An ultra-fast method for growing zinc oxide nanowires and adjusting oxygen vacancies on their surface to achieve fully biocompatible nanostructures
Subject Areas :
1 - Nano Bio Electronics Lab (NBEL). School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran.
Keywords:
Abstract :
In this research, by presenting a super-fast and optimal method for the growth of zinc oxide nanowires, in addition to raising the growth rate compared to other existing methods, the biocompatibility of nanowires has increased dramatically. The method presented here is based on hydrothermal; that we used UV radiation with a wavelength of 365 nm during growth to increase the growth rate of nanowires and obtain crystalline structures with fewer defects.
[1] V. Gerbreders, M. Krasovska, I. Mihailova, A. Ogurcovs, E. Sledevskis, A. Gerbreders, E. Tamanis, I. Kokina, Sensing and Bio-Sensing Research, 23, 2019, 100276.
[2] B. Ortiz-Casas, A. Galdamez-Martinez, J. Gutierrez-Flores, A. Baca Ibanez, P. Kumar Panda, G. Santana, H.A. de la Vega, M. Suar, C. Gutierrez Rodelo, A. Kaushik, Y. Kumar Mishra, A. Dutt, Materials Today, 50, 2021, 533.
[3] B. Ghanbari-Shohany, A. Khorsand-Zak, Ceramics International, 46, 2020, 5507.
[4] S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Guell, M. Kumar, K. Awasthi, Sensors and Actuators B: Chemical, 292, 2019, 24.
[5] S. Goel, B. Kumar, Journal of Alloys and Compounds, 816, 2020, 152491.
[6] R.O. Yathisha, Y. Arthoba Nayaka, Russian Journal of Electrochemistry, 57, 2021, 784.
[7] A. Moumen, N. Kaur, N. Poli, D. Zappa, E. Comini, Nanomaterials, 10, 2020, 1940.
[8] K. Davis, R. Yarbrough, M. Froeschle, J. White, H. Rathnayake, RSC Advances, 9, 2019, 14638.
[9] Y.C. Chen, Y.H. Tu, L.W. Chen, Y.H. Lai, M.F. Tsai, Y.X. Lin, H.C. Lai, C.Y. Chiang, H.J. Liu, H.C. Pan, T.Y. Yang, D. Zhang, J. Seidel, J.M. Wu, Y.L. Chueh, W.H. Chang, C.S. Ku, S.H. Chen, L. Chang, Y.H. Chu, ACS Applied Materials & Interfaces, 13, 2021, 18991.
[10] W. Liu, W. Zhan, X. Jia, Q. Liu, R. Chen, D. Li, Y. Huang, G. Zhang, H. Ni, Applied Surface Science, 480, 2019, 341.
[11] R. Sha, S.K. Puttapati, V.V.S.S. Srikanth, S. Badhulika, Journal of Electroanalytical Chemistry, 785, 2017, 26.
[12] P.A. Uribe, C.C. Ortiz, D.A. Centeno, J.J. Castillo, S.I. Blanco, J.A. Gutierrez, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561, 2019, 18.
[13] N. Agrawal, B. Zhang, C. Saha, C. Kumar, X. Pu, S. Kumar, J Lightwave Technol, 38, 2020, 2523.
[14] P. Soundharraj, D. Dhinasekaran, A.R. Rajendran, A. Prakasarao, S. Ganesan, New Journal of Chemistry, 45, 2021, 6080.
[15] X. Guo, L. Zong, Y. Jiao, Y. Han, X. Zhang, J. Xu, L. Li, C. Zhang, Z. Liu, Q. Ju, J. Liu, Z. Xu, H.D. Yu, W. Huang, Analytical Chemistry, 91, 2019, 9300.
[16] S. Verma, S.P. Singh, MRS Communications, 9, 2019, 1227.
[17] B. Ramya, P.G. Priya, Journal of Materials Science: Materials in Electronics, 32, 2021, 21406.
[18] F. Alam, A.H. Jalal, S. Forouzanfar, M. Karabiyik, A.R. Baboukani, N. Pala, IEEE Sensors Journal, 20, 2020, 5102.
[19] H.T. Hussein, M.H. Kareem, A.M. Abdul Hussein, Optik, 248, 2021, 168107.
[20] Q. Ren, Y.Q. Cao, D. Arulraj, C. Liu, D. Wu, W.M. Li, A.D. Li, Journal of the Electrochemical Society, 167, 2020, 067528.
[21] A. Narayana, S.A. Bhat, A. Fathima, S.V. Lokesh, S.G. Surya, C.V. Yelamaggad, RSC Advances, 10, 2020, 13532.
[22] Y. Liang, Physics Letters A, 383, 2019, 2928.
[23] B. ElZein, Y. Yao, A.S. Barham, E. Dogheche, G.E. Jabbour, Materials, 13, 2020, 4427.
[24] A. Galdamez-Martinez, G. Santana, F. Guell, P.R. Martinez-Alanis, A. Dutt, Nanomaterials, 10, 2020, 857.
[25] B. Abdallah, M. Kakhia, W. Zetoun, N. Alkafri, Microelectronics Journal, 111, 2021, 105045.
[26] S.I. Yun, H.M. Kim, S.K. Lee, C.W. Baek, J.H. Park, Journal of Micromechanics and Microengineering, 29, 2019, 115017.
