Investigating the catalytic effectiveness of mil 101 chromium nanocomposite on cobalt ferrite in removing methylene blue dye and COD from aqueous solutions
Subject Areas :Tayebeh Tabatabaie 1 , Abbasali Mokhtari andani 2 , saeed Farhadi 3 , saeed Farhadi 4 , Bahman Ramavandi 5
1 - Department of Environment, College of Engineering, Branch Bushehr, Islamic Azad University, Bushehr, Iran
2 - بوشهر.جم.شهرک نفت 2500 واحدی. ناحیه دو.بلوک15.واحد1.
3 - 1-Visiting Professor, Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
2-Department of Chemistry, Lorestan University, Khoramabad 68151-433, Iran
4 - 1-Visiting Professor, Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
2-Department of Chemistry, Lorestan University, Khoramabad 68151-433, Iran
5 - Department of Environmental Health Engineering, Bushehr University of Medical Sciences
Keywords:
Abstract :
In this study, for preparing a novel magnetic nanocatalyst using for removing organic pollutants from waste water, magnetic MIL-101(Cr) on CoFe2O4 nanocomposite was synthesized via hydrothermal method. The nanocomposite were fully characterized via field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), UV-visible spectroscopy (UV-visible) and BET surface area analysis and all approved synthesizing such a nanocomposite. The sonocatalytic activity of the synthesized MIL-101(Cr)-based magnetic nanocomposite was explored for the degradation of Methylene blue (MB) under ultrasound irradiation in the presence of green and mild (environmental friendly) hydrogen peroxide as an advanced oxidation process and also, the most influencing factors on its sonocatalytic activity were tested. In sum, the optimized conditions for 86% degradation efficiency for initial dye concentration of 25 mg/L were the time of 140 min, 60 mmol/L hydrogen peroxide and 0.5 g nanocomposite. Also, COD reduction of natural medias in presence of nanocomposite was studied and %73.3 calculated for effluent of Wastewater treatment Plants. In cost-benefit calculations, the cost of this process scaling up for COD reduction of each cubic meter of dye effluent treatment plants in dye industries, considering the cost of nanocomposite preparation, cost of hydrogen peroxide preparation, consuming electricity, pH adjustment and also 4 time reusing of recycled nanocomposite from the effluent was approximately calculated 5-9 million Rials . Finally, the nanocomposite was magnetically separated and reused four consecutive runs of dye degradation without any observable change in its structure.
[1] R. Bayat, Z. Bingul-Recber, M. Bekmezci, M.S. Nas, M.H. Calimli, O. Demirbas, Food and Chemical Toxicology, 167, 2022, 113303.
[2] S. Bhuvanasundari, G. Venkatachalam, M. Doble, T. Thomas, Ceramics International, 46, 2022, 1.
[3] S. Farhadi, F. Siadatnasab, Materials Research Bulletin, 83, 2016, 345.
[4] S. Farhadi, F. Siadatnasab, Desalination and Water Treatment, 66, 2017, 299.
[5] A.A. Hoseini, S. Farhadi, A. Zabardasti, Applied Organometallic Chemistry, 33, 2019, 4656.
[6] C.H. Nguyen, R.S. Juang, Journal of Industrial and Engineering Chemistry, 76, 2019, 296.
[7] H. Chen, Y. Yang, J. Wei, J. Xu, J. Li, P. Wang, Materials Science and Engineering: B, 249, 2019, 114420.
[8] S. Farhadi, M. Dusek, F. Siadatnasab, V. Eigner, Polyhedron, 126, 2017, 227.
[9] E. Ferrer-Polonio, B. Perez-Uz, J.A. Mendoza-Roca, A. Iborra-Clar, L. Pastor-Alcaniz, Journal of Industrial and Engineering Chemistry, 56, 2017, 364.
[10] K. Karami, S.M. Beram, P. Bayat, F. Siadatnasab, A. Ramezanpour, Journal of Molecular Structure, 1247, 2022, 131352.
[11] W. Qiu, D. Yang, J. Xu, B. Hong, H. Jin, D. Jin, Journal of Alloys and Compounds, 678, 2016, 179.
[12] Y. Wang, L. Zhu, X. Wang, W. Zheng, C. Hao, C. Jiang, Journal of Industrial and Engineering Chemistry, 61, 2018, 321.
[13] J. Xu, P. Xin, Y. Gao, B. Hong, H. Jin, D. Jin, Materials Chemistry and Physics, 147, 2014, 3, 915.
[14] X. Li, Y. Wang, Q. Guo, Heliyon, 8, 2022, 09942.
[15] C. Liu, J. Xia, J. Gu, W. Wang, Q. Liu, L. Yan, Journal of Hazardous Materials, 403, 2021, 123547.
[16] Y.L. Pang, A.Z. Abdullah, Ultrasonics Sonochemistry, 19, 2012, 642.
[17] P. Saharan, G.R. Chaudhary, S. Lata, S. Mehta, Ultrasonics Sonochemistry, 22, 2015, 317.
[18] S.E. Mousavi, H. Younesi, N. Bahramifar, P. Tamunaidu, H. Karimi-Maleh, Chemosphere, 297, 2022, 133992.
[19] A. Rana, K. Qanungo, Materials Today: Proceedings, 112, 2021, 1.
[20] Y. Wang, L. Gai, W. Ma, H. Jiang, X. Peng, L. Zhao, Industrial & Engineering Chemistry Research, 54, 2015, 2279.
[21] S. Zhang, Ultrasonics Sonochemistry, 19, 2012, 767.
[22] Y. Areerob, J.Y. Cho, W. Jang, Ultrasonics Sonochemistry, 41, 2018, 267.
