The effect of pressure on the Mg alloy-Alumina composite properties fabricated by infiltration casting
Subject Areas :Bahman Eghtedari 1 , Mahmoud Meratian 2 , Ali Maleki 3 , Mohamad Khodaei 4
1 - کارشناسی ارشد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان
2 - دانشیار، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان
3 - استادیار، پژوهشکده فولاد، دانشگاه صنعتی اصفهان
4 - استادیار، مرکز تحقیقاتی مهندسی پیشرفته، واحد شهر مجلسی، دانشگاه آزد اسلامی
Keywords: Magnesium Based Composite, Alumina Reinforcement, Infiltration Casting, Wear behavior,
Abstract :
One of the advanced routes for manufacturing the magnesium-matrix composites is infiltration casting into ceramic foams. In this research, magnesium-matrix composite AZ91-Al2O3 production has been investigated. Therefore, AZ91 alloy molten is prepared by usage of torch furnace under protection of MAGREX flux, then, poured in preheated mold at 250°C with preheated alumina foam at 800 °C. For investigating the effect of pressure, pressures at 50, 75 and 100 MPa in 1 minute applied until solidification was completed. For comparison, similar experiments were done without applying pressure. The results showed that solidification under pressure reduced porosity noticeably in comparison with gravity casting to 60%. By addition the ceramic reinforcement to the base alloy, mechanical strength reduced due to formation of MgAl2O4 spinel phase at interface and formation of residual compression stresses because of thermal mismatch between matrix and reinforcement. The mechanical strength and ductility of the samples are increased by rising of applied pressure to (0-100 MPa) due to decrease grain size and better strength interface of alumina and alloy. Additionally, wear rate due of composite decreased in comparison to base alloy declined markedly (about 53%). This may be due to higher intrinsic alumina strength. Also, by applying pressure on molten metal during solidification, wear rate is noticeably lesser than similar gravity sample due to decreasing the grain size and markedly declining the porosity. The dominant mechanism for base alloy is adhesive wear and for composite is abrasive wear and delamination.
[1] م. پاکشیر، ر. مدحت، خ. مرشد بهبهانی، "بررسی و مقایسه رفتار خوردگی آلیاژ منیزیوم AZ91 ریختگی و تغییرفرم یافته به روش اکستروژن برشی ساده"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال نهم، شماره دو، 1394.
[2] G. A. Rozak, Ph.D. thesis, “Effects of processing on the properties of aluminum and magnesium matrix composites”, Department of Material Science and Engineering, Case Western Reserve University, 1993.
[3] S. Jayalakshmi, S. V. Kailas & S. Seshan, “Properties of squeeze cast Mg-10Al-Mn alloy and its alumina short fibre composites”, Journal of Materials Science, Vol. 38, pp. 1383 – 1389, 2003.
[4] Z. Trojanova, A. Mielczarek, W. Riehemann & P. Luka, “Cyclic bending and the damping behavior of short fibre-reinforced magnesium alloy AZ91”, Journal of Composites Science and Technology, Vol. 66, pp. 585–590, 2006.
[5] ا. صیفوری، ش. میردامادی، ع. خاوندی، م. یزدانی، "بررسی رفتار زیست تخریبی و ترشوندگی پوششهای سیلیکاتی ایجاد شده بر روی آلیاژ منیزیم AZ31 به روش اکسیداسیون ریز جرقه"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال هفتم، شماره سه، 1392.
[6] L. Cizek, M. Greger, L. Pawlica, L. A. Dobrzanski, & T. Tanski, “Study of selected properties of magnesium alloy AZ91 after heat treatment and forming”, Journal of Materials Processing Technology, Vol. 157–158, pp. 466–471, 2004.
[7] M. K. Kulekci, “Magnesium and its alloys applications in automotive industry”, Journal of Advance Manufacturing Technology, Doi 10.1007/s00170-007-1279-2.
[8] K. Kainer, “Metal matrix composite”, Wiley book, 2006.
[9] م. سمیعی، اثر فعالسازی مکانیکی بر ساخت کامپوزیت ریختگی آلومینیم- آلومینا، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، 1388.
[10] N. Chawala & K. K. Chawla, “Metal Matrix Composites”, an Oxford–Kobe Materials Text, Springer, 2006.
[11] M. Mizumoto, T. Ohgai & A. Kagawa, “Characterization of fiber-reinforced metal matrix composites fabricated by low-pressure infiltration process”, Journal of Materials Science and Engineering, Vol. 413–414A, pp. 521–526, 2005.
[12] J. Binner, H. Chang & R. Higginson, “Processing of ceramic-metal interpenetrating composites”, Journal of the European Ceramic Society, Vol. 29, pp. 837–842, 2009.
[13] K. Lemster, M, Delporte, T, Graule & J. Kuebler, “Activation of alumina foams for fabricating MMCs by pressureless infiltration”, Journal of Ceramics International, Vol. 33, pp. 1179–1185, 2007.
[14] K. Konopka & M. Szafran, “Fabrication of Al2O3–Al composites by infiltration method and their characteristic”, Journal of Materials Processing Technology, Vol. 175, pp. 266–270, 2006.
[15] K. S. Sohn, K. Euh, S. Lee & I. Park, “Mechanical Property and Fracture Behavior of Squeeze-Cast Mg Matrix Composites”, Journal of Metallurgical and Materials Transactions A, Vol. 29A, pp. 1998-2543, 1997.
[16] S. M. Skolianos, G. Kiourtsidis & T. Xatzifotiou, “Effect of applied pressure on the microstructure and mechanical properties of squeeze-cast aluminum AA6061 alloy”, Journal of Materials Science and Engineering, Vol. 231A, pp. 17-24, 1997.