[27] H. Guo, R. Ding, N. Li, K. Hong, L. Liu, H. Zhang, Physica E: Low-dimensional Systems and Nanostructures, 105, 2019, 156.
[28] H.O. Chu, W. Quan, Y. Shi, S. Song, W. Liu, Z. Shun, D. Gibson, Y. Alajlani, L. Cheng, Transactions of Nonferrous Metals Society of China, 30, 2020, 191.
[29] P. Obreja, D. Cristea, A. Dinescu, C. Romaniţan, Applied Surface Science, 463, 2019, 1117.
[30] J. Qiu, X. Li, F. Zhuge, X. Gan, X. Gao, W. He, S.J. Park, H.K. Kim, Y.H. Hwang, Nanotechnology, 21, 2010, 195602.
[31] C. Xu, P. Shin, L. Cao, D. Gao, Journal of Physical Chemistry C, 114, 2010, 125.
[32] H.E. Unalan, P. Hiralal, N. Rupesinghe, S. Dalal, W.I. Milne, G.A. Amaratunga, Nanotechnology, 19, 2008, 255608.
[33] S. Mahpeykar, J. Koohsorkhi, H. Ghafoori-Fard, Nanotechnology, 23, 2012, 165602.
[34] V. Lakshmi Prasanna, R. Vijayaraghavan, Langmuir, 31, 2015, 9155.
[35] X. Xu, D. Chen, Z. Yi, M. Jiang, L. Wang, Z. Zhou, X. Fan, Y. Wang, D. Hui, Langmuir, 29, 2013, 5573.
[36] T.S. Gechev, F. Van Breusegem, J.M. Stone, I. Denev, C. Laloi, Bioessays, 28, 2006, 1091.
[37] C. Karthikeyan, N. Tharmalingam, K. Varaprasad, E. Mylonakis, M.M. Yallapu, Carbohydrate Polymers, 274, 2021, 118646.
[38] A. Elbourne, S. Cheeseman, P. Wainer, J. Kim, A.E. Medvedev, K.J. Boyce, C.F. McConville, J. Van Embden, ACS Applied Biomaterials, 3, 2020, 2997.
[39] A. Kushwaha, M. Aslam, Journal of Applied Physics, 112, 2012, 054316.
[40] K. Yadav, S.K. Gahlaut, B. Mehta, J. Singh, Applied Physics Letters, 108, 2016, 071602.
[41] J.H. Tian, J. Hu, S.S. Li, F. Zhang, J. Liu, J. Shi, X. Li, Z.Q. Tian, Y. Chen, Nanotechnology, 22, 2011, 245601.
[42] R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nano-Micro Letters, 7, 2015, 97.
[43] J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, Z. Ren, Nanoscale Research Letters, 6, 2011, 1.
[44] R. Mardosaitė, A. Jurkeviciute, S. Rackauskas, Crystal Growth & Design, 21, 2021, 4765.
[45] F. Yang, J. Guo, L. Zhao, W. Shang, Y. Gao, S. Zhang, G. Gu, B. Zhang, P. Cui, G. Cheng, Nano Energy, 67, 2020, 104210.
[46] E. Polydorou, A. Zeniou, D. Tsikritzis, A. Soultati, I. Sakellis, S. Gardelis, T.A. Papadopoulos, J. Briscoe, L.C. Palilis, S. Kennou, Journal of Materials Chemistry A, 4, 2016, 11844.
[47] V. Gerbreders, M. Krasovska, E. Sledevskis, A. Gerbreders, I. Mihailova, E. Tamanis, A. Ogurcovs, CrystEngComm, 22, 2020, 1346.
[48] O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Journal of Physics D: Applied Physics, 42, 2009, 225305.
[49] T. Demes, C. Ternon, F. Morisot, D. Riassetto, M. Legallais, H. Roussel, M. Langlet, Applied Surface Science, 410, 2017, 423.
[50] E. Muchuweni, T. Sathiaraj, H. Nyakotyo, Materials Science and Engineering: B, 227, 2018, 68.
[51] F. Xie, W. Hu, D. Ning, L. Zhuo, J. Deng, Z. Lu, Ceramics International, 44, 2018, 4204.
[52] S. Zhao, Y. Shen, X. Yan, P. Zhou, Y. Yin, R. Lu, C. Han, B. Cui, D. Wei, Sensors and Actuators B: Chemical, 286, 2019, 501.
[53] I.Y. Bu, Y.M. Yeh, Ceramics International, 38, 2012, 3869.
[54] C.P. Burke-Govey, N.O. Plank, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 31, 2013, 06F101.
[55] Z. Cao, Y. Wang, Z. Li, N. Yu, Nanoscale Research Letters, 11, 2016, 1.
[56] K. Elen, H. Van den Rul, A. Hardy, M.K. Van Bael, D. Franco, J. Mullens, Nanotechnology, 20, 2009, 055608.
[57] Z. Han, S. Li, J. Chu, Y. Chen, Journal of Semiconductors, 34, 2013, 063002.
[58] H. Hu, X. Huang, C. Deng, X. Chen, Y. Qian, Materials Chemistry and Physics, 106, 2007, 58.
[59] C.L. Kuo, T.J. Kuo, M.H. Huang, Journal of Physical Chemistry B, 109, 2005, 20115.
[60] Z. Zhang, J. Yan, D. Hui, J. Yun, C. Zhai, W. Zhao, Journal of Alloys and Compounds, 650, 2015, 374.