[23] A. Khataee, S. Saadi, B. Vahid, Ultrasonics Sonochemistry, 34, 2017, 98.
[24] R.D.C. Soltani, S. Jorfi, H. Ramezani, S. Purfadakari, Ultrasonics Sonochemistry, 28, 2016, 69.
[25] R. Vardhan-Patel, A. Yadav, Journal of Molecular Structure, 1252, 2022, 132128.
[26] H. Zhang, C. Wei, Y. Huang, J. Wang, Ultrasonics Sonochemistry, 30, 2016, 61.
[27] M. Zhou, H. Yang, T. Xian, R. Li, H. Zhang, X. Wang, Journal of Hazardous Materials, 289, 2015, 149.
[28] K. Fang, L. Deng, J. Yin, J. Li, W. He, International Journal of Biological Macromolecules, 17, 2022, 1.
[29] Y. Fu, Q. Chen, M. He, Y. Wan, X. Sun, H. Xia, Industrial & Engineering Chemistry Research, 51, 2012, 11700.
[30] T. Saemian, M. Hossaini-Sadr, M. Tavakkoli-Yaraki, M. Gharagozlou, Inorganic Chemistry Communications, 138, 2022, 109305.
[31] G. Zhang, J. Qu, H. Liu, A.T. Cooper, R. Wu, Chemosphere, 68, 2007, 1058.
[32] V.M. Correia, T. Stephenson, S.J. Judd, Environmental Technology, 15, 1994, 917.
[33] F.V. de Andrade, R. Augusti, G.M. de Lima, Ultrasonics Sonochemistry, 78, 2021, 105719.
[34] X.J. Dui, X.Y. Wu, J.Z. Liao, T. Teng, W.M. Wu, W.B. Yang, Inorganic Chemistry Communications, 56, 2015, 112.
[35] D. Meziani, K. Abdmeziem, S. Bouacida, M. Trari, H. Merazig, Solar Energy Materials and Solar Cells, 147, 2016, 46.
[36] X. Liu, Y. Shan, S. Zhang, Q. Kong, H. Pang, Green Energy & Environment, 17, 2022, 1.
[37] S. Farhadi, F. Siadatnasab, Chinese Journal of Catalysis, 37, 2016, 1487.
[38] P. Zhao, K. Huang, Crystal Growth and Design, 8, 2008, 717.
[39] M. Suresh, B.D. Raju, K.R. Rao, K.R. Reddy, M.L. Kantam, P. Srinivasu, Journal of Chemical Sciences, 126, 2014, 527.
[40] T. Harifi, M. Montazer, Separation and Purification Technology, 134, 2014, 210.
[41] J.B. Silva, W. De Brito, N.D. Mohallem, Materials Science and Engineering: B, 112, 2004, 182.
[42] J. Yan, K. Wang, H. Xu, J. Qian, W. Liu, X. Yang, Chinese Journal of Catalysis, 34, 2013, 1876.
[43] L. Ai, C. Zhang, L. Li, J. Jiang, Applied Catalysis B: Environmental, 148, 2014, 191.
[44] A. Khataee, P. Gholami, B. Vahid, S.W. Joo, Ultrasonics Sonochemistry, 32, 2016, 357.
[45] N. Ertugay, F.N. Acar, Applied Surface Science, 318, 2014, 121.
[46] J. Bandara, J. Mielczarski, J. Kiwi, Langmuir, 15, 1999, 7670.
[47] J. Wu, H. Zhang, J. Qiu, Journal of Hazardous Materials, 215, 2012, 138.
[48] R. Darvishi Cheshmeh Soltani, A. Khataee, M. Mashayekhi, Desalination and Water Treatment, 57, 2016, 13494.
[49] J. Wang, T. Ma, Z. Zhang, X. Zhang, Y. Jiang, D. Dong, Journal of Hazardous Materials, 137, 2006, 972.
[50] J. Abdi, A.J. Sisi, M. Hadipoor, A. Khataee, Journal of Hazardous Materials, 424, 2022, 127558.
[51] J. Kim, C.W. Lee, W. Choi, Environmental Science & Technology, 44, 2010, 6849.
[52] P. Qiu, W. Li, K. Kang, B. Park, W. Luo, D. Zhao, Journal of Materials Chemistry A, 2, 2014, 16452.
[53] P. Qiu, W. Li, B. Thokchom, B. Park, M. Cui, D. Zhao, Journal of Materials Chemistry A, 3, 2015, 6492.
[54] R.D.C. Soltani, M. Safari, M. Mashayekhi, Ultrasonics Sonochemistry, 30, 2016, 123.
[55] J. Wang, Y. Guo, B. Liu, X. Jin, L. Liu, R. Xu, Ultrasonics Sonochemistry, 18, 2011, 1, 177.
[56] J.W. Shi, H.J. Cui, X. Zong, S. Chen, J. Chen, B. Xu, Applied Catalysis A: General, 435, 2012, 86.
[57] N. Zhang, Y. Zhang, X. Pan, M.Q. Yang, Y.J. Xu, Journal of Physical Chemistry C, 116, 2012, 18023.
[58] S. Sajjadi, A. Khataee, R.D.C. Soltani, A. Hasanzadeh, Journal of Physics and Chemistry of Solids, 127, 2019, 140.
[59] L. Zhu, S.B. Jo, S. Ye, K. Ullah, W.C. Oh, Chinese Journal of Catalysis, 35, 2014, 1825.
[60] M. Mahanthappa, N. Kottam, S. Yellappa, Applied Surface Science, 475, 2019, 828.