقوی، ل.، ناصری، م.ع. 1395. تاثیرات مخرب آلودگی آنتی بیوتیک ها بر محیط زیست و بررسی کارآیی روش های مختلف در حذف آن ها از پساب های آلوده. فصلنامه پرستار و پزشک در رزم، شماره دهم و یازذهم، 50 تا 62.
5.Araujo, L., Troconis, M.E., Espina, M.B., Prieto, A. (2014). Persistence of ibuprofen, ketoprofen, diclofenac and clofibric acid in natural waters. Journal of Environment and Human, 1(2); pp.32-38.
6.Barbazuk, W.B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., Bedell, J.A., McPherson, J.D., Johnson, S.L. (2000). The syntenic relationship of the zebrafish and human genomes. Genome research, 10(9); 1351-1358.
7.Bartoskova, M., Dobsikova, R., Stancova, V., Pana, O., Zivna, D., Plhalova, L. (2014). Norfloxacin—toxicity for zebrafish (Danio rerio) focused on oxidative stress parameters. BioMed research international, 2;14-20.
8.Bombardo, M., Malagola, E., Chen, R., Rudnicka, A., Graf, R. and Sonda, S. (2018). Ibuprofen and diclofenac treatments reduce proliferation of pancreatic acinar cells upon inflammatory injury and mitogenic stimulation. British journal of pharmacology, 175(2); 335-347.
9.Bu, Q., Shi, X., Yu, G., Huang, J., Wang, B. (2016). Assessing the persistence of pharmaceuticals in the aquatic environment: Challenges and needs. Emerging Contaminants, 2(3); 145-147.
10.Carr, D.L., Morse, A.N., Zak, J.C., Anderson, T.A. (2011). Biological degradation of common pharmaceuticals and personal care products in soils with high water content. Water, Air, & Soil Pollution, 217(1-4); 127-134.
11.Charni, M., Aloni-Grinstein, R., Molchadsky, A. and Rotter, V. (2017). p53 on the crossroad between regeneration and cancer. Cell Death and Differentiation, 24(1); 8.
12.Dandah, O.M. (2017). Genoprotective effect of aspirin and ibuprofen in human lymphocyte cells: Effect of nano and bulk forms of aspirin and ibuprofen on lymphocytes from breast cancer patients compared with those from healthy females. Doctoral dissertation: University of Bradford.
13.Fkhaida, N.M. (2014). Fate of pharmaceutical compounds in Wadi Al Qilt catchment area. Doctoral dissertation: Birzeit University
14.Han, S., Choi, K., Kim, J., Ji, K., Kim, S., Ahn, B. (2010). Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquatic Toxicology, 98(3); 256-264.
15.Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446); 498.
16.Ji, K., Liu, X., Lee, S., Kang, S., Kho, Y., Giesy, J.P., Choi, K. (2013). Effects of non-steroidal anti-inflammatory drugs on hormones and genes of the hypothalamic-pituitary-gonad axis, and reproduction of zebrafish. Journal of Hazardous Materials, 254; 242-251.
17.Kermiche, F., Berrebah, H., Djebar, M.R. (2016). Toxicological effects of drugs (Diclofenac, Ibuprofen, mixture) and Hormesis on a non-target organism: Paramecium sp. J. Entomol. Zool. Stud, 4(5); 187-191.
18.Khoury, M.P., Bourdon, J.C. (2011). p53 isoforms: an intracellular microprocessor?. Genes & cancer, 2(4); 453-465.
19.Kristensen, D.M., Desdoits-Lethimonier, C., Mackey, A.L., Dalgaard, M.D., De Masi, F., Munkbøl, C.H. (2018). Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism. Proceedings of the National Academy of Sciences, 115(4); E715-E724.
20.Kunkel, U., Radke, M.(2008). Biodegradation of acidic pharmaceuticals in bed sediments: insight from a laboratory experiment. Environmental Science & Technology, 42(19); 7273-7279.
21.Maamar, M.B., Lesné, L., Hennig, K., Desdoits-Lethimonier, C., Kilcoyne, K.R., Coiffec, I. (2017). Ibuprofen results in alterations of human fetal testis development. Scientific Reports, 7; 44184.
22.Moris, D., Kontos, M., Spartalis, E., Fentiman, I.S. (2016). The role of NSAIDs in breast cancer prevention and relapse: current evidence and future perspectives. Breast Care, 11(5); 339-344.
23.Patel, A., Panter, G.H., Trollope, H.T., Glennon, Y.C., Owen, S.F., Sumpter, J.P. (2016). Testing the “read-across hypothesis” by investigating the effects of ibuprofen on fish. Chemosphere, 163; 592-600.
24.Patneedi, C.B., Prasadu, K.D. (2015). Impact of pharmaceutical wastes on human life and environment. Rasayan Journal of Chemistry, 8(1); 67-70.
25.Rasal, K.D., Chakrapani, V., Patra, S.K., Jena, S., Mohapatra, S.D., Nayak, S. (2016). Identification and prediction of the consequences of nonsynonymous SNPs in glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene of zebrafish (Danio rerio). Turkish Journal of Biology, 40(1); 58-64.
26.Reed, B., Jennings, M. (2010). Guidance on the housing and care of zebrafish Danio rerio. Rasayan Journal of Chemistry, 7(3); 48-57.
27.Tripathi, R., Pancholi, S.S., Tripathi, P. (2012). Genotoxicity of ibuprofen in mouse bone marrow cells in vivo. Drug and Chemical Toxicology, 35(4); 389-392.
28.Thrupp, T.J. (2016). Effects of pharmaceutical pollutants and their mixtures on aquatic organisms–with particular focus on reproduction and endocrine function in a fish model species. Doctoral dissertation: Brunel University London.
29.Vieno, N., Hallgren, P., Wallberg, P. (2017). Pharmaceuticals in the aquatic environment of the baltic sea region. A status Report.
30.Yamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I. (2009). Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Research, 43(2); 351-362.
_||_